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Abstract: This study proposes a hybrid visual servoing technique that is optimised to tackle the
shortcomings of classical 2D, 3D and hybrid visual servoing approaches. These shortcomings are
mostly the convergence issues, image and robot singularities, and unreachable trajectories for the
robot. To address these deficiencies, 3D estimation of the visual features was used to control the
translations in Z-axis as well as all rotations. To speed up the visual servoing (VS) operation, adaptive
gains were used. Damped Least Square (DLS) approach was used to reduce the robot singularities and
smooth out the discontinuities. Finally, manipulability was established as a secondary task, and the
redundancy of the robot was resolved using the classical projection operator. The proposed approach
is compared with the classical 2D, 3D and hybrid visual servoing methods in both simulation and
real-world. The approach offers more efficient trajectories for the robot, with shorter camera paths
than 2D image-based and classical hybrid VS methods. In comparison with the traditional position-
based approach, the proposed method is less likely to lose the object from the camera scene, and
it is more robust to the camera calibrations. Moreover, the proposed approach offers greater robot
controllability (higher manipulability) than other approaches.

Keywords: hybrid visual servoing; optimized trajectory; manipulability; task priority; decoupled
image Jacobian

1. Introduction

Vision sensors are widely used to provide contactless knowledge about the envi-
ronment. Adjusting the behaviour of robots to cope with uncertainties of unstructured
environments is one of the main applications of vision sensors in industry [1]. The classical
control laws are mostly formulated by minimizing a task function that corresponds to the
achievement of a given goal. Typically, this primary role only concerns the location of
the robot in relation to a goal, while the environment of the robot will not be taken into
account. To incorporate servoing into a complex real-world robotic system, the control
law must also ensure that unfavourable configurations are avoided, such as joint limits,
kinematic singularities and occlusions [2]. Visual control, also known as visual servoing
(VS), essentially consists of using data from one or more cameras as input to real-time
closed-loop control schemes. The objective of VS is to control the movements of a dynamic
system so that it achieves a task defined by a collection of visual constraints [3]. VS helps to
modify the system in order to compensate for the deficiencies and to relax the mechanical
inaccuracy of the robot [3].

Controlling a robot using the image information has been the focus of a number of
studies in the field of robotics and automation. There are a number of research studies that
applied VS for solving industrial challenges and human-robot cooperation [4–8]. However,
VS introduces new complexities in the image-space, joint space, and the intersection of
these two; all of which must be considered [9].
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Image-based or 2D VS (IBVS), Position-based or 3D VS (PBVS), and Hybrid or 2 &
1/2D VS (HVS) are three main categories of VS control approaches. The IBVS method
computes the feedback directly from extracted image-space features. This method is more
resistant to the camera calibration and robot kinematic errors [10]. Additionally, image
features are less likely to be lost from the image screen [11]. On the other hand, IBVS has
some disadvantages; for instance, some controller commands are not physically executable
for the robot (out of robot reachability) [12]. The poor conditioning of the image Jacobian
matrix (Interaction matrix) might cause problems with the feature error convergence, like
singularities and local minima [13]. Due to direct measurement of the camera velocities
from the task space errors in the PBVS process, the interaction matrix problems (i.e., local
minima and singularity) are avoided, and thus feasible trajectories for the robot can be
generated [14]. In addition, any error in the camera calibration may create an error in 3D
estimation of the target and consequently affects the entire tracking task [3].

In order to overcome the drawbacks of classical VS methods, we proposed Decou-
pled Hybrid Visual Servoing (DHVS) method, which has a better controllability (higher
manipulability) than other VS methods. The efficacy of the proposed method has been
investigated in a sorting application (Figure 1) and it is detailed in Section 4.4. It should
be mentioned that manipulability refers to the attribute of being controllable by motions
of the manipulator [15]. The proposed framework is outlined in Figure 2 and detailed in
Section 2.4.

Camera view

RGB-D camera

Moving arm

Objects defined by Tags

Sorting baskets

Suction gripper

Figure 1. The automated process of sorting the dismantled EV battery components. The object
tracking is carried out by the proposed VS method (DHVS) and the object is manipulated using a
redundant manipulator arm.

1.1. Related Works

Hybrid Visual Servoing was developed to combine the benefits of IBVS and PBVS
while avoiding their drawbacks [16]. Switching approach is a hybrid visual servoing
technique in which the controller alternates between IBVS and PBVS based on the efficacy of
the system [17]. However, when switching occurs the controller suffers from discontinuities,
particularly when the object is close to the image borders [18]. Task sequencing techniques
provide a solution to fill such gaps [19], nevertheless sequencing techniques make the
convergence time up [3]. Furthermore, two failures in IBVS (i.e., camera retreat and
Chaumette Conundrum) could not be easily identified because image-Jacobian is not ill-
conditioned in those configurations [12,13]. As a result, switching between IBVS and PBVS
can not resolve these issues. The Chaumette Conundrum could not be solved even by
creating rotational motions around the camera optic axis, since they would cancel out each
other [13].

In [13], Corke et al. proposed a visual servoing method that decouples the translation
and rotation about Z-axis, from the image-Jacobian in order to address the Chaumette
Conundrum and the camera retreat. However, expensive computation of the pseudo-
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inverse is still challenging. To fix the Chaumette Conundrum and the camera retreat,
a visual servoing method was proposed that decouples translation and rotation around
the Z-axis from the image-Jacobian [13]. However, compensating for rotation errors in
the picture plane about the X and Y axes also results in excessive motion for the robot
joints which is undesirable [17]. By decomposing translations from rotations in 2 and
1/2D visual servoing methods, unnecessary motions are reduced [20]. These methods,
however, are computationally intensive and necessitate homography construction, which
is susceptible to image noise [13]. Another disadvantage of the 2 and 1/2D VS approach is
that it necessitates the use of co-planar features in order to estimate the homography matrix.
Otherwise, at least 8 visual features are required to make this estimation, while 4 features
are sufficient in other methods [21]. The 2 and 1/2D VS approach also decomposes
homography to remove rotational parameters associated with non-unique solutions [22].
In case of using static arm manipulators, issues like unfavourable configurations, joint
limits, kinematic singularities and occlusions should be avoided.

Redundant robots are preferable because adding redundancy to the robot increases
the manipulability and versatility [23]. There are a number of studies that investigated the
use of redundancy to define various types of constraints by integrating secondary tasks
that express the constraints with the main task [24–26]. A global objective function is used
in [27] to determine a balance between the main task and the secondary tasks by using the
redundant DOFs of the robot with respect to the main task. However, significant perturba-
tions may be occurred by the obtained motions which are generally incompatible with the
main task. In another classical method [28], the authors employed a gradient projection
method to solve the redundancy resolution; nonetheless, this approach necessitates that
the main task will not constrain all DOFs of the robot. In such cases, the main Jacobian will
gain full rank, and there would be no redundancy space left for projecting any constraint.
This is a drawback of the traditional gradient projection technique. In [23], a projection
operator for the redundant systems was proposed based on a task function specified as the
norm of the usual error; in this approach, even if the main task is full rank, this projection
operator allows the secondary tasks to be completed.

1.2. Contributions of This Study

To address the aforementioned convergence and performance issues, we proposed an
optimised VS process called Decoupled Hybrid Visual Servoing (DHVS). In the proposed
method, two separate controllers combined together, one using 3D reconstruction of visual
features and the other one directly using 2D information of image (detailed in Section 2.4).
The main findings of the study are summarised as follows:

• In terms of the convergence time and tracked distance, the proposed approach pro-
duces a more optimised trajectory in both the image-space and the joint space than
other classical image-based, position-based and hybrid methods.

• The proposed approach produces more controllable trajectories (higher manipulabil-
ity) for the robot than IBVS when tracking objects.

• In comparison to PBVS and HVS approaches, DHVS approach is less likely to lose the
object from the camera Field of View (FOV).

• The VS process has been boosted by using adaptive gains.
• The effect of robot singularity is minimised by using Damped Least Square method

(DLS); it helps to smooth out the discontinuities caused by the decoupling process of
the image Jacobian and using adaptive gains.

• The functionality of the manipulator has been increased by defining the manipulability
as secondary task.

Figure 2 illustrates the contributions of the proposed hybrid VS approach in the image
space, joint space and the interaction of these two. The proposed DHVS approach will
be explored in-depth in Section 2.4, and its effectiveness will be compared with the other
methods in both simulation and the real world (Section 4).
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Figure 2. Schematic diagram of problem domains in visual servoing. The proposed DHVS method
reduces the image and robot singularity configurations, and keeps the robot away from the joint
limits. In addition, it is less likely to lose the object from the camera FOV, and it is more robust to the
camera calibrations than PBVS method (It generates controllable trajectories with a higher amount of
robot Jacobian, resulting in better manipulability).

The rest of this research is as follows: A brief overview of various visual servoing
controllers has been investigated in Section 2. Section 3 explains the simulation and ex-
perimental setups designed to evaluate the performance of the proposed DHVS method.
In Section 4, the behaviour and effective parameters of four VS methods have been investi-
gated. Finally, this work is concluded in Section 5 and future works are discussed.

2. Methodology

In this section, a brief background about the classical visual servoing methods is given
first. Thereafter, our proposed DHVS method will be explained in detail.

2.1. Image-Based Visual Servoing (IBVS)

In the IBVS method, the feedback from the image features will be directly used and
the image-Jacobian (Interaction matrix Li) would be used to relate the pixel velocity to
the camera velocity [29]. The Interaction matrix for the ith feature would be defined as
follows [29]:

Li =

 f
Z 0 − u

Z − uv
f

f 2+u2

f −v

0 f
Z − v

Z − f 2+v2

f
uv
f u

 (1)

where f denotes the focal length of the camera and s = (u, v) denotes the coordinates
of a point in the image plane. Lets consider ei is difference between current and desired
positions of each feature in the image plane, and vcam = (vc, wc) is the camera velocity
vector (where vc = (vx, vy, vz) is camera linear velocity vector, and wc = (wx, wy, wz)) is its
angular velocity vector. The exponential decoupled decrease of the error can be obtained
when the Interaction matrix at the desired pose is not singular (i.e., si(t)− sid(t) = ei(t) = 0).
Therefore, the appropriate camera velocity vector will be determined using the following
control law [29]: [

vc
wc

]
= −kiL+

i ei (2)

where ki represents a positive proportional gain and L+
i represents the pseudo-inverse

of Li.
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2.2. Position-Based Visual Servoing (PBVS)

The feedback in PBVS comes from the pose reconstruction of the environment. The re-
constructed pose will be estimated using the Euclidean methods and camera parameters.
In this approach, the controller is identified as [21]:[

vc
wc

]
= −λpL−1

p ep (3)

where λp is a positive gain and ep is the position difference (error) between the 3D estimated
position of the camera and the desired 3D position of the camera. Furthermore, Lp(t) is a
6× 6 matrix defined in [21].

2.3. Hybrid Visual Servoing (HVS)

In order to achieve the convergence goal, the classical Hybrid (Homography-based)
visual servoing approaches decompose the 6-DoF motion of the camera into two separate
controllers; one for the translational components and another for the rotational components.

The translation and rotation controllers are derived as follows [9]:

wc = −kL−1
ω eω = −keω (4)

vc = −L−1
v (kev − kLvωeω) (5)

where, Lv, Lω, and Lvω are 3 × 3 matrices defined in [9].

2.4. Decoupled Hybrid Visual Servoing

The proposed DHVS method decouples the Z-axis of translational velocity and the
three rotational velocities (the components that create the IBVS singularity and unnecessary
motions for the robot) from the image-Jacobian matrix. The translational velocities of X
and Y components will be measured in 2D, while the error of the other four parameters
will be calculated by 3D estimation of the target. The control rule in the classic IBVS system
is defined as bellow:

ṡ = Livcam (6)

By decoupling the interaction matrix, the control law would be amended as follows:

ṡ = Lxyvxy + Lrvr (7)

where vxy = [vx vy]T and vr = [vz wx wy wz]T . In addition, Lxy and Lr are calculated as
follows:

Lxy =

[
f
Z 0
0 f

Z

]
(8)

Lr =

 − u
Z − uv

f
f 2+u2

f −v

− v
Z − f 2+v2

f
uv
f u

 (9)

Hence:
vxy = L+

xy{ṡ− Lrvr} (10)

since the time variation of the features are related to the feature errors ṡ = −ke, there-
fore (10) will change to:

vxy = L+
xy{−k(‖e‖)e− Lrvr} (11)

To reduce the convergence time, the following adaptive representation of the controller
gain has been implemented [30]:

k(‖e‖) = (k(0)− k(∞))e
−k(0)

k(0)−k(∞)
‖e‖

+ k(∞) (12)
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In (12), for small amounts (less than 0.005 m) of ‖e‖ the positive amount of gain is k0 =
k(0), while for the high amounts (more than 0.005 m) of ‖e‖ the gain is k∞ = k‖e‖→∞, k(‖e‖),
and the slope of k at ‖e‖ = 0 is k′0.

The term Lrvr will be calculated during each iteration, and the outcome of this term
will be placed in (11). To determine vr in the PBVS method the same scenario for the IBVS
method will happen as follows:

ṡp = LPxyvxy + LPrvr (13)

where LPxy is a matrix generated by the first and second columns of LP in (3), and LPr is a
matrix created by the last three columns of LP in (3). Therefore:

vr = L+
Pr
{
−k(‖e‖)ep − LPxyvxy

}
(14)

The camera velocity vector can be calculated by solving (11) and (14), simultaneously.

2.5. Robot Kinematics with Task Priority

Joint velocities (q̇) are computed after the end-effector (EE) velocities calculated using
the kinematics of robot:

q̇ = J†λξe
cvc

cam (15)

The transformation matrix ξe
c is used to map the velocities represented in the robot

end-effector (EE) frame to the camera frame [31]:

ξe
c =

[
Re

c sk(te
c)Re

c
0 Re

c

]
(16)

where te
c is the translation vector between the EE frame and the camera frame. Re

c is the
rotation matrix between the EE and the camera frame, and sk(te

c) is the skew-symmetric
matrix of the translation vector. It is worth mentioning that ξe

c is constant in such a scenario
(Eye-in-Hand configuration). By using this approach the effect of robot singularity has been
reduced, and discontinuities caused by decoupling process have been greatly smoothed,
thanks to the DLS inverse [32]:

J†λ
= JT

(
JJT + λ2I

)−1
(17)

where λ is a positive scalar known as damping factor. Using DLS inverse minimizes the
term ‖Jq̇− ẋ‖2 + λ2‖q̇‖2. Choosing λ will ensure that the solution norm stays within an
assigned range [33]. It is worth noting that regularisation techniques help with reducing
the effect of singularity configurations. In addition they increase the convergence time [34].
In this study, the task priority for the given tasks (i.e., feature error convergence and robot
manipulability) is calculated [32], and given by:

q̇ = J†λξe
cvc

cam + (I− J†λJ)q̇0 (18)

where I− J†λJ is the Null space projection matrix. Therefore, the closest point in the Jaco-
bian matrix null space will be identified, satisfying both tasks. q̇0 is defined as follows [23]:

q̇0 = k0

(
∂w(q)

∂q

)T
(19)

In (19), k0 is a positive gain and w is the cost function for another task. w should be
maximized in order to consider the other objectives. As mentioned earlier, the manipulabil-
ity of the robot has been considered as the second task.

w(q) =
√

det(J(q)JT(q)) (20)
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Using the classical projection operator defined in [23], the secondary task will be
computed and will be added to the joint velocity vector. The value of w(q) is called manip-
ulability value and shows the functionality of the robot in each configuration. The more the
amount of m, the better adjustment in the workspace is possible (greater range of possible
motions) [35].

The proposed visual servoing control DHVS schema is depicted in Figure 3. The red
blocks represent the image-based control loop, the blue blocks represent the position-based
control loop, and the grey blocks represent the task-space control loop. As shown in the
control block diagram in Figure 3, the camera velocities have been decoupled; in 2D, two
of them (translations in X and Y) were considered by using the features created from the
image screen, as feedback.The remaining components were modelled in 3D (computed by
partial 3D reconstruction of the environment attained by the extracted features). Following
that, the computed velocities will be given to the robot. The controller will exchange the
desired camera velocities with the desired joint velocities using the Jacobian of the robot.
To minimise the effects of robot singularity, the DLS inverse method was used instead
of the pseudo-inverse approach. By using DHVS the object is less likely to be lost and
the method is more robust against calibration than the PBVS method since two out of six
camera velocities will be created directly from the image space. The 3D calculation of the
visual features is used to regulate the errors of rotations and translation in the Z-axis. As a
result, feasible trajectories for the robot will be generated, and image singularities caused
by these four components in the interaction matrix will be eliminated. In Algorithm 1,
the pseudocode of the proposed approach has been illustrated.

Algorithm 1: Decoupled hybrid visual servoing.

1 Inputs: e, ep;
2 Outputs: q̇;
3 Initialization;
4 Define desire points;
5 Modify task as Eye-in-Hand;
6 while Not converged do
7 for i = 1 to i = features.size() do
8 Compute Lxy, Lr, LPr and LPxy
9 end

10 for j = 1 to j = camera-velocity.size() do
11 compute camera velocities vcam = (vxy, vr);
12 use adaptive gain;
13 IBVS update visual features;
14 vxy = L+

xy{−k(‖e‖)e− Lrvr};
15 PBVS update visual features;
16 vr = L+

Pr
{
−k(‖e‖)ep − LPxyvxy

}
;

17 end
18 for k = 1 to k = joint-velocity.size() do
19 calculate joint velocities q̇;
20 define manipulability as secondary task;
21 use damped least square method;
22 command robot;
23 q̇ = J†λξe

cvc
cam + (I− J†λJ)q̇0;

24 end
25 end
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Figure 3. The control schema of the proposed visual servoing approach (DHVS).

The inputs of the algorithm are the feature errors in the image screen and their
counterparts in the 3D space. The output of the DHVS algorithm will be the vector of joint
velocities. In line 8 of Algorithm 1, the decoupled matrices will be determined from (8)
and (9). Camera velocity would be estimated in lines 14 and 16 using the calculated
decoupled matrices in line 8. Adaptive representation of the controller gains was used in
this calculation to increase the VS task speed. Eventually, the robot joint velocities will be
measured and commanded to the robot velocity controller in line 23 of Algorithm 1. Not to
mention that the controller would use manipulability as a secondary task in measuring
the joint velocities, and DLS inverse would be used instead of pseudoinverse to convert
EE velocities to the joint velocities. Using DLS would assist the controller in reducing the
impact of discontinuities and limiting the impact of singularities.

3. Simulation and Experimental Setup

In this study, two different setups were introduced to evaluate the efficacy of the
proposed DHVS method in comparison with other VS methods. In the first setup, different
behaviours of the proposed DHVS method have been studied such as singularity, perfor-
mance and manipulability (Figure 4). The second setup was also designed to demonstrate
the capability of the proposed DHVS method for performing an industrial application (i.e.,
sorting) (Figure 1). It is worth mentioning that all the case studies were performed with
the same adaptive and DLS gains (k0 = 4, k∞ = 0.4, k′0 = 30, λ = 0.1).

Camera view Camera view

RGB-D camera

RGB-D camera

Moving arm

Moving arm

Object

Object

a b

Figure 4. The modelled setup 1 in (a) the simulation hlenvironment, and (b) the real world.

3.1. Design of Setup 1

In the first setup, the DHVS method has been tested in simulation and then validated
in the real world. The simulation platform includes two Franka manipulators; one robot is
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equipped with a RGB-D camera, and another robot arm holds an object (with a printed tag
marker). Four corners of the marker are used as points of interest/visual features in this
study. Tracking the object under this condition has been tested via different VS methods.
The experimental and simulation setups are identical. Franka robots have 7 degrees of
freedom across 7 axes, with 3 kg payload, and positioning accuracy of +/−0.1 mm in all
directions. The proposed method was modelled in simulation using ROS/Gazebo. ROS
Melodic on Linux 18 was used for both the simulation and the experiment. The joint
state controller was used to publish the joint state (at rate of 1 kHZ) and the joint velocity
group controller was used to set the joint velocities computed from the VS approaches.
A system with the following CPU specification was used for the visual servoing operation:
AMD Ryzen 7 3700x, 8-core with 16 CPU Threads, 3.6 GHz base clock and 36 MB total
cache. Figure 4a depicts an snapshot of the developed simulation environment in Gazebo,
and Figure 4b shows the identical experimental setup in the real world.

By using Setup 1, three different case studies have been designed to compare different
behaviours of the DHVS method such as singularity, performance and manipulability with
other VS methods.

3.1.1. Case Study 1

To demonstrate the effectiveness of the proposed DHVS method in singular configura-
tions, this case study has been designed in which the robot with attached marker moved to
a pre-defined position and another robot, equipped with the camera, tracked the visual
features. The position was set in which the desired features rotate 90◦ around the Z-axis.
Deliberately, the position was defined in which the robot encounters singularities in order
to investigate if the proposed DHVS method has capability of avoiding such singularities.
In addition, the camera calibration was intentionally degraded by 20% to evaluate the
performance of DHVS in an imperfect calibrated condition.

3.1.2. Case Study 2

In this case study, a comprehensive comparison between the effective parameters
in VS is carried out. Ten random positions were defined for the object (with attached
marker) in order to be tracked by another robot (with the attached camera) using different
VS methods. The experiments are performed under the same condition for all four VS
approaches (IBVS, PBVS, HVS, DHVS). Thereafter, the performance of the robot and the
VS methods in the image space and Cartesian space were compared quantitatively based
on the RMSE, range of feature error, required number of iteration for convergence and the
manipulability of the robot.

3.1.3. Case Study 3

In this case study, the object is not fixed (in opposite of Case study 1 and Case study 2)
and the controller will track a dynamic object to demonstrate how DHVS could improve
the manipulability of the robot (Figure 4). The selected trajectory includes all rotations and
translations.

3.2. Design of Setup 2

The second setup was designed to evaluate the efficacy of the proposed DHVS method
for sorting application. Figure 1 depicts the experimental setup used for sorting the
dismantled components of an EV battery pack (Nissan Leaf 20212). The VS has been used
to guide the suction gripper towards the battery module (i.e., the object with an attached
marker). Then, the battery module will be lifted and will be placed in the corresponding
basket. The rationale for performing this case study is that in industry, the robot and the
object that the robot is interacting with must be precisely positioned, otherwise the robot
might fail in completing the task due to uncertainties in the environment.
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4. Results and Discussion

In this section, the behaviour of four different VS methods, in different case studies
with various setups, are compared with each other.

4.1. Case Study 1: Singularity Analysis of VS Methods Using Setup 1

The performance of the robot in encountering singularities was analysed using four
different VS techniques (Figure 5). As shown in Figure 5a, the position-based controller
failed to track the desired features. This failure is caused by an error in 3D estimation
of the target, created by the uncalibrated camera. Since DHVS compensates for two of
six velocities directly from the image information, therefore the errors converge to zero
(Figure 5d). This robustness is due to the fact that the image-based approaches do not
require object pose estimation, therefore, it provides robust control in terms of calibration
and regulating the errors. Not to mention that the overshoots in Figure 5d are caused by
the uncalibrated camera parameters, but the key point is that the controller still managed
to completethe task successfully.
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Figure 5. Performance analysis of four different VS methods in completing a similar task in presence
of singularity. (a) Failure in completing the VS task with PBVS approach. (b) Failure in completing the
VS task with IBVS approach. (c) Failure in completing the VS task with HVS approach. (d) Success in
completing the VS task with DHVS approach.

As shown in Figure 5b, in IBVS the errors have not converged to zero because the
controller generates a high velocity in the Z-axis, causing the robot to reach its joint limits.
The main explanation for this restriction is that the controller is just considering the 2D
information of the image. Consequently, the camera moves away from the target to
compensate the rotation error about the Z-axis (camera retreat phenomenon). Nevertheless,
in the DHVS method, the Z-axis errors and task space rotations are compensated by 3D
calculation of the target. In Figure 5d, it is illustrated that the errors are successfully
converged to zero by DHVS approach Figure 5d.
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In the traditional HVS approach, the controller compensates for translation in Z-
axis from the 2D information given by the camera. As a result, the controller continues
to generate a non-optimized trajectory for the camera, which result in generating robot
singularity. Figure 5c clearly shows that the controller using the HVS method failed to
converge the errors to zero.

In summary, Figure 5 suggests that the proposed DHVS approach could avoid the
singularity, mitigate the discontinuities, and complete the VS tasks without the use of
complex and time-consuming methods (Figure 5d), while the other VS methods failed to
complete the task successfully.

4.2. Case Study 2: Performance Analysis of Four VS Methods Using Setup 1

In this section, the effective parameters during tracking 10 positions by four different
VS methods are compared with each other quantitatively and the results are tabulated in
Tables 1–3.

Table 1. Performance of visual servoing methods in the image space.

Method RMSE Feature Error
Range

Iteration Mean of Error Mean Standard
Deviation of Error

IBVS 0.0222 [−0.36, 0.310] 453 0.0152 0.0095
PBVS 0.0383 [−0.445, 0.507] 487 0.0204 0.0164
HVS 0.0273 [−0.448, 0.486] 624 0.0168 0.0141
DHVS 0.0258 [−0.439, 0.443] 587 0.0159 0.0112

According to Table 1, the DHVS method has a lower mean RMSE than PBVS and HVS,
and the range of feature error in PBVS and the classical HVS is greater than that value in
the DHVS. As a result, in the DHVS, the object is less likely to be missed from the camera
screen than in the other two approaches. Not to mention that the DHVS method is quicker
than traditional HVS, and needs fewer iterations to complete the same mission. Table 1
shows that the IBVS method not only has the smallest range of feature error, but also the
smallest RMSE as compared to other approaches.

Without a doubt, IBVS performs better in the image-plane if there is no singularity or
local minima. However, the controller operates blindly in the Cartesian space (with the
highest RMSE for location and orientation as shown in Table 2). Large camera motions are
common in the IBVS approach. As shown in Table 2, in Cartesian space, the DHVS method
performed better than IBVS and HVS, as one would expect. However, the mean RMSE
amounts of position and orientation in the PBVS method were less than their counterparts
in the other three methods. As a consequence, in Cartesian space, the PBVS method had
the best results, followed by DHVS.

Table 2. Performance of visual servoing methods in the Cartesian space.

Method RMSE of
Position (m)

RMSE of
Orientation (◦)

Camera (or EE)
Travelled Distance (m)

IBVS 0.036 9.43 0.942
PBVS 0.022 6.54 0.722
HVS 0.034 8.41 0.917
DHVS 0.031 6.89 0.834

Ultimately, the DHVS method indicates more optimised efficiency in the Cartesian
space than IBVS and HVS (based on the amounts of mean RMSE shown in Table 2).
Furthermore, DHVS outperforms PBVS and HVS in image-space (based on the amounts of
RMSE and feature error ranges, shown in Table 1). In Table 3, a quantitative comparison of
manipulability has been presented. When using the DHVS approach for VS, the mean of
manipulability across the entire path is higher than when using the other three methods.
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The mean of manipulability with our proposed DHVS method after 10 different trials was
0.0484. However, for the same number of trials and the same initial position of the robot
and the marker, this amount was 0.0407 for the IBVS method, 0.0446 for the PBVS method
and 0.0396 for the classical hybrid method. In conclusion, the proposed DHVS technique
clearly had advantages in terms of controllability and the ability to select a wider range of
joint positions, compared to PBVS, IBVS and HVS approaches.

Table 3. Comparison of manipulability in different VS methods.

Method RMSE Manipulability
Mean

Manipulability
Range

Iteration

IBVS 0.0222 0.0407 [0.0140, 0.0810] 153
PBVS 0.0383 0.0446 [0.0245, 0.0807] 187
Hybrid VS 0.0273 0.0396 [0.0208, 0.0806] 224
DHVS 0.0249 0.0484 [0.0289, 0.0810] 205

As a prime example, in Figures 6 and 7, the behaviours of different VS methods for
one of the experiments (i.e., tracking one of the ten positions) in have been depicted this
case study.

According to Figures 6 and 7, the proposed hybrid approach will not inherently have
the best performance in tracking the features in the image-space and Cartesian space (robot
space), but it will have an optimised performance in both.
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Figure 6. The real world result of the feature errors in different methods for the same scenario.
(a) Feature errors in PBVS approach. (b) Feature errors in IBVS approach. (c) Feature errors in HVS
approach. (d) Feature errors in DHVS approach.
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Figure 7. The real world camera (EE) trajectory in different methods for the same scenario in Figure 6.

It stems from the fact that translation in X-axis and Y-axis of the camera velocities are
computed directly from the image space, while the rest are computed from 3D reconstruc-
tion of the environment. Furthermore, as compared to HVS and PBVS, the object in DHVS
is less likely to be lost from the camera FOV. This conclusion was reached by comparing
the maximum feature error in Figure 6d to the one in Figure 6a,c, which is less. The larger
the error, the more likely the feature lost from the camera FOV.

According to Figure 7, DHVS (the blue path) has a shorter camera path than HVS (the
purple path) and IBVS (the red path). To elaborate, the camera (or the robot EE) travelled
0.843 m distance in DHVS; however, this value is 0.942 m and 0.917 m in IBVS and HVS,
respectively. In PBVS, the camera travelled distance is 0.722 m, which provides the most
optimised Cartesian trajectory of the robot EE, as predicted.

The IBVS reflects the most optimised path in the camera frame as shown in Figure 6b,
followed by DHVS method. IBVS has a lower RMSE than the other three VS approaches.
In Figure 6, this amount is 0.036 in PBVS, 0.021 in IBVS, 0.032 in HVS and 0.028 in DHVS.
As shown in Figure 6b, the maximum feature error along the entire path is 0.098, indicating
that there is a very low chance of losing the object from the camera FOV. Since PBVS
controller performs blindly in the image screen, it has the most undesirable RMSE (0.036)
in the camera screen. As illustrated in Figure 6a, PBVS has the highest feature error (0.24)
compared to other approaches, therefore it is more likely to lose the object from the camera
FOV. Figure 6c,d show that the DHVS method is faster (converged in 300 iterations) than
HVS method (converged within 443 iterations) and the RMSE amount is less in DHVS (less
likely to lose the features).

4.3. Case Study 3: Manipulability Analysis of Four VS Methods Using Setup 1

Four different visual servoing methods (DHVS, IBVS, HVS, PBVS) have been used
to track the object. Figure 8 depicts the amount of manipulability for the VS methods.
As shown in Figure 8, the manipulability of the DHVS method was mostly greater than
the other three methods. The manipulability value at the time zero is the same since the
robot started moving from the same position with an identical configuration during all
trials. The minimum amount of manipulability for the DHVS method is 0.0681, while this
amount is 0.0588 for IBVS, 0.0613 for PBVS and 0.0628 for the HVS method.
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Figure 8. Analysing the manipulability of different VS methods during tracking the trajectory
(introduced in Case study 3) of a dynamic object.

In Figure 9, the manipulability ellipsoid of the robot in its minimum amount (lowest
amount of controllability for the robot) for different VS approaches has been illustrated.
Since the manipulability ellipsoid is a hyper ellipsoid in six dimensions and plotting this
in 3D space is a complex task, the first three elements of the ellipsoid have been plotted
(i.e., translational velocities). From the plots in Figure 9, it is obvious that the proposed
hybrid method has better controllability on the robot movements, compared to IBVS, PBVS,
and HVS methods. The more isotropic the ellipsoid, the higher the controllability of the
robot.
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Figure 9. Manipulability ellipsoid in its minimum amount for three translation degrees of freedom
in different VS approaches. (a) The manipulability ellipsoid of the robot in its minimum value with
the PBVS approach. (b) The manipulability ellipsoid of the robot in its minimum value with the IBVS
approach. (c) The manipulability ellipsoid of the robot in its minimum value with the HVS approach.
(d) The manipulability ellipsoid of the robot in its minimum value with DHVS approach.

4.4. Sorting Dismantled EV Battery Components by DHVS Using Setup 2

Currently, the process of dismantling the EV battery packs carries out manually and
robotic disassembly is limited to minor tasks with assistance of human [36]. The manual
operations take time and require qualified workers to complete. As a result, manual
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disassembly is not economical [37]. A solution to this challenge is fully automating the
dismantling process to reduce the cost and to increase the safety [38].

As a proof of concept, we designed the fourth case study to demonstrate the capability
of the developed DHVS method in automating the process of sorting the dismantled EV
battery components. This demonstration is carried out by using the Setup 2 that introduced
in Section 3.2 (Figure 10). The manipulator arm tracks the object by converging the current
features in the camera screen to the desired ones (red dots in Figure 10a). The trajectory of
each feature is shown in green in the camera screen (Figure 10a). The convergence threshold
for tracking is set to 0.00005 m. By using the transformation matrix which links the camera
to the vacuum suction gripper, the robot moves to a position above the object. Then,
the robot moves in −Z axis till makes contact with the object (Figure 10b,f). The external
force is calculated using the Jacobian of the robot and the joint force sensors (Figure 10e).
The next step is to lift the object using the vacuum suction gripper (Figure 10c), and place
it in the desired basket, depending on whether they are reusable or should be discarded
(Figure 10d).
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Figure 10. DHVS method is used for tracking the visual features attached to a Lithium-ion battery.
Manipulability is considered as a secondary task for the controller. By using the proposed DHVS,
the robot arm performs the task of sorting the battery; (a) the robot will follow the visual features
of the object online; the tracked path of each feature is shown in the camera screen. (b) The robot
goes down straight to detect the surface by the force feedback. (c,d) The object has been lifted by the
vacuum suction gripper, and then released the battery in the corresponding basket. (e) The feature
errors converged to zero during Visual Servoing. (f) The force value in the Z-axis for detecting the
object surface.

5. Conclusions

In this study, a hybrid visual servoing approach was proposed, called Decoupled
Hybrid Visual Servoing (DHVS). The proposed method was developed to address the
drawbacks of the classical IBVS, PBVS and HVS approaches, and to improve their perfor-
mances. In the DHVS method, three rotations and translations along the Z-axis have been
decoupled from the image-Jacobian and controlled by 3D reconstruction of visual features.
Instead of using a constant gain, adaptive gains were used to reduce the convergence time.
The damped least square approach was used to smooth out the discontinuities and reduce
the effect of robot singularities. In addition, image singularities generated by translation in
the Z-axis, as well as rotations, are avoided in the proposed DHVS method. The reason
is that the non-linear independent columns and rows, which cause the interaction matrix
to lose rank, will be removed by decoupling the image Jacobian. It was found that the
robot functionality increased during VS by defining manipulability as a secondary task,
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and solving redundancy resolution with the classical projection operator process. The
proposed method not only has an optimised solution for the robot EE trajectory, but it
also takes into account the image-space optimised trajectories of the features. Moreover, it
is less likely to lose the object from the camera FOV in comparison with PBVS and HVS
methods, and it is more robust to camera calibrations compared to PBVS. The proposed
DHVS method has been compared with other VS methods in simulation and validated in
the real worldSimulation and experimental results suggested that DHVS method has better
performance in tracking the visual features in comparison with the other VS methods.
In future study, Deep Neural Networks will be used to extract the features and to overcome
the complexity of feature selection.
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