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Abstract

The fluorescence intensity of dissolved organic temat
(DOM) in aqueous samples is known to be highlyueficed
by temperature. Although several studies have detrated
the effect of thermal quenching on the fluorescensic®OM,
no research has been undertaken to assess thés effec
temperature by combining fluorescence excitatioamission

matrices (EEM) and parallel factor analysis (PARABHA
modelling. This study further extends previous aeske on

thermal quenching by evaluating the impact of terajpee on
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the fluorescence of DOM from a wide range of envinental
samples, in the range 2@ - 0 C. Fluorescence intensity
increased linearly with respect to temperature elsw at all
temperatures down to @. Results showed that temperature
affected the PARAFAC components associated withitulike

and tryptophan-like components of DOM differently,
depending on the water type. The terrestrial hurkee-
components, C1 and C2 presented the highest thermal
guenching in rural water samples and the lowestlyan water
samples, while C3, the tryptophan-like component €4, a
reprocessed humic-like component, showed oppostelts.
These results were attributed to the availabilitg abundance

of the components or to the degree of exposurenéoheat
source. The variable thermal quenching of the hdikec
components also indicated that although the PARARAdGlel
generated the same components across sites, the DOM
composition of each component differed between th€his
study has shown that thermal quenching can proadttitional
information on the characteristics and composittdhDOM

and highlighted the importance of correcting fllsmence data

collectedin situ.

Keywords.  fluorescence  spectroscopy; thermal
guenching; dissolved organic matter; parallel facoalysis;

temperature correction
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1. Introduction

In recent years, fluorescence spectroscopy has been

increasingly applied to the analysis of aqueoussaived
organic matter (DOM). The effectiveness of thisht@que in
water quality analysis has been proven by studiesumerous
types of water systems (Drozdowska, 2007; Keltoal.eR007;
Murphy et al., 2008; Ghervase et al., 2012; KotHave al.,
2012; Carstea et al., 2014). Fluorescence has temealated
with standard parameters such as biological oxydemand
(Reynolds and Ahmad, 1997; Hudson et al., 2008; &l
Kong, 2008), total organic carbon (Modacek et 4B95),
nitrogen and chemical oxygen demand (Hur and ClBa22
Bridgeman et al., 2013). Due to its potential, aeskers have
applied fluorescence spectroscopy in studies sushtha
monitoring of riverine DOM and diesel pollution @xer et
al., 2007; Carstea et al., 2010), analysis of recyavaters
(Henderson et al., 2009), evaluation of drinkingevd@reatment
processes (Bieroza et al., 2009; Shutova et all4@0
monitoring of viral abundance in wastewater (Palla2012),
guantification of pesticides (Ferretto et al., re$s) or testing

of potable waters microbial quality (Cumberlandakt 2012).
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The intensive use of fluorescence spectroscopyaitemguality
analyses arises from its advantages, which inclhdgh
sensitivity, small quantities of sample neededy \gtle or no
sample preparation and short measuring time (Cdéeg6;
Birdwell and Valsargis, 2010). However, the flua@sce
signal can be affected by so-called “matrix effeatghich
include inner filter effects and fluorescence qumeng
(Lakowicz, 2006; Henderson et al., 2009; Korak let2014).
With regard to fluorescence quenching, it has s®wn that
fluorescence spectroscopy is highly sensitive topterature
variations. An increase in temperature increase$thbability
of the excited electrons returning to ground stétsough
radiationless decay. Baker (2005) studied temperatu
guenching on several types of water samples androds a
decrease in fluorescence intensity ranging fron¥il® 48 %,
depending on the samples and DOM component analysed
Elliott et al. (2006) observed a decrease in flsoeace of more
than 40 % for fluorophores produced by bacteridtuces
isolated from river samples and Seredynska-Sobetkal.
(2007) studied thermal quenching on colloids ol rsimilar
results. However, in each case the researchensodistudy the
impact of temperature on DOM fluorescence below @ptlue
to condensation which could form on the cuvette laval
Patsayeva et al. (2004) and, more recently, Watras (2011)

have analysed thermal quenching to almost 5° Cdandloped



104 a correction method for fluorescence spectra bth besearch
105 teams concentrated only on marine water samples.
106 Consequently, no research has been made, so fatutty
107 fluorescence thermal quenching below 5° C on wséenples
108 from a wide range of different sources.

109 This study seeks to characterise the fluorescence
110 properties of DOM, from water samples with differenurces,
111 using thermal quenching and the combination of tation —
112 emission matrices (EEM) and parallel factor analysi
113 (PARAFAC). Several studies have shown that PARARA@
114 powerful tool in separating and analysing DOM comgas
115 (Ohno et al., 2008; Yamashita and Jaffe, 2008; Geleget al.,
116 2011; Meng et al., 2013; Murphy et al., 2014; Sauacht al.,
117 2014; Yang et al., 2014). Specifically, the aimstlg study
118 were: (1) to investigate the response of DOM, frdiffierent
119 sources (urban and rural areas), at low tempeafarea better
120 understanding of DOM characteristics; (2) to eveduthe
121 impact of temperature on the most labile fractioh®OM; (3)
122 to assess the potential of applying the Watrasl.e(2811)
123 correction tools at temperatures below 5° C; (4inieestigate
124 the use of EEM-PARAFAC tool combined with thermal
125 quenching to improve our understanding of DOM cbta To
126 date, EEM-PARAFAC has not been applied to the itigason
127 of thermal quenching of DOM components from watenples

128 and could provide a better understanding of DOMyproes.



129

130 2. Materialsand Methods
131 2.1 Sample preparation and analysis
132 Samples were collected from two areas: Birminghacdh a

133 Buxton, located in the Midlands area, UK (Fig. The
134 sampling sites, with different characteristics, eveelected to
135 reflect a gradient from rural to urban areas. Imiéngham, 5
136 types of water were sampled, hereafter named: b(Sakton
137 Park), lake (Sutton Park), pond (Edgbaston pondjfase
138 runoff from storm sewers (University of Birminghazampus)
139 and canal (Worcester and Birmingham Canal). Brauk lake
140 samples were collected from Sutton Park, which iasional
141 Nature Reserve and presents a relatively ruralstipe
142 character (http://www.birmingham.gov.uk/suttonpariQanal,
143 storm sewer and pond samples were collected frorarlaan
144  zone; however, the pond was located in a small pattklower
145 anthropogenic activity compared to canal and stsewer.
146  From Buxton, a river water sample was collectedktBua town
147 is located along the Wye River, within The Peak tiis
148 National Park, having low anthropogenic impact,cadng to
149 the Environment Agency
150 (http://www.peakdistrict.gov.uk/microsites/sopriscape/river
151 -quality).

152 Water was sampled in polypropylene bottles, cleaméu

153 10 % HCI and thoroughly rinsed with deionised wadgor to
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use. All measurements were performed within 24hmfro
collection. The samples were measured for condugtigH,
dissolved organic carbon (DOC) and absorbance, #66hnm

to 700 nm. Conductivity and pH were measured uaiiyron
meter, absorbance measurements were made with a WPA
lightwave UV-VIS diode-array S2000 spectrophotometed

DOC with a Shimadzu TOC-Vcpn analyzer.

Fluorescence EEMs were recorded using a Variay Car
Eclipse spectrofluorometer, with the following paeters:
excitation wavelength domain 200 — 400 nm, emission
wavelength domain 280 — 500 nm, steps of 5 nm anoh Zor
excitation and emission, respectively, and slitsSoim. The
instrument stability was checked by recording tham@n
values (at excitation wavelength 348 nm and enmissio
wavelength 395 nm) before each set of measureméhts.
average Raman value was 24.38 a.u. with a startasidtion
of 0.58. The fluorescence intensity of all spectrere
normalized to a maximum value of 1000 a.u. andexbed to
the average Raman value. Every set of measuremastsade
in triplicate in order to check the instrument ghscibility (+
5%).

The temperature was decreased gradually frohC2eo
0° C, by the use of a Peltier temperature controtiecprding
EEMs at every 05C. Each set of measurements lasted for 90

min, to ensure gentle cooling of the sample. BelgwC,
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condensation usually forms on the cuvette outefswhlt, in
this study, it was eliminated by inserting dessidaegs inside
the sample chamber. The reduction in condensatias w
checked by recording fluorescence spectra at peribche
intervals and at the established temperature rarde
conditions with no condensation were obtained wéikca gel
bags had been kept in the sample chamber for 26 hrs
Throughout the experimental period, the dessicags bvere
periodically replaced. All samples were filteredtiwD.7 um
Whatman GF/C paper filters prior to cooling andlgsia.

2.2 PARAFAC analysis

PARAFAC was performed on a set of 697 EEMs
(including triplicates) for varying temperatures the six water
sources described above. Although only 6 differesmter
sources have been used in PARAFAC modelling, theyige
a good variation in terms of spectral properties anlarge
number of samples helped to avoid any potential
autocorrelation effects during the split-half validn. Prior to
modeling, EEMs were pre-processed in Matlab usungam-
written functions to remove redundant spectral augax < 220
nm, Aex >iem, 2iex <iem, Raman and Rayleigh scatter)
(Bieroza et al., 2011). Pre-processed EEMs wermalzed to
the Raman scatter peak of water using procedurerided in
Lawaetz and Stedmon (2009). The PARAFAC model was

fitted and validated using the DOMFIluor toolbox figiatlab



204  (Stedmon and Bro, 2008). The final four-componeatiet was
205 chosen based on the percentage of variance exgp)atoee-
206 consistency diagnostic (Bro and Kiers, 2003), #sults of the
207 split-half analysis and visual inspection of thecietion and

208 emission loadings (Table 1).

209

210 3. Results and Discussion

211 3.1 Fluor escence properties of DOM

212 The four fluorescence components identified inwater

213 samples are shown in Fig. 2. Componenkgk €225 nm and
214 ~330 nm,Aem ~460 nm) is associated with terrestrial humic
215 substances, being similar to the PARAFAC componéniad
216 by Stedmon and Markager (2005), Murphy et al. (2G@8.1;
217 2014), Kowalczuk et al. (2009), Williams et al. {20,
218 Baghoth et al. (2011), Yamashita et al. (2011)ij lshd Boyer
219 (2012), Kothawala et al. (2012), Maie et al. (201&)d
220 Yamashita et al. (2013). These studies have shdwah this
221 component is ubiquitous in water systems, havingriaary
222 terrestrial source and a secondary microbial soafdOM. In
223 addition, C1 is dominated by biological productiand is
224  partially degraded. According to Fellman et al.(@Pand Ishii
225 and Boyer (2012), C1 has high molecular weight G8L0Da)
226 and presents a high degree of hydrophobicity aodhaticity.
227 Component 2 (C2), found atx ~225 nm and ~330 nm,

228  hem ~410 nm, belongs to the group of humic fluoropkpre



229 based on the studies of Stedmon and Markager (2805phy
230 et al. (2008; 2014), Williams et al. (2010), Yamslet al.
231 (2011), Ishii and Boyer (2012), Maie et al. (201Znhese
232 studies show that C2 is found mostly in DOM domaolaby
233 terrestrial sources and is photochemically produce&@
234  presents minimal biodegradation and, accordinghadOet al.
235 (2010), has low molecular weight (<665 Da).

236 The third component, C3\ex ~225 and ~275 nmiem
237 ~350 nm, indicated the presence of a tryptophami&ction,
238 in accordance with the results of Stedmon and Mpaka
239 (2005), Williams et al. (2010), Murphy et al. (2012014),
240 Maie et al. (2012), Yamashita et al. (2013), Shat@t al.
241 (2014). Furthermore, Fellman et al. (2010) and Kothla et al.
242 (2012) found that this component is a product of
243 autochthonous, microbial processing.

244 Component 4 (C4Wx ~240 and ~320 nMem ~380 nm)
245 is linked to the humic substances, as shown bynstadand
246 Markager (2005), Murphy et al. (2008; 2011; 2013aeber et
247 al. (2012), Kothawala et al. (2012), Maie et aDX2), Ishii and
248 Boyer (2012) and Yamashita et al. (2013). Thesdalissu
249 demonstrate that C4 indicates recent biologicatlpction and
250 is often defined as a microbial humic-like compdn@iurphy
251 etal., 2011; Maie et al., 2012; Yamashita et24113). Ishii and
252 Boyer (2012) report that C4 has an intermediateemdar

253 weight, between C1 and C2.

10
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The mean fluorescence values of component scomgs an
the relative abundance of each component to thal tot
fluorescence intensity are presented in Table 2a@lLC2 are
most abundant at the brook and lake samples, fetloly the
river and pond samples and are the least abunddiné @anal
and storm sewer samples. The abundance of C3 ant C4
higher at the canal and storm sewer samples cochparthe
other samples. A correlation between C1 and C2okasrved
(rs =1.00, n =7, p <0.001), which indicated thatsalmples
contained both high and low molecular weight DOM
compounds and with hydrophobic and hydrophilic abtars,
in almost equal proportions. In addition, a strayagrelation
between C3 and C4 was calculated=(0.93,n =7, 0.01 >p >
0.005) showing a close relationship between thptapghan-
like compound and the microbial humic-like fractiddespite
the low degrees of freedom for both correlatioris=(8), given
by the replication in the dataset, the correlationsre
considered significant since the components tendsnwere
similar.

Based on these results, it was observed that thekpr
lake and river samples, which were collected fratatively
pristine areas, contained DOM with a strong hunke-|
character, indicating low anthropogenic contamoratiwhile
canal and storm sewer samples showed a high abceadzn

tryptophan, typically associated with microbial sl

11
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302

(Kothawala et al., 2012), indicating the presencé o
anthropogenic-derived matter (Meng et al., 2013st@a et al.,
2014). The distinction between urban and rural dasns
better reflected by the C3/C1 ratio (Table 2): lizoake and
river samples with a rural character had the lowaktes, pond
sample had an intermediate urban and rural chardoteto the
sampling location in an urban park, and canal dadrssewer
with an urban impact showed the highest C3/C1 walGanal
and storm sewer also presented similar values foC[and
absorbance (Table 3). Furthermore, rural samplesvesth
higher DOC and absorbance values compared to ther ot
samples. The highest conductivity values were tedeat the
canal and pond samples, while the lowest valueg ween at
the storm sewer sample. The values for pH wererdecb
within the range of 6.7 and 8.1.
3.2 Thermal quenching of humic-like components
The fluorescence response to temperature variation,

between 20C and 8 C, for the humic-like components C1, C2
and C4 is shown in Figure 3 (a, c and e). All thremponents
exhibit a linear fluorescence increase with temipeea
decrease. Similar linearity was reported in thelist of Baker
et al. (2005), Seredynska-Sobecka et al. (2007)Vdattas et
al. (2011) on thermal quenching of DOM fluorescenoethe

range of 48 C - 8 C. Although, PARAFAC components

12
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327

showed similar linear trends at all samples, thgre of
temperature impact was highly variable.

Figure 3 (b, d, f) presents the slope of fluoreseen
intensity decrease per degree Celsius. C1 showsittest
slope at the rural samples, lake and brook, foltbveg the
pond and storm sewer samples, while the lowestegahave
been seen at the river and canal samples. Simdarple
variability of slope was observed at C2. The lasinitc-like
component, C4, presents the highest slope at ttewgamples,
storm sewer and canal, whilst the lowest have Iseen at the
rural samples. It must be noted that although tARAFAC
model is consistent across all samples, the degfrékermal
guenching is variable between them. This suggémsts ¢ach
humic-like PARAFAC component is comprised of mohart
one fluorophore.

Overall, C1 exhibits a higher slope of fluorescence
intensity decrease compared to C2 and C4, indgdhat this
component might be more environmentally impacted.
Seredynska-Sobecka et al. (2007) reported thahdingc-like
fraction has high sensitivity to thermal quenchiegpecially at
the small size fractions (< 04m). Furthermore, Ohno et al.
(2008), Yamashita and Jaffe (2008) and Mounier Q201
proved, by studying the interaction between DOM ametal
ions, that this component was more likely to suffieorescence

guenching, compared to the other humic-like comptmerhis

13
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indicated that C1 is more sensitive to environmleakt@anges
relative to C2 and C4. Moreover, C2 and C4, whick a
resistant to further degradation, after photochamiand
biological production and degradation (Ishii andy&go 2012),
are probably less affected by temperature chanfes.high
slope of C1 could also be associated with the ivelat
abundance of fluorescence intensity, as higherestaas been
observed at samples with high abundance. HenceoGltl be
more readily available for thermal quenching comepatio C2
and C4.

3.3 Tryptophan-like component behaviour to
temper atur e changes

Tryptophan-like component, C3, shows the same tityea
as the humic-like components (Fig. 4a), in accocdawith the
results of Baker (2005) and Elliott et al. (200Burthermore,
variable gradients of fluorescence decrease peredegelsius
(slope) have been observed (Fig. 4b). The highegte shas
been seen at the storm sewer and canal samplesyddl by
the lake, pond and river samples, while the lowest been
observed at the brook sample.

In contrast to the humic-like components, C3 slopeald
be associated to a lesser extent with the relaiwendance of
fluorescence intensity (Table 2). Although, C3 isoren
abundant in the canal sample, compared to stornersatv

shows a lower slope value. According to Baker (300t
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degree of thermal quenching relates to the exposfirthe
fluorophore to the heat source. These findings ssigthat C3,
belonging to storm sewer DOM, contains more exposed
tryptophan compared to the canal sample. The same
assumption could apply to the lake sample C3, whrelsents a
high slope value, despite the low abundance reaivriver

and pond samples. The results suggest that frggoptyan
could be a dominant component in storm sewer ahké la
samples and is, therefore, more easily quenchddimgteasing
temperature.

The various responses of PARAFAC components scores
to temperature fluctuations can have a large impadnh situ
fluorescence measurements, especially when congparin
experiments from several locations made in diffesgasons or
times of the day. Consequently, the fluoresceneetsp need
to be corrected for temperature before comparisodies can
be made. The temperature correction tool, develbyad/atras
et al. (2011), uses a temperature coefficient, kvinscthe ratio
between the slope of the fluorescence intensity fasction of
temperature change, from®0 to 8 C and the intercept, at the
reference temperature of 2C. However, their studies have
been performed on lake water and could not accdont
variations between different types of water samplé® slope,
calculated in the present study, shows the sanearlittend of

increase below%C, indicating that the temperature correction

15



378 tool developed by Watras et al. (2011) can be agdpdven to

379 fluorescence spectra of samples measured bél@v 5

380
381 4. Conclusions
382 This study presents the first investigation of DOM

383 fluorescence properties, at low temperatures, WHBEM-
384 PARAFAC. The impact of temperature on the individua
385 PARAFAC components in DOM, from several water saspl
386 was evaluated by decreasing the temperature frdhc2o @
387 C. This analysis extends the fluorescence thermeahching
388 studies, made by other researchers, in the rang® & — 5 C.
389 Results have shown that fluorescence intensity dndmear
390 increase, as temperature decreased frofnC2@ @ C. Thus,
391 the temperature correction tools developed by VEaetal.
392 (2011) can be applied to fluorescence spectra ofipks
393 measured at temperatures beldWC5

394 It has been found that temperature affects the ABKC
395 components associated with the tryptophan-like landic-like
396 fractions differently, depending on DOM charactdr each
397 sample. The humic-like components, C1 and C2 ptetfen
398 highest thermal quenching at the rural samplesthedowest
399 at the urban samples, while C4 show opposite ieslitte data
400 indicate that, while the PARAFAC model is consistanoross
401 all samples, the degree of thermal quenching vadrets/een

402 them, suggesting that each humic-like PARAFAC congo

16



403 is comprised of more than one fluorophore. Furtloeen
404 thermal quenching has shown that, among the hukec-|
405 components, C1 is more environmentally impacted authe
406 same time, more readily available to quenching ameghto C2
407 and C4. The tryptophan-like component presentshigbest
408 slope of fluorescence decrease per degree Ceisitine iurban
409 samples and the lowest at the rural samples. Theueaching
410 has evidenced that free tryptophan residues, frdma t
411 tryptophan-like fraction, are dominant at the st@ewer and
412 lake samples, due to the direct exposure of thardjphore to
413 the heat source.

414 Considering that a growing body of literature sdessthe
415 importance of using fluorescence forsitu measurements, the
416 analysis of temperature effects on DOM is highlypariant, as
417 the fluorescence signal of each DOM component rsably
418 quenched depending on temperature. Therefore, soem@end
419 correction of the fluorescence spectra recordddraperatures
420 below 20 C. However, it is necessary to be aware of the
421  potential multi-fluorophoric nature of the PARAFAMiIc-

422 like components, which may lead to variable reshi#sveen

423  sites.
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Figure captions

Fig. 1 Map with the sampling points from Birminghaand
Buxton (Map of UK adapted from © OpenStreetMap
contributors, CC BY-SA, Open Database License 2010)

Fig. 2. Excitation and emission matrices of therBBARAFAC

components.

Fig. 3 Linear relationship between PARAFAC scoresl a
temperature, and the slope: (a) and respectivglgdimponent

1, (c) and (d) component 2, (e) and (f) component 4

Fig. 4 Linear relationship between PARAFAC scoresl a

temperature (a) and the slope (b) for component 3.
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Table 1. A summary of the PARAFAC models fitted ftoorescence dataset with the following
constraints: sample mode — non-negativity, excitatind emission modes — non-negativity and uniniiydal

Number of | Convergence Sum of Total variance | Core-consistency | Split-half analysis
components (Yes, No) squar es of explained (%) (%) validation (Yes, No)
errors

1 Yes 27056 96 100 Yes

2 Yes 23183 96 -87 Yes

3 Yes 5540 99 41 Yes

4 Yes 4860 99 6 Yes

5 Yes 4124 99 0 Yes

6 Yes 4021 99 2 Yes

7 Yes 3669 99 1 Yes




Table 2. DOM fluorescence results of the water dasp

M ean value of component scores (a.u.) (SD)

Relative abundance of fluorescence

Samples intensity (%)**

CL | c2 | c3 | c4 |[caci|Toa | C1 Cc2 c3 ca
Brook ?10.219; (21()"1(; (é:;) (8:% 01 | 528| 59 38 3 0
Lake (21%(; (11%5; (g:i) (8:% 02 | 447| 51 37 10 2
River (g:i) (g:;) (g:g) ((1):% 03 | 193] 49 29 15 6
Pond (10%'7(‘; (101_'77) (gzi) (gzg) 05 | 39.9| 37 29 17 16
o | B8 i [ B[S i [we] | ] ]
Canal (gzg) (g:g) (g:i) (gzg) 15 | 276| 24 18 35 23
Blank (8:(1)) (828) (8:(1)) (8:8) - | o6 | 22 52 19 7

*SD — standard de

viation

**Calculated according to Yamashita and Jaffe (9G@8percentage of the total fluorescence.




Table 3. Standard data for the analysed water samples.

Samples DOC H Conductivity Absorbance at 350
(mg/L) P (nSlcm) nm (cm™)
Brook 7.75 8.1 413 0.089
Lake 8.71 6.8 288 0.078
River 5.55 6.7 340 0.021
Pond 2.96 7.3 687 0.023
Storm Sewer 4.96 7.0 98 0.035
Canal 4.79 6.8 747 0.039
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We investigated DOM fluorescence properties, at low temperatures, with EEM-PARAFAC
Fluorescence intensity increases linearly as temperature decreases from 20° C to 0° C
DOM PARAFAC components are variably quenched and this is sample specific

Each humic-like PARAFAC component might be comprised of more than one fluorophore



