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ABSTRACT

Photoconductive antennas deposited onto GaAs substrates that incorporate InAs quantum dots have been recently shown to efficiently
generate both pulsed and CW terahertz radiation. In this Letter, we determine the operational limits of these antennas and demonstrate their
extreme thermal breakdown tolerance. Implanted quantum dots serve as free carrier capture sites, thus acting as lifetime shorteners, similar
to defects in low-temperature grown substrates. However, unlike the latter, defect-free quantum-dot structures possess perfect lattice quality,
thus not compromising high carrier mobility and pump intensity stealth. Single gap design quantum dot based photoconductive antennas
are shown to operate under up to 1W of average pump power (�1:6mJ cm�2 energy density), which is more than 20 times higher than the
pumping limit of low-temperature grown GaAs based substrates. Conversion efficiency of the quantum dot based photoconductive antennas
does not saturate up to 0.75W of pump power (�1:1mJ cm�2 energy density). Such a thermal tolerance suggests a glowy prospect for the
proposed antennas as a perspective candidate for intracavity optical-to-terahertz converters.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0062720

Terahertz (THz) photoconductive antenna (PCA) technology,
first demonstrated just over 30 years ago,1 has matured into a solid
industrial solution, the first choice in pulsed and CW spectroscopic
and imaging systems.2–4 Most recent developments report over
600mW of output THz power and over 3% optical-to-THz conversion
efficiency from a single gap PCA.5 Large area array PCAs were shown
to generate even higher powers, up to several mW.6 Alongside these
significant advances, there is still a great demand for further minitiatu-
rization of THz time domain spectrometers and imaging systems.
Currently, the larger constituent of such setups is usually the pump
source—a Ti:sapphire or ultrafast fibre laser.

Recently, we proposed more compact setups that use quantum
dot (QD) based compact semiconductor lasers in conjuction QD based
PCAs for the generation of both pulsed and CW THz radiation.7–10

Indeed, semiconductor materials incorporating InAs QDs in bulk
GaAs possess all the properties required for efficient optical-to-THz
conversion, such as short carrier lifetimes enabled by carrier capture

into the dots,11 while maintaining high carrier mobility,8 unlike low
temperature grown materials.2 Similar materials were used also as
active media in diode lasers,12 laser amplifiers,13 or saturable absorb-
ers.14 Employment of these laser pumps in compact THz setups now
looks as native as it can be, due to the natural matching of the opera-
tional wavelength of such lasers with the permitted states of the
wafer.9,15 Moreover, these PCAs not only support resonant pumping
with photons possessing the energy of the QD excited state (but not
the ground state!15) but also operate efficiently under pumps with pho-
ton energies over the GaAs bandgap.

Here, we determine the operational limits of QD based PCAs
and outline further research and application directions toward the
development of ultracompact turn-key room temperature operating
THz spectroscopy and imaging systems.

The QD-based PCA used in this work consisted of electrodes
deposited onto a heterostructured wafer containing self-assembled
QDs. A schematic illustration of the complete PCA structure is
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presented in Fig. 1. The wafer was grown by molecular beam epitaxy
in the Stranski–Krastanov regime, on a semi-insultating GaAs sub-
strate. First, an AlAs/GaAs multilayer distributed Bragg reflector with
overall thickness of about 10mm designed to reflect the pump wave-
length corresponding to the QD excited state15 was deposited. On top of
it was grown the active medium, comprising 25 layers containing InAs
QDs. Each QD layer was capped by a 4 to 5nm thick In0:15Ga0:85As
wetting layer and separated by a 35 to 36nm GaAs spacer layer, result-
ing in a total active region thickness of about 1mm. On top of the active
layer structure, a 30nm layer of low-temperature-grown GaAs

(LT-GaAs) was grown, to reduce the dark conductivity and enhance the
Ohmic contact between the antenna electrodes and the wafer. Finally,
250nm thick Ti/Au electrodes were deposited with standard litho-
graphic techniques and further wet etching. For power measurements,
bow-tie electrodes with 8mm gap were used, while for coherent charac-
terization, strip line-shaped electrodes with a 50mmwere studied.

In all experiments, the pump beam was focused with a 25mm
lens, resulting in a spot diameter of around 30mm measured as 1=e2

power decay. We used an easily accessible 800nm wavelength from a
femtosecond Ti:sapphire laser, delivering up to 1.5W of average power
in 120 fs pulses with an 80MHz repetition rate. The electrodes were

FIG. 1. Schematic of the quantum dot based photoconductive antenna (QD-PCA).
An AlAs/GaAs distributed Bragg reflector (DBR) is deposited onto a GaAs sub-
strate, and an active region comprising 25 layers of InAs QDs is grown on top by
molecular beam epitaxy. A low-temperature-grown GaAs (LT-GaAs) layer covers
the active region, and Ti/Au electrodes are lithographically deposited in a strip line
geometry with a 50 mm gap between them.

FIG. 2. THz section of the setups for intensity measurement with Golay cell (a) and coherent characterization with the PCA (b).

FIG. 3. (a) Emitted THz power by a bow-tie QD-PCA as function of the applied bias volt-
age. The average optical pump power is 1W at the k ¼ 800 nm wavelength. (b)
Emitted THz power as function of the average optical pump power, for varying bias vol-
tages. Dashed lines represent quadratic and solid lines show linear fits, respectively.
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electrically biased, and the pump beam was modulated with a mechan-
ical chopper, to allow lock-in detection of the generated THz power.
The optical pump intensity was controlled by two polarizers. The
emitted THz radiation from the QD-PCA was pre-collimated by a
mechanically attached hyperhemispherical Si lens and guided to the
detector by two off-axis parabolic mirrors (Fig. 2).

In the first set of experiments, the relative THz power was mea-
sured by a Golay-cell detector. Both pump intensity and bias voltage
dependences were characterized. The results of this characherization are
presented in Fig. 3. We observe that QD-PCAs allow pumping with
intensities up to 1.1W (156kW cm�2) biased at 20V, without reaching
thermal breakdown. This exceeds both previously demonstrated
results of 300 mW (Ref. 8) (42 kW cm�2) and 700 mW (Ref. 10)
(99 kW cm�2), for PCAs of similar type, and is about 20 times higher
than the typical limits of conventional LT-GaAs based single gap
PCAs.16 Both bias voltage and pump intensity dependences are

superlinear and can be decently traced with quadratic fits. However, at
higher power intensities, regardless the applied bias, the trend comes to
a saturation [Fig. 3(b)]. Carrier screening effect,17 Joule heating of the
substrate,18,19 or carrier concentration reaching its maximum—any
combination of these factors can be the reason for such saturation.

A coherent detection scheme was used to analyze the emission
spectrum of the QD-PCA. The setup comprises a THz time-domain
spectroscopy system, where a commercial LT-GaAs PCA (Teravil
Ltd.) is used as the detector. The results of coherent measurement are
shown in Fig. 4. Similarly to the Golay cell measured power depen-
dence, the amplidude of the THz pulse first grows linearly with the
pump power and saturates at intensities above 500 mW. The other
noticeable effect is the pulse duration shortening from 2.3 to 1.7 ps,
outlined in the inset of Fig. 4(a). Such pulse contraction is explained
by the carrier lifetime duration at higher pump powers, reported
earlier,11,14 and carrier screening effects of different nature.17,20,21

Broadening of the corresponding signal spectra, shown in Fig. 4(b), is
another evidence of this effect.

Thus, QD based PCAs not only withstand significant pump
intensities reaching �1600 mJ cm�2 but also operate efficiently, con-
verting optical pump into the THz signal, with some signs of satura-
tion revealed only at pump powers above 0.7W, which is 15 times
higher than typical single gap PCAs available to date. Moreover, this
signal increases in bandwidth with growing pump power. Such ther-
mal tolerances, together with the demonstrated saturation behavior,
open a new pathway for the further development of compact setups.
In an intracavity arrangement, these QD-PCAs could not only gener-
ate THz radiation employing all the intracavity laser power—typically
hundreds of times higher than the laser output—but also serve as an
extra saturable absorber in the cavity while still maintaining lasing,
owing to their saturation characteristics.

In this Letter, we have broadened the known operational limits of
the QD-based PCAs by showing their successful operation at pump
powers exceeding 1W, corresponding to a�1:6mJ cm�2 energy den-
sity. The conversion efficiency starts saturating at pump powers over
0.7W (�1:1mJ cm�2 energy density). This extremely high opera-
tional tolerance allows us to propose intracavity placement of QD
based PCAs into the cavity of compact semiconductor lasers.
Upon such layout, QD-based PCAs will employ the pump power
contained inside the laser cavity and serve as additional saturable
absorbers, while generating coherent pulsed broadband THz signals.
Erbium QDs in GaAs bulk demonstrated unprecedented conversion
efficiency of 0.2% due to superradiance effect in very homogeneous
nanostructures,22 suggesting that further tailoring of growth condi-
tions to achieve higher homogeneity can potentially lead to a similar
effect. This approach will allow even more efficient and compact room
temperature operating THz setups than those demonstrated to date.

This project has received funding from Engineering and
Physical Sciences Research Council (EPSRC), Grant No. EP/
R024898/1. A.G. thanks Magicplot Ltd. for providing a copy of
MagicPlot Pro plotting and fitting software used for preparation of
the figures in this manuscript.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

FIG. 4. (a) Time-domain traces detected from a QD-PCA at different optical pump
powers (shifted vertically for improved readability). The inset shows the amplitude
and duration of the THz pulses as function of pump power. (b) Corresponding spec-
tra calculated from the time-domain signals, shown in logarithmic scale.
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