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41 
Abstract: This paper examines the role for pipe deterioration prediction approaches for optimising 42 

maintenance, repair and rehabilitation of buried water supply, wastewater collection and drainage networks. 43 

It is appreciated that there are other ancillary assets within water supply and wastewater collection and 44 

drainage networks, but these were not considered in this paper. Currently there are a range of asset condition 45 

assessment frameworks, mainly based on asset defect location, identification and characterisation. These are 46 
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infrequently applied in practice, mainly due to the restricted availability of asset defect inspection data. The 47 

paper reviews current deterioration modelling approaches and highlights the crucial need for broader, richer 48 

data sets (including both asset and surrounding environment data) to inform the development and application 49 

of such approaches. The paper describes what could be considered as an expanded “ideal” data set for 50 

deterioration modelling at a network and individual asset scale and indicates emerging new inspection 51 

technologies that should be capable of meeting the enhanced data needs. 52 

Keywords: Deterioration Modelling, defect classification, inspection capabilities, data needs, water supply 53 
and wastewater collection networks. 54 
 55 
1.0 Introduction 56 
 57 
One of the fundamental needs of human settlements is a source of clean water – without this, people cannot 58 

survive. To this basic need should be added the facility to remove wastewater and also deal with excessive 59 

surface water arising from precipitation and overland and ground flows. Water supply pipes normally operate 60 

under pressurized conditions, in which the internal pressure varies but is always higher than atmospheric 61 

pressure, wastewater collection and storm water drainage systems generally operate in an unpressurized 62 

state. In developed countries, the systems have been in operation for a very long time, have been constructed 63 

from a wide variety of materials, and have been progressively added to. The materials that make up these 64 

buried pipe networks are naturally subjected to chemical, physical and biological stresses, and the pipe 65 

networks typically therefore suffer from deterioration over time in a variety of ways. Those operating these 66 

networks are responsible for maintaining adequate quality of service delivery, and therefore an understanding 67 

of when the systems are likely to fail, or deteriorate to a point of adversely influencing the service provision, 68 

is vital.  Failure of both water supply, wastewater collection and drainage networks can be defined as an 69 

inability to carry the required flows, whether that be wastewater flows, stormwater rainfall runoff flows, or 70 

supplying potable water demand and maintaining the ability to pass even higher flows for firefighting 71 

purposes. Pipes should also convey flows with acceptable levels of exfiltration/infiltration and leakage and for 72 

water supply water networks quality should also be above specified thresholds.  73 
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From this simple introduction, it can be argued that these water infrastructures are the lifeblood of cities 74 

across the world, and failure to function adequately and deliver their services can lead to considerable social, 75 

economic and environmental losses (Ana and Bauwens 2010). Potable water pipe infrastructures are often 76 

stated to have a service life of 50-120 years (Ormsby 2009; Li et al. 2014), although many pipelines currently 77 

in operation in the UK and other countries greatly exceed this upper limit, hence failures can be expected. 78 

Makar et al. (2020) contend that the cost of such failures could amount to £thousands to £millions in repair 79 

and replacement costs, and collateral damage to the overlying (roads in towns and cities) and adjacent buried 80 

infrastructures. To these direct costs, that can range up to 80% of what utilities spend (Hukka and Katko 2015), 81 

should be added the multiple forms of social and environmental costs caused by disruption to urban systems 82 

and damage to the natural environment. This simply serves to emphasise the need to understand pipe 83 

condition and how it impacts on system performance, intervening using an array of asset management 84 

practices before failures occur. 85 

The chief concern in infrastructure asset management is the maintenance of service of an adequate quality 86 

without (undue or lengthy) disruption to service in an effective and cost efficient manner. In many countries 87 

water supply, wastewater collection and drainage networks are required to deliver defined levels of service, 88 

for example in the UK these networks should not exceed a particular number of service supply interruptions 89 

or number of flooding incidents (National Archives 2008). Network operators consequently try to link the 90 

ability of their infrastructure to meet these defined levels of service (system performance) with the physical 91 

characteristics of individual assets (condition); this in turn enables assessment of asset condition to inform 92 

robust decision-making on where and when to repair, rehabilitate or replace vulnerable assets. Deterioration 93 

models inevitably have a role to play in this decision-making, and yet all this relies upon comprehensive and 94 

accurate condition assessment.  95 

The goal of buried pipeline condition assessment is commonly too narrowly-focussed: buried pipelines only 96 

perform structurally if adequately supported by the ground, and hence it is the complete pipe-soil system that 97 

needs to be assessed and understood. Extending this argument further, it is an appreciation of the complete 98 

context in which a pipeline exists that should be sought, leading to the model advocated by Rogers et al. (2017) 99 
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of three interdependent infrastructures in the street: the buried infrastructure (water and sewer networks), 100 

the surface infrastructure (road structures) and the geotechnical infrastructure (the ground). Treating the 101 

ground as an infrastructure enables helpful performance insights, such as the application of deterioration 102 

models to the ground. Conversely, without an understanding of the competence of ground support it is 103 

impossible to fully appreciate the consequences of defect identification and mapping.  104 

At present sewers and drainage pipelines, and occasionally water supply pipelines, are inspected internally 105 

using, for example, cameras or sensors mounted on a tethered platform or sensor platforms inserted into the 106 

network, that advect with the flow and are then retrieved after a certain period of time to identify individual 107 

defects and so as determine asset condition. Asset condition is then often ranked based on the number and/or 108 

severity of individual defects. Crucially, this process does not include an assessment of whether the asset is 109 

likely to meet its required service levels and nor does it assess the surrounding context other than by 110 

implication in some cases (e.g. a displaced joint might indicate exfiltration and a loss of ground support). 111 

Moreover, condition assessment of buried water infrastructure is usually carried out with limited resources 112 

and with a piecemeal characterisation and inventory of related systems’ features (Oliveira et al., 2007), often 113 

resulting in only a small part of any network being regularly and effectively inspected (Tscheikner-Gratl et al. 114 

2019).  This results in a far from comprehensive assessment of the asset base, but more like a series of spot 115 

checks on lengths of the pipeline network for which there is a cause for concern or an appreciation that failure 116 

would have significant consequences.  117 

Deterioration processes relate to both structural and functional deterioration. Structural deterioration 118 

processes operate at different rates depending on many contextual features and the various kinds of stresses 119 

that occur (Rajani and Kleiner 2001), and thus a spot check in time, even if allied to a deterioration model, 120 

provides no assurance of condition understanding significantly into the future. Functional deterioration - the 121 

failure to meet functional requirements such as intermittent blockages in sewers or drainage pipes causing 122 

flooding or compromised water quality in damaged water pipes (for example contaminant ingress, Fox et al. 123 

2015) - can occur on an even shorter timescale. 124 



5 
 

A comprehensive assessment of the condition of a pipeline and its context (specifically the competence of the 125 

support it received from the ground), allied to an understanding of the mechanisms that cause a pipeline’s 126 

condition to deteriorate over time and the accompanying impact on performance, are essential in informing 127 

and implementing efficient asset management strategies. In relation to this set of requirements, this paper 128 

first examines current condition assessment approaches and explores how well current approaches enable 129 

robust asset management protocols to be developed. Examining the underlying causes of asset deterioration 130 

in buried pipe networks, the paper proposes more appropriate methods for condition assessment and 131 

required future inspection needs. Finally, the focus of the paper is extended to considerations of systems-132 

based engineering approaches (Wasson 2015), exploring the interdependencies and interactions with other 133 

urban infrastructures, and the synergies that can be leveraged from them, to make condition assessment and 134 

deterioration smarter. Although water supply, drainage and sewerage networks comprise of many ancillary 135 

elements in addition to the pipes, the focus of this paper is solely on the pipes which form the majority of the 136 

spatial coverage of any network.  We do not intend to discuss methods of defect identification, but aim for a 137 

more comprehensive understanding of what defects future technologies should be capable of assessing to 138 

provide better knowledge of pipe condition assessment and deterioration. 139 

2.0 Condition Assessment 140 
 141 
Once installed, the pipe structure and the inner wall surface of buried pipes can deteriorate (Kleiner and Rajani 142 

2001). Structural deterioration results in buried pipes having a diminished capacity to resist physical stresses, 143 

while deterioration of the inner surfaces of pipes results in a reduction of hydraulic capacity, degradation of 144 

water quality, and the diminished capacity to resist internal corrosion. Both categories of deterioration can 145 

lead to serviceability failures in pipe systems; the risk of such failure is estimated based on the condition of 146 

individual pipes.  147 

At present standardised condition assessment protocols exist and are in regular use in industrial piping, oil 148 

and gas pipelines, and wastewater collection systems. A wide ranging field of research studies has been 149 

undertaken from the mid-1960s to identify pipeline failure mechanisms and characteristic defects leading to 150 
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‘fitness-for-purpose’ and ‘fitness-for-service’ procedures (Younis et al. 2015), the majority of which still 151 

underlie many of today’s standard asset condition measurement practices in water and sewerage companies.  152 

For example, the UK’s Water Research Centre (WRc) published the first edition of the Manual of Sewer 153 

Condition Classification (MoSCC) in 1980 and this framework is currently in its fifth edition (WRc 2013). There 154 

are also similar documents and standards for pipe inspection and classification of defects, and estimation of 155 

condition in sewers across the world, including for example EN 13508-2 (2011) in Europe, and IKT (2014) in 156 

Germany. The Sewerage Rehabilitation Manual, now re-named Sewerage Risk Management (WRc 2021), was 157 

first published in 1983 building on MoSCC to develop an objective based methodology for rehabilitating 158 

sewerage networks principally based on observed defects and inferred asset condition. This approach has 159 

been refined as system performance requirements changed over time and a more risk based approach became 160 

appropriate.  161 

Conversely, no regular standardised condition classification system is in operation to date for water supply 162 

pipelines. A plethora of reasons have factored into this situation, comprising but not limited to inadequate 163 

funding for water utilities, high inspection costs, the density and complexity of water distribution systems, risk 164 

of water contamination, being located underground with limited (if any) access points, pipes made of assorted 165 

materials, which by consequence led to use of a wide range inspection technologies and condition assessment 166 

schemes (Rajani and Kleiner 2001; Li et al. 2014). To-date, limited work has been conducted on synthesising 167 

the assessment of different types of defects and by consequence the resulting pipe condition in water 168 

distribution pipes, although attempts have been made to develop a framework for an accepted standardised 169 

defect classification system for water distribution pipelines (Younis et al. 2015), where recent funded WRF 170 

work has attempted to develop a standardised condition classification for water supply systems, but currently 171 

more development is needed.  The main reason for no standard condition classification system is the enhanced 172 

difficulty in collecting defect data in comparison to sewer systems. It is difficult to insert inspection systems in 173 

a pressurised environment, there is the risk of contamination which means inspection data is much more 174 

limited. 175 
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Table 1 lists several of the current protocols used to classify sewer pipe condition into various categories and 176 

states, depending on the degree of complexity and context to account for. The different condition classes 177 

should not be taken as an objective measure associated with functionality, as they are usually based on defects 178 

identified on CCTV images with no causal link to measurable physical characteristics. CCTV inspection practices 179 

persist to-date as the most requested method for condition and operational evaluation of sewer systems. 180 

Despite the quality of CCTV footage obtained having markedly increased over the past decade,  the CCTV 181 

approach for sewer inspection continues to be criticised due to subjectively identifying individual defects 182 

which do not map directly on asset performance (Dirksen et al. 2013; Van Riel et al. 2014; van Riel et al. 2016; 183 

Li et al. 2019). 184 

Currently, there is no single generalised framework to estimate pipe condition that can be used in both water 185 

supply and wastewater collection and drainage systems, accounting for an “ideal” data set for deterioration 186 

modelling at a network and to indicate emerging new inspection technologies that should be capable of 187 

meeting the enhanced data needs. Although historically the management of water supply and sewerage/ 188 

drainage networks are generally considered separately, the authors believe that both types of pipe networks 189 

have sufficient physical similarities, i.e. systems of buried jointed pipes so that condition assessment protocols 190 

could be developed and applicable to both types of network. In both systems there are pressurized pipes that 191 

are buried and subjected to time varying loading so that such pipes undergo similar mechanical processes, it 192 

is accepted that corrosion processes are different but the mechanical consequences are similar. Clearly, sewer 193 

and drainage systems are generally gravity driven, but their loading patterns could be seen as a subset of 194 

pressurized pipes“. There are more mature frameworks used in wastewater collection and drainage networks, 195 

based on the identification of infrequent defects mainly by the use of CCTV. In water supply networks, 196 

frameworks are emerging but their adoption is more challenging as there is no single dominant inspection 197 

technology in use in water supply networks, and due to the more restricted access and risks to water quality 198 

of invasive methods. In both applications the condition classification schemes do not have a direct and clear 199 

link to system performance and serviceability. The inspection technologies used are generally high cost and 200 
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disruptive so only spatially sparse and infrequently collected data is available meaning that data on the 201 

temporal change in the condition of any asset is rare.  202 

 3.0 Deterioration Modelling  203 
 204 
Buried water supply and wastewater collection network infrastructure asset management usually involves the 205 

process of collection of defect data using a range of methods and then mapping the defect data onto 206 

corresponding asset condition and occasionally linking this to an assessment of the current performance of 207 

pipe networks. It is unusual to directly link asset condition assessments and predictions of service levels from 208 

performance models. To be able to estimate future performance of buried pipe networks it is important to be 209 

able to estimate the rate of deterioration of individual assets, how these change with time and ultimately 210 

impact on system performance.  211 

Deterioration models for predicting the condition and performance of buried water assets are classified as 212 

deterministic, statistical, probabilistic, data-driven (artificial neural networks (ANN), Fuzzy Logic (FL)) and 213 

heuristic (Boxall et al. 2007; Clair and Sinha 2012). A summary of the different deterioration modelling 214 

approaches and their predictive focus and relative data needs can be found in Table 2.  215 

Statistical models that use current and historical maintenance and failure records, are the most common 216 

approach used to forecast the number and rate of pipe/asset failures (e.g. Kleiner and Rajani 2001; Boxall et 217 

al. 2007; Lawless 2011; Osman and Bainbridge 2011; Scheidegger et al. 2015). Typically, only a handful of data 218 

parameters are applied to establish failure rate relationships often based simply on the pipe parameters (Hahn 219 

and Shapiro 1994). Pipe networks that have a suitably sizable and dependable historical database are good 220 

candidates for statistical models; nevertheless, the usefulness of statistical models is constrained when taking 221 

into account newer pipes or other instances with limited historical and/or time dependent data e.g. local 222 

environment information such as traffic loading or repair/refurbishment interventions.  223 

Physical probabilistic models involve the application of statistical analysis, particularly in cases where historical 224 

failure or inspection data is incomplete or unobtainable (Creighton 2012). The effect that disparate 225 

parameters have on pipe performance are what these models specifically analyse as opposed to appraising 226 

existing pipe failure records (Rajani and Kleiner 2001). These models claim to have the ability to predict the 227 
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probability of failure for a network of assets based on an appraisal of individual assets. Typically, they are used 228 

where the progression of pipe deterioration and the loading conditions contributing to failure are well 229 

characterised. 230 

Data-driven approaches such as Artificial Neural Networks (ANN) have been used to establish pipe 231 

deterioration rates by using data on component factors that are assumed to have an effect on the 232 

serviceability of the pipe. The advantages of using ANN approaches are their ability to readily deal with 233 

nonlinearity as well as inconsistent, messy data, and they can be adaptive to changing circumstances through 234 

learning or retraining capabilities for varying data sets (Haykin 2010). The reliability of pipe deterioration rate 235 

predictions can be improved by careful selection and data filtering of each of the component input 236 

parameters. Machine learning algorithms and corresponding weights can be used to prioritise inspection of 237 

these parameters. A barrier to successful implementation of this approach is often the need for an increased 238 

level of skill to develop data pre-processing and interpretation methods (Landau 2012). These methods can 239 

be employed to develop a model for asset groups for a whole network or an individual asset but are very 240 

dependent on the availability of the initial training set (e.g. Wang et al. 2009), hence cohort models dominate 241 

due to the sparsity of pipe specific data to learn from. 242 

The use of engineering judgment and professional experience are intrinsically integrated within Fuzzy Logic 243 

models that have been used to predict the pipe deterioration process. Where data is scarce or unobtainable, 244 

tacit knowledge by way of wide ranging professional experience, then observations and model criteria 245 

necessitate expression in ambiguous or “fuzzy” terms is the context where this type of model is used 246 

(Sivanandam et al. 2007). This approach does however require significantly less asset data and condition data, 247 

than other Machine Learning or statistical approaches to be implemented.  248 

Deterministic models often use failure data from laboratory tests and sample specimens to obtain information 249 

required to quantify the associations between component factors that contribute to failures. The relevance of 250 

a deterministic model is thus limited to a discrete environment and should not be employed across different 251 

environmental settings (Giustolisi et al. 2009). Deterministic models are founded on constrained parameters. 252 

Empirical and mechanistic-based or physical models comprise the different types of deterministic models 253 
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available to estimate pipe deterioration rates. Empirical models are only applicable to assets that are similar, 254 

while physical models are often applied to individual assets. Deterministic models that are empirical should 255 

only be used on types of pipes that have suitable and dependable historical pipe failure data (Marlow et al. 256 

2009). 257 

Finally, heuristic models are rare as evidenced in Table 2, but can demonstrate how different approaches 258 

integrate engineering judgement in the establishment of failure rates (Jones et al. 2002). A constraint of 259 

employing engineering knowledge for model development is the wide variation in personal expert judgement 260 

and/or limited staff experience in making the required judgments. Nevertheless, the capabilities inherent in 261 

this modelling approach offer an improvement in the developed deterioration models by taking into account 262 

afterwards more expert knowledge and viewpoints (Alvisi and Franchini 2014). 263 

The contrast of modelling approaches and performances shown in Table 2 is attributable to the number and 264 

type of modelling approaches, the size and different types of networks, the diverse gradation of data 265 

availability and the assortment of metrics utilised to evaluate the modelling performance. Model performance 266 

can be categorised in a twofold manner, contingent on the modelling objective (Ana and Bauwens 2010): 267 

● Network level: the focus here is to simulate the changes in distribution of condition across all assets, 268 

often for a particular asset type, in the network over a specified time horizon to inform long-term 269 

strategic planning. The metrics reveal to what degree the model can estimate the asset condition 270 

distribution of the whole network, i.e. the number of pipes in each condition class against a defined 271 

physical characteristic e.g. age or size. 272 

● Pipe level: the focus here is to pinpoint pipes with faults that are in a condition in which failure leading 273 

to a severe loss of service is anticipated so as to inform inspection and tactical replacement strategies. 274 

The metrics confirm to what degree the model can accurately estimate the inspected condition class 275 

of each individual pipe. 276 

A small number of studies have assessed the performance of deterioration models to simulate the condition 277 

distribution of the network (Duchesne et al. 2013; Ugarelli et al. 2013; Caradot et al. 2017; Caradot et al. 2018; 278 

Hernández et al. 2018). They showed that survival analysis as well as Markov models do better than a simple 279 
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random model for estimating the evolution of the condition distribution of the network, particularly in the 280 

context of limited data availability. Caradot et al. (2018) additionally demonstrated that statistical models have 281 

a clear advantage compared to machine learning models at the network level when inferring outside the 282 

observation window of the underlying data. Table 2 also highlights the inspection data needs of the different 283 

approaches.  It is seen that statistically based and ANN based approaches require significant amounts of asset 284 

data both in terms of spatial coverage and temporal resolution, as their outputs focus on a single aspect of 285 

asset performance and asset type. Probabilistic and heuristic models require less data and the incorporation 286 

of tacit data in FL based models require the least amount of training/calibration data in order to deliver 287 

consistent predictions of asset deterioration. In an earlier study, Clair and Sinha (2012) highlighted that several 288 

water utilities have developed their own deterioration predictive models based on locally available condition 289 

data. However, these models generally lack rigour and reliability when compared to models identified in 290 

published literature (Table 2). By contrast, many of the models identified in the literature are problematic for 291 

water utilities to employ as a result of their demanding data needs.  292 

4.0 Mechanisms for Deterioration 293 
 294 
This section examines the physical mechanisms that have been shown to influence the deterioration of buried 295 

water supply, sewerage and drainage assets as well as how this knowledge has been used to develop models 296 

to estimate the rates of asset deterioration. 297 

There are a wide range of factors that can result in the sudden or progressive damage of pipes. The degree to 298 

which each factor has an impact is dependent upon the location where the pipe is installed, the corresponding 299 

characteristics of that location, the physical characteristics of the pipe, the operational conditions under which 300 

the pipe is exposed to, and installation practice/workmanship which are a big factor in PVC fails for pipes 301 

installed in the 1970s and has most recently given fusion joints a bad reputation. The level of influence brought 302 

about by each factor should be a consideration when developing a predictive deterioration model (Liu and 303 

Kleiner 2013). The factors have been categorised as Dynamic, Static, and Operational which include 304 

environmental and physical parameters for water supply systems (Kleiner and Rajani 2002). Additional factors 305 

for wastewater collection and drainage systems have been added to Figure 1. 306 
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Dynamic factors change over time and are often related to the environment surrounding a pipe. Ismail and El-307 

Shamy (2009) stated that the dynamic factors that contribute to pipe deterioration rates comprise, but are 308 

not limited to, corrosivity of soil, flow rate, operating pressure, age of pipe and cumulative number of pipeline 309 

breaks. Static factors in contrast remain unchanged over time as regarding properties of the pipe and 310 

installation practice, and comprise pipe diameter, pipe material, and type of surrounding soil (El Chanati et al. 311 

2016). Other factors such as bedding material and joint type and design (detailed in Table 3) should also be 312 

considered as joints are a major point/mechanism for pipe deterioration and are a very significant area where 313 

more data is needed beyond the dearth that now exists in industry. 314 

Operational factors include wastewater characteristics and associated chemical and bioprocesses, sediment 315 

level and repair and maintenance policies (Ana and Bauwens, 2010). Operational factors that contribute 316 

towards pipe deterioration in water supply networks are water quality, water velocity and hydraulic pressure 317 

variations caused by demand patterns and pump operations. The influence of applied pressure on the failure 318 

rate of buried water networks was investigated by Shirzad et al. (2014) and also discussed by Rajeev et al. 319 

(2014). Stress in the pipe material is the result of water pressure forces (Kabir et al. 2015), which are a 320 

derivative of hydraulic demand, inherent structural integrity which is linked to water quality related corrosion 321 

(within the pipe material) and the pressures from the surrounding soil which all influence the failure rate in 322 

buried water pipes.  323 

Environmental factors that contribute towards deterioration in pipes include ground movements caused by 324 

seismic activity, groundwater dynamics and infiltration, freezing and thawing of the soil in which pipes are 325 

installed and other nearby engineering activities leading to stress relaxations in the ground (Ismail and El-326 

Shamy 2009). The presence of trees, infiltration and exfiltration, the type of backfill or surface soil and surface 327 

loads come under this classification (Ana and Bauwens 2010). Likewise, traffic loads and its accompanying 328 

volume needs to be considered as it is directly proportional to the external loading on pipes and their joints, 329 

which in some instances are believed to cause cyclic fatigue failures leading to bursts particularly in small 330 

diameter pipes (Aydogdu and Firat 2015). The interaction of cyclic loadings (hydraulic transients, daily 331 

pressures, traffic and soil movement) have been shown theoretically to dramatically reduce asset lifetime 332 
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(Brevis et al. 2016). In addition to the described factors, water quality (alkalinity, electoral conductivity, pH, 333 

sulphate attack, residual chlorine, pH, and water temperature) causes pipe corrosion and subsequent 334 

deterioration in a water network (Jun et al. 2020). Hydrogen sulphide generation in wastewater can also cause 335 

significant deterioration in sewer pipes (Nielsen et al. 2008). 336 

Pipe material is an important factor as different materials have different mechanical properties and so 337 

deteriorate or fail in different ways. Pipe material also factors heavily when considering the performance of 338 

pipes, more precisely their corrosion resistance and load carrying capacity (Berardi et al., 2008). Historically, 339 

the most widely deployed materials for buried water supply and wastewater collection networks are made of 340 

concrete, cement, cast iron, polyvinyl and ductile iron. Thick walled pipes exhibit more strength and greater 341 

resistance to breakage than thin walled pipes. Thin walled pipes are also more prone to failure as the wall 342 

thickness reduces due to corrosion caused by chemical and biological processes, further highlighting the 343 

importance of the physical characteristics of the original pipe. Aydogdu and Firat (2015) postulate that the 344 

diameter, age and length of the pipe are important factors with respect to deterioration and failure of buried 345 

water supply networks. Furthermore, the deterioration rate becomes more pronounced in older pipes chiefly 346 

because of legacy challenges that include being exposed to external stresses for long periods of time. Coating 347 

and lining are important factors regarding corrosion as coated and lined pipes are less affected by the negative 348 

effects of corrosion that increase the deterioration rate (Kutyłowska and Hotloś 2014). Sub-standard 349 

installation practices and manufacturing faults of pipes are contributory factors in the deterioration and failure 350 

of all types of buried pipes. Premature damage to a pipeline can be attributed to poor installation practices 351 

used and to a lesser extent manufacturing faults. The type of joints the pipe has are also an influencing factor 352 

in terms of failure (Folkman 2018).  353 

Table 3 summarises key references relating to operational, environmental and physical factors affecting 354 

deterioration. Out of the three component groups, the physical factors have the highest number of references. 355 

While this might suggest that these are the most important factors, Malek Mohammadi et al. (2020) noted 356 

that studies are also influenced by data availability and cost to collect data.  Thus data on physical attributes 357 
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is likely to be more easily and cheaply available, whereas collecting environmental information can be time 358 

consuming and expensive.   359 

5.0 Data Requirements for Understanding Pipe Condition and Deterioration 360 
 361 
It has been shown that existing methods to understand the current and likely future condition and 362 

performance of buried water supply and sewerage pipes are limited by the complexity of the networks, the 363 

multiple processes affecting deterioration and the scarcity of data about buried pipe condition, both spatially 364 

and temporally, as well as limited data on the external environmental factors.  Currently, commonly applied 365 

statistically based deterioration models can on the whole only predict the probability of failure, based on 366 

cohort modelling and are used by utilities to understand their future whole system rehabilitation needs.  This 367 

approach does not allow utility owners to know which specific pipes are closest to failure, rather which pipe 368 

groups, based on the available data, are at highest risk of failure. Many authors have detailed the “ideal” data 369 

requirements needed to create a more effective asset management strategy (Rokstad and Ugarelli 2016; 370 

Carvalho et al. 2018) or the ‘ideal’ data set (Ahmadi et al. 2014). Taking into account the various factors that 371 

influence individual asset deterioration listed in Table 3, “ideal” datasets for water utilities would need to be 372 

wide ranging and include system and environment characteristics. These are summarised in Figures 2 and 3. 373 

These figures show the range of information on asset characteristics during operational life and their 374 

surrounding environmental factors but such elements are often missing from utilities’ asset databases for 375 

various reasons (Makana et al. 2020). Additional difficulties occur when there are inconsistencies relating to 376 

historical information such as design drawings and as built drawings (Furlong et al. 2016). There often is a 377 

recency bias when such asset information is attainable, and inconsistently collected data dictated by changes 378 

in industry reporting standard operating procedures over time or protocols not being followed by water 379 

utilities. Despite stringent data requirements and various acquisition method(s), there remains a latent level 380 

of error and bias. Other data matters that are noteworthy include misplaced and questionable data, missing 381 

information regarding rehabilitation works and the absence of environmental data (Egger et al. 2013). 382 

Furthermore, operators may fail to increase capacity for data storage, and only store the most recent 383 

information as part of their data management strategies. This results in inconsistencies in historical data 384 
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regarding network development, condition, operation and maintenance. Many existing data sets are based on 385 

data collected from management and operational processes as well as the asset characteristics (Figure 2). 386 

Collecting extra environmental data (Figure 3) is often linked with managing different data owners and 387 

traversing differing data quality standards, and needs to be considered when developing data collection plans. 388 

Much data may also still require digitisation and storage in relational databases to be useful.  389 

While the condition of an asset can be described from sufficient observations of the physical pipe, the 390 

performance of an asset requires additional information. To describe the current performance of an asset, 391 

there is a need to understand the required performance to achieve the level of serviceability required by a 392 

regulator (e.g. the number of allowable flooding incidents), but also how the pipe condition is affecting 393 

performance. For example, as a pipe wall degrades, its hydraulic roughness is likely to increase and cross-394 

sectional area may also decrease (Boxall et al. 2004), thus decreasing the maximum potential flow rate for a 395 

given pressure head difference. However, the impact of such condition changes might not be significant, 396 

especially in terms of meeting the required level of serviceability. In fact it is expected that the relationship 397 

between pipe condition and performance (and achieving levels of serviceability) is highly non-linear. Figure 4 398 

describes a number of conceptual deterioration models describing physical deterioration and the consequent 399 

impact on system performance in relation to a required level of serviceability. Physical asset deterioration can 400 

be considered to occur linearly (A) in which the physical integrity of an asset deteriorates consistently with 401 

time, or an asset suffers an unexpected but sudden loss in physical condition (B) combined with a consistent 402 

deterioration rate.  403 

Under the physical deterioration scenario A+B the performance of the asset initially deteriorates slowly (initial 404 

phase) and it is only when the pipe has suffered a particular level of deterioration that the performance rapidly 405 

deteriorates (second phase). However the link between asset condition and performance is unknown so rate 406 

of performance reduction is very uncertain, especially in the second phase (A, B). It is prior to this rapid 407 

deterioration in system performance that it is necessary to intervene. Combined with this concept of asset 408 

condition and system performance, is the need to meet acceptable levels of performance. Figure 4 clearly 409 

indicates that the ability to estimate the time to when system performance becomes unacceptable (optimum 410 
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intervention point) is strongly related to the rate at which system performance is lost in phase 2. It is clear 411 

that for lower levels of serviceability then there is a higher level of uncertainty in determining the optimum 412 

time for intervention. This requires new knowledge to link system performance and physical condition, the 413 

ability to identify sudden performance loss (C) is also required. These requirements mean that much more 414 

frequent and higher spatial resolution of asset inspection data over long time periods, or more adaptive 415 

inspection capabilities (in which inspection frequency is linked with the rate of system performance decline) 416 

is needed.  417 

Selective survival bias is also an important issue when considering the future development of deterioration 418 

models. Most of the current models are projected to underestimate the actual condition of the network as a 419 

result of the infrequent asset condition observations used to inform model calibration, selectively accounting 420 

for only the pipes that ‘survived’ until the date of inspection. This leads to a bias as the calibration of models 421 

is built on data regarding pipes that are present at the time of inspection, hence underestimating system state, 422 

which leads to overestimating the service life of pipes. Egger et al. (2013) suggested that an integration of the 423 

deterioration model with a probabilistic replacement model that characterises the probability that the pipe 424 

was not replaced at the time of inspection i.e. that the pipe is still in service, would be able to address the 425 

selective survival bias issue. More frequent and data sets with higher spatial resolutions would also address 426 

this issue. 427 

Currently, the acquisition of data is a costly and disruptive exercise, which explains why data used to develop 428 

deterioration models are limited in breadth, depth and quality (Ana et al. 2010). Condition-based maintenance 429 

is hampered by limitations in data quality and quantity (space and time), which also impedes the mainstream 430 

use of predictive deterioration models; a gap which in-pipe autonomous inspection robots (Fuentes et al. 431 

2017; Thienen et al. 2018; Caffoor 2019; Mounce et al. 2021; Parrott et al. 2020) might overcome. Such new 432 

pervasive inspection technologies may also provide a means to adding missing data/metadata. Statistically 433 

based models need the most asset data and new inspection technologies, such as in-pipe robotics present the 434 

potential for a step change in the management of water supply and sewerage pipes by reducing inspection 435 

costs per unit length and disruption, while employing new sensing technologies to better characterise defects 436 
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and so define condition. Technology could therefore allow networks to be comprehensively and repeatedly 437 

surveyed, as well as collecting a broader range of objective data.  The data obtained has the potential to 438 

transform deterioration modelling and allow utilities to have a higher degree of certainty as to which sections 439 

of pipe should be repaired or replaced to maintain performance, while keeping costs to an affordable level.  440 

The potential volumes of data however create significant challenges for storage and analysis to allow such 441 

assessments to take place. Such practical considerations regarding the management of sewer asset data 442 

management are discussed by Tscheikner-Gratl et al. (2019) in some detail. 443 

Our contention is that what is buried within, and above on the ground is to some degree controlled by the soil 444 

properties, in the sense that if the soil properties change, or the ground moves, the adjacent and/or overlying 445 

elements of the infrastructure respond accordingly (i.e. deform transiently under transient applied loading or 446 

deform permanently). To create a buried water pipe infrastructure inspection system able to manage, 447 

coherently, what we do to the buried infrastructure (add new elements to it, repair or renovate it, maintain 448 

it, or leave it alone – whatever ensures that it delivers the required level of serviceability into the future) we 449 

need to be informed by the ground conditions and how the ground might react to that new activity or 450 

intervention. The same argument holds for transport infrastructure – e.g. roads, railway, canals, whether on 451 

the surface, in cuttings, on embankments or in tunnels. There remain few examples of studies (e.g. Clarke et 452 

al. 2017) into the water utility–ground–surface transport infrastructure interdependency as a complete 453 

system in terms of their condition, hence their likely future performance and as such what the corresponding 454 

data model and data requirements will be in the context of in-pipe inspection robots. This systems approach 455 

sets the basis for the ability to go beyond water industry specific data and mix different data sets that will form 456 

the new horizon of what data architecture systems are needed to correspond with the deployment of in-pipe 457 

inspection robots. A good example in practice of this type of approach to development of data models that 458 

attempt to encapsulate multiple data sets for buried water pipe infrastructure, is both the Dutch 459 

Gegevenswoordenboek Stedelijk Water data model (RIONED 2017) and Swiss data model (VSA-DSS 2014). 460 

Both these data models contain a database structure specification, for example capturing existing utilities 461 

data, and additionally enable other useful data sets (e.g. environmental and dynamic organisational data). 462 
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Furthermore, the most important feature of the two models is the facilitation of inputs from databases of 463 

operational and maintenance data, for instance, databases regarding condition inspection reports or customer 464 

complaints.   465 

The present section demonstrates that by understanding the factors that drive asset deterioration and 466 

highlighting the need to consistently link asset physical condition and system performance over the life of an 467 

asset, there is a very clear need to justify improving the frequency and resolution of asset data collection over 468 

current approaches used. New autonomous robotic inspection technologies that are currently emerging offer 469 

a pragmatic way forward to expand the asset condition and performance data sets that water utilities can 470 

collect (Thienen et al. 2018), and Mounce et al. (2021) conduct a detailed survey of the current landscape of 471 

emerging autonomous technologies in what is still a field in its infancy. Nevertheless, water utilities also need 472 

to collect environmental data (including data on other neighbouring buried assets systems) and link this into 473 

enhanced asset deterioration models.    474 

6.0 Conclusions 475 
 476 
The paper has shown that current condition assessment methods are underpinned by inspection technologies 477 

that locate and characterise discrete in-pipe defects. Such defect assessment methodologies are more mature 478 

in wastewater collection and drainage systems than water supply systems. Traditionally inspection 479 

technologies have been dominated by image based CCTV systems, although in the last few years significant 480 

improvement has occurred in commercially available inspection systems, resulting in a new range of both free 481 

swimming and tethered inspection systems focussed on better defect identification often to aid leakage 482 

detection, structural integrity and flow capacity assessment. Condition assessment approaches are still 483 

developing in water supply networks, due to even more limited access points and concerns over water safety 484 

with invasive techniques, however a range of defect inspection technologies are emerging. In both network 485 

types, condition assessment is limited by the cost, feasibility and disruption of the available methods. There 486 

are deterioration modelling approaches that attempt to utilise the available data, but they are all restricted 487 

by data availability and resolution issues. Even with improved inspection technologies, mentioned above it is 488 

still difficult to accurately evaluate how a defect develops with time. Hence the most common current 489 
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deterioration modelling approaches still identify the risk of failure in asset cohorts rather than at individual 490 

assets, usually based on repair or maintenance data rather than inspection data. The paper has identified new 491 

idealised optimal data needs for both network types as well as their surrounding areas, and their relationships 492 

between asset condition, system performance and times to attain unacceptable levels of performance: wider 493 

range of factors that should be monitored and better temporal and spatial resolution. If these new data needs 494 

can be met then deterioration modelling approaches could be developed to identify individual assets with a 495 

high risk of failing to meet required levels of serviceability and hence limited investment be best targeted. The 496 

study also identified emerging robotic inspection technologies that are autonomous and capable of utilising a 497 

wider range of sensors to collect the required asset data at a much higher spatial and temporal resolution, 498 

and readily enable repeat inspection which is key to many deterioration modelling techniques. Such improved 499 

asset data sets combined with environmental data from other datasets could enable the development of much 500 

more reliable asset and system performance deterioration models, thus allowing for the first time focussed 501 

proactive repair and rehabilitation of assets.   502 
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Tables 1009 

 1010 

Table 1: Current protocols that are used to evaluate the condition and performance of a sewer pipe, modified 1011 
after Tscheikner-Gratl et al. (2019) 1012 

Category Description Examples of Parameters Used References 

Complete An all-inclusive evaluation of the 
pipes condition to inform 
rehabilitation strategies founded 
upon the apparent defects or 
merging the various categories 
described below 

Connections, start and end invert elevation, 
installation method, joint type, pipe length, 
pipe size and shape, pipe slope, sewer age, 
sewer depth, sewer pipe material. 

Chughtai and Zayed 2011; EN 752 
2008; Kley et al. 2013; McDonald et 
al. 2001; WRc 2013 

Operational Defect classification that results in 
operational interventions for the 
pipe in question 

Roots, attached deposits, ingress of soil, 
obstacles, infiltration, exfiltration, previous 
maintenance, burst history, blockages, debris, 
flow velocity, hydraulic condition, sewer 
function, sediment deposit level, surcharge, 
and vermin. 

Ahmadi et al. 2014; ATV, M 1999; 
Chughtai and Zayed 2011; EN 752 
2008; EN 13508-2 2011; McDonald et 
al. 2001; NASSCO 2016; WRc 2013 

Structural Defect classification of the physical 
pipe condition which takes into 
account defects that cause 
deterioration and failure of the 
pipe 

Deformation, fissure/crack, break/collapse, 
defective brickwork or masonry, missing 
mortar, surface damage, intruding connection, 
defective connection, intruding sealing 
material, displaced joint, lining observations, 
defective repair, weld failure, porous pipe. 

Ahmadi et al. 2014; Chughtai and 
Zayed 2011; EN 752 2008; 
Khazraeializadeh et al. 2014; Kley et 
al. 2013; McDonald et al. 2001; WRc 
2013 

Reliability 
(structural) 

Evaluation of the structural 
condition with regard to long term 
planning, thus establishing the 
residual service life and structural 
reliability metrics of sewers 

Type of waste water network, character of 
sewerage, water protection area, relative 
position to groundwater, soil type, 
circumferential position, position on joint. 

DWA-Themen T4 2012; Kley et al. 
2013 

Environmental 
Impact 

Evaluation of defects that produce 
pollution of water within the 
hydrological cycle 

Backfill type, bedding material, ground 
movement, groundwater level, pH, road type, 
root interference, soil corrosively, soil fracture 
potential, soil moisture, soil type, sulphate 
soil, and surface type. 

DWA-M 149-7 2016; EN 752 2008 

Hydraulic or 
serviceability 

Evaluation of defects that will 
produce more turbulent flow 
energy losses 

Leaktightness (type of joint, hydraulic load, 
position of groundwater), stability (depth of 
cover, soil type), operational safety (hydraulic 
load, depth of cover). 

Ahmadi et al. 2014; Cremer et al. 
2002; EN 752 2008; Micevski et al. 
2002; Tscheikner-Gratl et al. 2019 

Gradual failures The effect of defects on network 
operations 

Infiltration, exfiltration, blockage, silting, 
material corrosion. 

Ahmadi et al. 2014; Kley et al. 2013; 
Le Gauffre et al. 2007 
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Table 2: Deterioration modelling approaches, their predictive focus and relative data needs - summary of literature review 1014 

Deterministic Models Statistical Models Probabilistic Models Artificial Neural Networks Fuzzy Logic Models Heuristic Models 

Prediction Type References DR Prediction Type References DR 
Prediction 

Type 
References DR 

Prediction 
Type 

References DR Prediction Type References DR 
Prediction 

Type 
References DR 

Review of 
deterministic 
models 

37 (WS) ↑ 
Review of 
statistical 
models 

22 (WS) ↑ 
Failure 
rates 

10 (WS), 13 
(WS), 15 
(WS), 16 
(WS), 30 (WS 
& WW), 73 
(WW) 

↓ Pipe failure 
1 (WS), 8 (WS), 70 
(WW), 72 (WW) 

↑ 
Deterioration 
rates 

24 (WS), 25 
(WS), 31 
(WS), 32 
(WS), 40 (WS) 

↓ Break rates 21 (WS) ↔ 

Remaining 
service life 

36 (WS), 38 
(WS) 

↑ Failure rates 

6 (WS), 26 
(WS), 41 (WS 
& WW), 68 
(WW) 

↔ Lifetime 
10 (WS), 11 
(WS) 

↓ 
Condition 
rating 

2 (WS), 19 (WS), 59 
(WW), 67 (WW), 69 
(WW) 

↑ 
Vulnerability 
rates 

29 (WS) ↓ Failure rates 
48 (WS & 
WW) 

↔ 

Prioritising 
replacement 

14 (WS) ↑ 
Optimal 
replacement 

27 (WS), 33 
(WS), 56 
(WW) 

↔ 
Deterioratio
n rate 

62 (WW), 65 
(WW) 

↓ 
PCCP wire 
breaks 

4 (WS) ↑ Failure rates 
39 (WS), 44 
(WS) 

↓ 
Condition 
rating 

2 (WS), 3 
(WS), 50 
(WS), 64 
(WW) 

↔ 

Risks of pipe 
burst 

5 (WS) ↑ Break rates 

23 (WS), 34 
(WS), 35 
(WS), 45 
(WS), 46 
(WS), 49 
(WS) 

↔   

 
Review of 
neural 
networks 
deterioration 
models 

71 (WW) ↑ Risk of failure 17 (WS) ↓ 
Optimal 
Replacement 

57 (WW) ↔ 

Lifetime 
prediction 

28 (WS) ↑ 
Deterioration 
rates 

47 (WS), 51 
(WW), 53 
(WW), 54 
(WW), 55 
(WW), 58 
(WW), 60 
(WW), 63 
(WW) 

↔   

 

  

 

  

 

  

 

Service life 
prediction 

18 (WS & 
WW) 

↑ Condition rating 
52 (WW), 61 
(WW), 66 
(WW) 

↔   
 

  
 

  
 

  
 

Strength 
42 (WS), 43 
(WS) 

↑   
 

  
 

  
 

  
 

  
 

Residual life 20 (WS) ↑                

Time to failure 12 (WS) ↑                

Lifetime 
7 (WS & WW), 
9 (WS) 

↑   
 

  
 

  
 

  
 

  
 

(1) Achim et al. (2007), (2) Al-Barqawi and Zayed (2006), (3) Al-Barqawi and Zayed (2008), (4) Amaitik and Amaitik (2008), (5) Babovic et al. (2002), (6) Berardi et al. (2008), (7) Burn et al. (2009), (8) Christodoulou et al. (2003), (9) Davis et al. (2007a), (10) Davis et al. 
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DR: Data Requirements 1015 
Key: ↑ High, ↔ Medium, ↓ Low 1016 
Usages: (WS) Water Supply, (WW) Wastewater1017 
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Table 3: Factors that cause deterioration of water pipelines – summary of literature review 1018 

Category 
(Index) 

Deterioration elements Description References 

I Operational Components   

(C1) Water velocity 
Influences travel times, so chemical and 
bioprocesses, and sediment processes such as 
scouring and blockages  

6, 10 

(C2) Water and wastewater quality 
Substances within the water pipe flow could 
generate corrosion on the internal pipe wall 
surface 

6, 10 

(C3) 
Hydraulic pressure - level and 
fluctuation 

The internal stress of the pipe is directly 
proportional to the hydraulic pressure 

4, 6, 10 

II Environmental Components   

(C4) Groundwater properties 
Corrosion of the pipe is influenced by properties 
within the groundwater 

1, 5 

(C5) Infiltration 
Contributes to the rate of deterioration - soil 
movement leading to increased soil-pipe 
interaction 

6, 8 

(C6) Seismic activity 
Seismic activity amplifies the stress and strain in 
the pipelines due to ground shaking, ground 
rupture, landslides and liquefaction 

1, 6, 9 

(C7) 
Level of soil linked corrosion 
processes 

Soil that is corrosive will amplify the rate of 
deterioration of the pipe from the external 
surface 

4, 5, 6, 9, 13 

(C8) Freezing index 
The stress and strain on the pipe can be 
increased by physical loading from frost, which 
alters allowable design limits 

5, 6, 8, 9 

III Physical Components   

(C9) 
Defective installation 
techniques and manufacturing 
faults 

The structural integrity of the pipe and its joints 
can be reduced by factors such as poor 
installation practice and  manufacturing faults 

4 

(C10) Pipe diameter 

Large diameter pipes are less prone to 
deterioration compared to smaller diameter 
pipes - due to pipe wall thickness and less 
impacting pipe-soil interaction 

1, 2, 3, 4, 6, 7, 
11, 12 

(C11) Pipe length 
The longer the pipe, the higher probability of 
defect occurrence and higher costs 

1, 2, 3, 6, 7, 11, 
12 

(C12) Pipe wall thickness 
Thicker pipe walls have greater strength and 
resistance to corrosion related structural failure 

4, 6, 11, 12 

(C13) Pipe age 

Older pipes tend to experience a higher 
deterioration rate - this is a reflection of higher 
probability of encountering dynamic and 
operational factors 

1, 2, 3, 4, 6, 7, 
8, 11, 12 

(C14) Pipe material 
Material properties dictate the manner in which 
failure can occur as well as vulnerability to 
corrosion 

3, 4, 6, 8, 11, 
12, 13 

(C15) Incidence coating and lining 
Pipe strength and corrosion resistance is 
increased by appropriate coating and lining 

9 

(C16) Type of joints 

Depending on the material of the pipe (e.g. steel, 
cast iron, ductile iron, PVC, RC, AC, PC etc.), some 
of the joint types (e.g. welded, rubber, lead, 
leadite, heat fused etc.) experience premature 
failure due to e.g. joint displacements, traverse 
stresses on joint, defective joints, faulty 
installation, brittle failure, connection failure, 
joint burst, age of joint/material degradation, 
expansion of joint material, vacuum collapse due 
to lower pressure ratings, material fatigue, joint 
gap, joint deflection etc. 

4, 12, 14, 15, 
16, 17, 18, 19, 
20 

(1) Ana and Bauwens (2010), (2) Aydogdu and Firat (2015), (3) Berardi et al. (2008), (4) Folkman (2018), (5) Ismail and El-
Shamy (2009), (6) Kabir et al. (2015), (7) Kakoudakis et al. (2017), (8) Kleiner et al. (2010), (9) Kutyłowska and Hotloś 
(2014), (10) Shirzad et al. (2014), (11) Clair and Sinha (2012), (12) Wang et al. (2009), (13) Nielsen et al. (2008), (14) Al-
Barqawi and Zayed (2006), (15) Liu, et al. (2012), (16) Reed et al. (2006), (17) National Research Council Canada (2003), 
(18) Rezaei et al. (2015), (19) USEPA (2002), (20) Rajani et al. (1996). 
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Figure 1: Schematic describing the factors which can control the deterioration of buried
water supply pipes. Dynamic factors change over time and are often related to the
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Figure 2 :Optimal dataset required for key asset characteristics of
water and wastewater networks
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Figure 3: Optimal environmental dataset for buried assets of water and wastewater
networks
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Figure 4: Conceptual relationships between asset condition, system performance and
times to attain unacceptable levels of performance
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