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Abstract
Engineered nanoparticles (NPs) are being studied for their potential to harm humans and the environment. Biological activ-
ity, toxicity, physicochemical properties, fate, and transport of NPs must all be evaluated and/or predicted. In this work, we 
explored the influence of metal oxide nanoparticle facets on their toxicity towards bronchial epithelial (BEAS-2B), Murine 
myeloid (RAW 264.7), and E. coli cell lines. To estimate the toxicity of metal oxide nanoparticles grown to a low facet index, 
a quantitative structure–activity relationship ((Q)SAR) approach was used. The novel model employs theoretical (density 
functional theory calculations) and experimental studies (transmission electron microscopy images from which several par-
ticle descriptors are extracted and toxicity data extracted from the literature) to investigate the properties of faceted metal 
oxides, which are then utilized to construct a toxicity model. The classification mode of the k-nearest neighbour algorithm 
(EnaloskNN, Enalos Chem/Nanoinformatics) was used to create the presented model for metal oxide cytotoxicity. Four 
descriptors were identified as significant: core size, chemical potential, enthalpy of formation, and electronegativity count 
of metal oxides. The relationship between these descriptors and metal oxide facets is discussed to provide insights into the 
relative toxicities of the nanoparticle. The model and the underpinning dataset are freely available on the NanoSolveIT project 
cloud platform and the NanoPharos database, respectively.
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Introduction

Metal oxide nanomaterials (NMs) have demonstrated 
exceptional structural, electronic, and chromic proper-
ties, and as such they find applications in various fields 
of technology. These include applications in cosmetics, 
sunscreens, textile, devices, and water treatment systems 
[1–3]. The vast application of metal oxides in various 
nanotechnology-related fields has drawn concerns with 
regard to their safety and toxicity, as some of these nano-
particles (NPs) have been reported to be toxic to some 
organisms [4, 5]. In this regard, there is a high possibility 
that the sunscreens, which are intended to protect individu-
als from UV radiation, may cause more harm than the UV 
radiation itself [6]. Furthermore, metal oxide–based water 
remediation systems may pose different risks to the envi-
ronment than the conventional remediation methods [7]. 
This provides grounds for the need to evaluate metal oxide 
toxicity in parallel to development of applications, as part 
of a responsible innovation approach. Several experimen-
tal studies have been conducted to assess the toxicity of 
metal oxides, examining various parameters that can cause 
toxicity  [4, 8, 9].

The rate at which metal oxides are applied in different 
fields of technology far exceeds the rate at which the toxic-
ity of the materials is studied. Furthermore, conventional 
(i.e. experimental) risk assessment techniques are often 
time intensive and insufficient for ensuring the safety by 
design of newly produced materials in rapidly expand-
ing application areas. To keep up with the rapid rates of 
metal oxide production, while also lowering the number 
of tests and the amount of consumable reagents utilized, 
a method that can predict the toxicity of metal oxides is 
required. The application of quantitative structure activity 
relationship ((Q)SAR) is one approach that has been used 
to evaluate the toxicity of metal oxides, but to a lesser 
extent compared to chemical compounds [10]. As a result, 
extensive studies on the use of (Q)SAR models in predict-
ing toxicity of metal oxide NPs are required to support the 
validation and regulatory acceptance of NMs (Q)SARs in 
regulatory risk assessment..

Metal oxide NPs (Q)SAR is a relatively new type of 
(Q)SAR that is characterized as a mathematical relation-
ship between the properties (descriptors) of metal oxides 
and their biological activity. This type of model is typi-
cally referred to as “nano-(Q)SAR,” and the accompany-
ing descriptors are referred to as “nano descriptors.” It is 
possible to compute the activity of additional NPs (where 
toxicity tests have not yet been carried out) by using an 
appropriate mathematical model, i.e. once the physico-
chemical parameters of metal oxides and their toxicity 
towards living cell lines have been calculated and the 

model has been validated using a test set of NMs. Predic-
tions for new NMs can then be made once the new NMs 
properties fall with the domain of applicability of the (Q)
SAR model, where reliable predictions can be made  [11].

Classical NP properties, such as hydrodynamic size, 
core size, and surface charge based on 21 NPs, were used 
to develop a (Q)SAR model for predicting their toxicity 
towards human keratinocyte cells (HaCat) and bronchial 
epithelium transformed with Ad12-SV40 2B (BEAS-2B) 
cells [12]. Puzyn et al. also reported on a (Q)SAR model 
used to predict toxicity of 17 metal oxides, using enthalpy of 
formation as a descriptor for the model [13]. This model was 
able to successfully predict the cytotoxicity of metal oxides 
towards E. coli cells. Meanwhile, another model, based on 
seven metal oxides from different experimental conditions, 
has been reported [14]. On the other hand, Toporova et al. 
proposed (Q)SAR models based on simplified molecular 
input-line entry system (e.g. Simplified Molecular Input 
Line Entry System, “SMILES”) [15–17].

The reliability of a (Q)SAR model depends on the set of 
data that was used to develop it [10]. There is no standard-
ized dataset for the formulation of (Q)SAR models, as data 
used for model development are obtained from different 
sources and for varying experimental conditions. Density 
functional theory (DFT) calculations can play a vital role in 
the calculation of metal oxide descriptors as they have been 
successfully used for the prediction of metal oxide proper-
ties in various studies [18–21]. Properties obtained via DFT 
calculations can be used as descriptors for (Q)SAR model 
development. Venigalla and co-workers [22] reported on the 
development of a (Q)SAR model using 17 metal oxides, 
the descriptors of which were calculated using DFT meth-
ods. Meanwhile, Yunsong [23] explained the significance 
of using DFT and empirical-based descriptors to derive 
toxicity reaction mechanisms. The significance of in silico 
methods is better understanding of the features that influence 
MeONP potencies, as well as predict toxic responses and 
effect thresholds.

In the current study, a (Q)SAR model based on an 
extended database of the cytotoxicity of 26 metal oxide 
NPs to human BEAS-2B, Murine myeloid (RAW 264.7) 
cell lines, and E. coli was developed and validated. The 
confluence of the dataset is aimed to achieve a model with 
a broader spectrum of application and where the effects 
of facets towards toxicity have been taken into account. 
The bacteria were specifically selected for cytotoxicity 
assessment, since they are considered a good ecological 
indicator for assessing the persistence and impact of chem-
icals on the environment and human health. In addition, 
uncontrolled release of toxic substances to the bacterial 
environment may disturb their natural balance, resulting in 
unwanted effects on the environment [24]. Meanwhile, the 
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pulmonary epithelial BEAS-2B (non-tumorigenic human 
lung epithelial cells) and macrophage RAW 264.7 cell 
lines are good models for mimicking human cells during 
inhalation exposures. The catalytic properties of NPs are 
determined by the nature of the NP surface [25]. The goal 
of this study was to provide a method for generating metal 
oxide nano-descriptors that are related to exposed facets 
(i.e. one of the indicators specifically related to the surface 
nanotopography), which may be used to characterize the 
observed activity of NPs towards biological cell lines.

To the best of our knowledge, descriptors on metal 
oxide NPs that are facet-specific have not previously been 
reported in the literature and are reported herein for the 
first time. An interpretive nano-(Q)SAR model for an 
extended dataset of metal oxide NPs toxicity, based on 
various cell lines, relies on the combined theoretical and 
experimental work.

Materials and methods

Data

Toxicity data used for the model development was obtained 
from the literature [13], which was comprised of 26 metal 
oxides. (Q)SAR models have also been documented with 
significantly less datasets [26]. DFT simulations for low-
indexed facets were used to calculate descriptors based on 
the surface energy and electronic properties of metal oxides. 
Descriptors were also generated using atomic periodicity, 
experimental data, and TEM data. Recent developments 
have focused on growing NPs with specific facets for specific 
applications and improved efficiency. These give a rationale 
for looking into the impact of exposed facets towards tox-
icity of NPs from a computational point of view. Various 
other publications have used these data, looking into differ-
ent descriptors and models [27, 28]. There were no data gaps 
in the data set, which included 26 distinct metal oxide NPs. 
Types of metal oxides used in the model were of the form 
 M3O4  M2O3,  MO2, and MO, where M (M = Al, Fe, Cr, Bi, 
La, Y, V, Sb, In, Ti, Sn, Si, Zr, Co, Cu, Ni, Zn, Co, Gd, Hf, 
Mn, W, and Yb) is the metal atom and O is the oxygen atom. 
The descriptors were classified into six categories: phys-
icochemical, structural, image, periodic table, experimen-
tal, and molecular. Molecular descriptors included binding 
energy, Fermi energy, HOMO (highest occupied molecular 
orbitals), LUMO (lowest unoccupied energy orbitals), band 
gap, hardness, chemical potential, enthalpy of formation, and 
electronegativity. It is worth noting that molecular descrip-
tors were derived from DFT calculations and were based on 
low index facet(s). The full list of descriptors collected from 

literature, calculated, and utilized in the model is given in 
the supporting information (Table S1).

Calculation of molecular descriptors

The molecular descriptors are numerical representations 
of the properties of metal oxides, which were based on 
their electronic properties. A calculated pool of molecu-
lar descriptors is presented in the supporting information 
(Table S1). These include surface energy, binding energy, 
HOMO, LUMO, band gap, electronegativity, Fermi level 
energy, chemical potential, and hardness. In spite of its 
shortcomings in estimating lattice constants and electronic 
band gaps, DFT is credited with giving insights to experi-
mentally observed phenomena such as catalysis, photonics, 
and defects; hence, the reason for its use in this study to 
generate descriptors for (Q)SAR [29, 30]. Additionally, DFT 
calculations have been used to generate datasets for high 
throughput screening of materials, compounds and alloys, 
rational design of catalysts, and for training machine learn-
ing models [31, 32]. Metal oxide chemical space was limited 
to four types of metal oxides  (M3O4,  M2O3,  MO2, and MO).

It is worth mentioning that in doing DFT calculations, the 
primitive cell (lattice) and not the unit cell were used for the 
calculations. All the crystal structures were obtained from 
https:// mater ialsp roject. org. DFT calculations have been 
documented to over (under) estimate the lattice constants 
by almost 20% depending on whether generalized gradient 
approximation (GGA) pseudopotentials are used to account 
for core and valence electrons [21, 33]. However, this has 
not negated DFT from being used to offer insights on experi-
mentally observed phenomena [19, 22, 34]. It is for this rea-
son that DFT does not reproduce the same lattice constants 
as experiments. DFT calculations are ab initio in nature and 
hence do not account for temperature in the calculations. 
All metal oxides considered in this work were chosen with 
respect to their lowest convex hull energy.

All ab initio calculations, used to generate the descrip-
tors in this study, were performed within DFT formalism 
as implemented in DMol [3] code within Material Stu-
dio (Accelrys, San Diego, CA) [35]. The GGA with the 
Perdew–Burke–Ernzerhof (PBE) functional was used to 
describe exchange–correlation effects [36]. The geometry 
optimization convergence tolerances were set at  10−5 Ha (1 
Ha = 27.21 eV) for energy, 0.002 Ha for maximum force, and 
0.005 Å for maximum displacement. The tolerance to elec-
tronic self consistent field (SCF) was set at  10−6 Ha, while a 
smearing of 0.02 Ha to orbital occupation was applied. Low 
index surfaces ((100), (110), and (111)) were constructed 
from the optimized bulk structures, using aslab with a vac-
uum of 30 Å along c-axis was used between the periodical 
slabs to eliminate spurious interactions.

https://materialsproject.org
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The full, computationally enriched, dataset was made 
publicly available from the NanoPharos database (https:// 
db. nanop haros. eu/), developed via the NanoSolveIT project 
and continues to be maintained by NovaMechanics Ltd.

Model development

Model development was performed using the Isalos Analyt-
ics Platform, powered by the Enalos + Tools [37, 38]. The 
dataset was checked for completeness, and no gaps were 
identified. The first step in the process was to feed the dataset 
into a low-variance filter in order to remove those descrip-
tors that did not present significant variance and could not 
contribute to the model’s predictive capacity [39]. In this 
way, the workload and time needed for the computational 
workflow to complete is reduced as well. The cut-off thresh-
old for the model was set to 0.3, which meant the descrip-
tors with 30% or similarity of values to another descriptor 
were removed. The next step was to account for the different 
numerical ranges of the included descriptors in the filtered 
dataset, for which Z-score normalisation was utilized. This 
ensured that the numerical range of all descriptors followed 
a Gaussian distribution with mean values and standard devi-
ation of 0.0 and 1.0, respectively [40]. The model was then 
developed following random partitioning of the dataset into 
training and test sets, using a 75%:25% ratio. The training 
set was used for model development and training as well as 
to evaluate the model’s performance and fine tune its param-
eters through cross-validation [41, 42]. The descriptors that 
were used to develop the model, (i.e. those presenting the 
highest statistical significance with respect to the dataset’s 
variance), were identified using the Correlation based Fea-
ture Selection (CfsSubset) algorithm combined with the 
BestFirst evaluator [43].

The presented metal oxide cytotoxicity model was devel-
oped using the Enalos implementation of the classification 
mode of the k-nearest neighbour algorithm (EnaloskNN), 
Enalos Chem/Nanoinformatics) [44]. EnaloskNN is an 
instance-based (lazy) method that uses the distance of the 
predicted endpoint from its k (k = 1, 2, 3, …) nearest neigh-
bours in the feature space Rn created by the “n” identified 
significant descriptors, which are used to make the predic-
tion, with “k” being defined based on the model’s best per-
formance. The prediction is achieved based on the Euclidean 
distance, a similarity measure, of the target variable from its 
“k” closest neighbours [45]. The prediction is performed via 
the weighted average of the independent variable values of 
these neighbours, with the inverse of the Euclidean distance 
being used as the weighing factor [45, 46]. In the case of 
nominal descriptors, the individual values are compared and 
if the values are the same, the Euclidean distance is set equal 
to 0; otherwise, it is set to 1 [47].

The Euclidean distance calculated though model develop-
ment and usage can be used as a metric to not only predict a 
specific endpoint, but to also identify groups of neighbour-
ing nanomaterials (NMs). The identification and analysis 
of these groups can lead to mapping the prediction space 
into specific NMs groups, which can then be used for the 
development of read-across strategies [48]. Therefore, by 
taking advantage of the EnalolkNN ability to provide the 
Euclidean distances, we can visualize and study the entire 
predictive space Rn. As a result, the kNN algorithm can be 
used according to ECHA’s read across framework [49] for 
NMs only if the following criteria are satisfied:

• Gathering of required descriptors for each NM.
• Construction of data matrix including properties and end-

points.
• Development of a correlation between end points to reac-

tivity properties.
• Assessment of the applicability of the approach.
• Ensurance that there is no missing data.
• Assessment of the robustness of the grouping.
• Justification of the method.

Model validation

The model’s validity and robustness were tested using its 
sensitivity (Sn), specificity (Sp), and accuracy (Ac). These 
metrics describe the proportion of the correct predictions of 
toxic NMs, the proportion of the NMs that were correctly 
classified as non-toxic and the model’s overall success rate, 
respectively [50]. Cohen’s κ, which measures the model’s 
reliability, while taking into account any successful predic-
tions to be based on chance correlation [51] was calculated 
as well.

where, TP are true positives, TN are true negatives, FP are 
false positives, and FN are false negatives.

The model was furthermore evaluated using the Matthews 
correlation coefficient (MCC) [52], which is used as a qual-
ity measure for the development of predictive classification 
workflows. The MCC takes into account the true and false 
positive and negative outcomes of the developed model, and 
it is considered as a good quality metric of the model, even 

(1)Sn =
TP

TP + FN

(2)Sp =
TN

TN + FP

(3)Ac =
TP + TN

TP + FP + TN + FN

https://db.nanopharos.eu/
https://db.nanopharos.eu/
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in cases of unbalanced datasets [53], The MCC results range 
between − 1 and + 1. An MCC value of − 1 corresponds to 
total disagreement between observed (experimental) and 
predicted results, while a value of + 1 corresponds to total 
agreement. An MCC value of 0 corresponds to a random 
prediction [54]. The MCC is calculated using Eq. (4):

where TP are true positives, TN are true negatives, FP are 
false positives, and FN are false negatives.

Y-randomisation (n = 10) was used to guarantee that the 
created model was not the result of chance correlation and 
to test its statistical significance and robustness. Random 
shuffling of the prediction using all original descriptors 
yielded different data sets. The model acceptance criteria 
given above were calculated for each iteration. The revised 
criteria were expected to be lower than the original model 
for the model to be valid [55–57].

Applicability domain

In order to ensure accessibility within the scientific com-
munity and to interested stakeholders as well as to ensure its 
validity and reliable usage and applicability to external data-
sets, the applicability domain (APD) of the (Q)SAR model 
was calculated using the Euclidean distances calculated and 
retrieved via the EnalsokNN. The following equation was 
used:

(4)

MCC =
TP × TN − FP × FN

√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

where < d > and σ are the average and standard deviation of 
all Euclidean distances in the training set, respectively, and 
Z is the empirical cut off value, which is usually 0.5. Any 
predictions made outside these defined limits are regarded 
as unreliable [58].

An analytical summary of the produced model, along 
with the full demonstration that the produced model meets 
the OECD criteria for the validation of (Q)SAR models for 
regulatory purposes is demonstrated via the completed (Q)
SAR Model Reporting Format (QMRF) template which is 
included in the supplementary information (S1).

Webservice development

The fully documented model and relevant tutorials have been 
made publicly available, through the NanoSolveIT cloud 
platform (https:// cloud. nanos olveit. eu/), as a user-friendly 
webservice (https:// facet cytot oxici ty. cloud. nanos olveit. eu/) 
to ensure accessibility within the scientific community and to 
interested stakeholders. The model has been complemented 
with a REST API (Fig. 1; https:// facet cytot oxici ty. cloud. 
nanos olveit. eu/ swagg er- ui/) to make it easily accessible and 
usable programmatically and to enable to implementation 
into a computational workflow, e.g. as KNIME node. The 
API has been implemented using the POST Request Method 
to be able to transfer and handle large amounts of data that 
are necessary to run the model. Following analysis, the 
results are returned in JSON format.

(5)APD =< d > +Z𝜎

Fig. 1  The REST API environment for the facet-driven cytotoxicity model presented in this study. Through the API users can implement the 
model into their own computational workflows

https://cloud.nanosolveit.eu/
https://facetcytotoxicity.cloud.nanosolveit.eu/
https://facetcytotoxicity.cloud.nanosolveit.eu/swagger-ui/
https://facetcytotoxicity.cloud.nanosolveit.eu/swagger-ui/
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Results and discussion

The goal of this study was to show that cytotoxicity of NPs 
may be predicted using a combination of physicochemical, 
molecular, and periodic table-based descriptors derived for 
low index facets of metal oxide NMs. The dataset included 
26 metal oxides in replicates of varied experimental set-
tings, as well as a total of 32 descriptors, i.e. 8 molecular 
descriptors, 9 periodic table-based descriptors, 10 TEM 
image-based descriptors, and 5 experimental/physicochemi-
cal descriptors (Table S1). Although the data set is modest 
statistically, it yields a solid predictive model. Merging data-
sets was carried out to ensure that they were interoperable in 
order to identify probable reasons for variability. This also 
emphasized the importance of including sufficient metadata 
in public datasets to improve their quality, FAIRness score, 
and consequently reproducibility, reusability, and scientific 
transparency in general  [59, 60].

Development of the model Following a random divi-
sion of the dataset into training and test sets using a ratio 
of 75%:25%, respectively (Fig. 1), the predictive model was 
created. Using the CFsSubset algorithm and the BestFit evalu-
ator, the descriptors that contributed the most to the model’s 
variance and subsequently used to perform the classifications 
were determined. As a result, four descriptors were identi-
fied to be significant, i.e. core size, chemical potential, metal 

electronegativity count, and enthalpy of formation of metal 
the oxide. These results contain a mixture of descriptors,  
which includes physicochemical, periodic table and molecular- 
based descriptors calculated with low index facets in con-
sideration. They are also in good agreement with a similar  
study by Papadiamantis et al. [44] on metal oxide toxicity to 
BEAS-2B and RAW 264.7 cell lines, where the core size was 
also identified as significant. Papadiamantis et al. identified 
the energy of the conduction band as significant, which is 
directly correlated with the metal electronegativity, and sub-
sequently the metal electronegativity count presented herein 
(see also Eqs. 10 and 11 below) and the enthalpy of formation 
[61]. Furthermore, the chemical potential, which is linked to 
the arrangement of the atoms on the NPs surface, is correlated 
to the identified average coordination number of metal atoms 
in the surface region of the NPs and the average length of the 
surface normal component of force vector of atoms in the 
surface region of the NP, which describes the potential energy 
(stability and activity) of the atoms on the surface of NPs [61]. 
This parameter is unique for each exposed facet (e.g. {100} or 
{111}) on metal oxide MNs and hence explains their varied 
toxicity behaviour. The produced model had high predictivity, 
having an Ac value of 0.929, Sn of 0.889, and Sp of 1.000. 
Cohen’s κ was calculated to be 0.851, and the APD is 1.951. 
The MCC value of the produced model was 0.861, denoting 
a good prediction for both classes. The predictions were per-
formed for k = 4 closest neighbours (Fig. 2).

Fig. 2  The Isalos Analytics Platform environment, with the developed workflow and the respective dataset
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Justification of the descriptors implemented

There are four main mechanisms for NP toxicity: (i) the 
release of chemical constituents from nanomaterials; (ii) the 
size and shape of particle, which produce steric hindrances 
or interference with important binding sites of macromol-
ecules; (iii) the surface properties of the material such as 
photochemical and redox potentials; and (iv) the capacity 
of nanomaterials to act as vectors for the transport of other 
toxic chemicals to sensitive tissues [13].

Core size was found to be one of the significant descrip-
tors of the model presented herein, and this is in agreement 
with mechanism (ii). The effect of core size towards toxicity 
has been reported in the past, where a trend of decreasing 
core size has been connected to greater toxicity [62–64]. 
Earlier studies by Karlsson et al. compared metal oxide 
NPs of various sizes when they were exposed to adenocar-
cinomic human alveolar basal epithelial A549 cells [65]. 
Their findings showed that toxicity of NPs cannot be gener-
alized solely on the basis of their core size.. The toxicity of 
CuO NPs increased with the observed decrease in core size, 
whereas the toxicity of  TiO2,  Fe2O3, and  Fe3O4 was unaf-
fected by core size, regardless of having the same chemical 
composition. Furthermore, Warheit and co-workers reported 
that the toxicity of  TiO2 particles was determined by surface 
properties, rather than size and surface area [66]. Similarly, 
Ivask and colleagues discovered that while human colorectal 
adenocarcinoma (Caco2) cells ingested  TiO2 particles, no 
cytotoxicity was induced [4].

Facets are among the surface properties that have a signifi-
cant influence on the toxicity of metal oxides. Liu and col-
leagues observed that faceted  TiO2 metal oxides (e.g. {001} 
facet) are more toxic than spherical metal oxides, due to their 
preferentially exposed crystallographic facets with large den-
sities of unsaturated bonds [67]. The precise property-activity 
relationship was used to evaluate the toxicity of faceted metal 
oxides, using  TiO2 bipyramids with varying percentages of 
exposed {001} and {101} facets on the surface. The {001} 
facet was found to elicit severe toxicitys compared to the 
{101} facet, and this was attributed to the high production 
rate of hydroxyl radicles on the {001} surface. Similarly, dif-
ferently exposed facets ({100} and {111}) of  Cu2O nanocrys-
tals were reported to have varied cytotoxic effects on RAW 
264.7 cells [68]. Plausible mechanistic explanations were 
attributed to the formation of hydroxyl radicals on the facet 
surfaces of  Cu2O for short term exposure, and release of  Cu+ 
ions for long-term exposure. The {100} facet was considered 
to release a higher concentration of Cu ions than the {111} 
facet. This was attributed to the alternating stacking of  Cu+ 
and O [2] ion on the {100} facet, while the  Cu+ ion in the 
{111} facet are packed between the  O2− ions making release 
of  Cu2+ ions more challenging [69]. 

Chemical stability, which is connected to particle disso-
lution, catalytic properties, and redox alteration on the sur-
face, is the most important regulating parameter for metal 
oxide toxicity [70]. This is consistent with the aforemen-
tioned mechanisms (i) and (iii). Ions can be released by 
breaking chemical bonds in the metal oxide’s lattice struc-
ture. Such reactions are widespread near the material’s 
surface and are influenced by the metal oxide’s exposed 
facet, as indicated in for  Cu2O NMs [71]. Furthermore, 
the growth of metal oxide NMs towards certain facets is 
strongly linked to a specific lattice energy, which defines 
the dissolution of NMs without oxidation or reduction. As 
a result, the lattice energy of metal oxides varies depend-
ing on their facets, and hence, their stability varies.

Negative values for lattice energy increase with increas-
ing cation charge (n). Similarly, the increase in positive 
value of enthalpy of formation is associated with an 
increase in cation charge. Consequently, the release of 
cation Men+ having smaller charge is more energetically 
favoured than the release of ions with larger cation charges. 
This explains why the toxicity of studied metal oxides 
decreases in the following order:  Me2+  >  Me3+  >  Me4+. 
Furthermore, because creation of  Men+ cations necessitates 
sublimation followed by ionization processes, the enthalpy 
of formation (ΔHf) is linked to the sum of ionization poten-
tials of a specific metal, and thus, can be calculated as

where ΔHs is the enthalpy of sublimation and  IPi is the nth 
ionization potentials of the metals.

Enthalpy of formation is not connected to metal oxide 
size NM, which supports our previous assertion that size 
cannot be the only contributing factor to metal oxide NM 
toxicity. Furthermore, as much as enthalpy of formation 
influences the release of metal ions, it also serves as an 
indicator for average, metal–oxygen bond strength [72]. The 
metal–oxygen bond strengths vary within the same crystal 
structure, and this is most noticeable with different facets. 
This explains why the ion release varies for different facets 
of the same metal oxide crystallographic structure.

Curvature is a fundamental variable that modulates the 
forces and controls the size and shape of NMs. The shape 
index is defined as follows:

where K2 and K2 are the maximum and minimum principal 
curvature, respectively. It represents a visual interpretation 
of curvature with a singular range of values (− 1 ≥ S ≥ 1). A 

(6)ΔHf = ΔHs +

n
∑

i=1

IPi

(7)

S =
2

�
arctan

(

K2 + K1

K2 − K1

)

,
(

K1 ≥ K2,K1 = 0 only if K2 ≠ 0
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positive value depicts a concave surface, a negative value 
depicts a convex surface and a zero value represents a near 
flat surface. Furthermore, the surface curvature radius of an 
NP determines the chemical potential (µ) of atoms on an NP 
surface and is given by the Young–Laplace equation [73]:

where R denotes the radius of a spherical NP, Ω denotes the 
volume of the particles, and γ is the surface energy.

Chemical potential determines the crystallographic 
structure, ionicity of metal–oxygen bonds, and elec-
trostatic potential. The latter is essential for explaining 
experimentally observed interactions between NPs and the 
cellular membrane, where the positively charged surface 
of the NP tends to be attracted to the negatively charged 
cell membrane surfaces. Meanwhile, induced stress onto 
the crystallographic structure tends to alter the unit cell 
parameters and, thus, causes structural changes such as 
size [74]. Ionicity is inversely proportional to size, but has 
a direct influence on properties such as chemical reactivity 
[75]. However, the observed behaviour of metal oxides is 
linked to the atomic arrangement of atoms on the exposed 
surface (facet). As a result, a relationship is established 
between the facets of metal oxides and their chemical 
potential. As a consequence, using chemical potential as 
a descriptor aids in model interpretation and demonstrates 
how facets influence metal oxide toxicity.

The electronegativity count of metal is defined as 
follows:

where �metal is defined by �metal = � ∗ � ; � is defined by  
� = (Z

metal
− Z

v

metal
)
/

Z
v

metal

 ;  � =
1
/

PN
metal

 ;   Zv
metal

 i s  the 
valence electron of metal; Zmetal

 is the atomic number of  
metal.

Electronegativity was also used as a descriptor in the 
model. The electronegativity (χ) value for a given metal 
oxide is strongly related to the electronegativity of the 
corresponding cation ( �+ ). The cation electronegativity 
depends on the ionic radius and formal charge of the cat-
ion; i.e. higher cation electronegativity values character-
ize cations with a broad charge distribution over a narrow 
atomic radius., It is evident that increasing cationic elec-
tronegativity will enhance the catalytic property (because 
electronegativity is a measure of an atom’s tendency to 
attract a bonding pair of electrons) and, hence, the toxicity 
of metal oxide NPs.

Electronegativity scale also gives the potential of a 
metal oxide to transfer an electron towards a chemical 

(8)Δμ = 2�
Ω

R

(9)�metal = −�metal +
(

0.3 ∗ Zv
metal

)

reaction. It is an electronic based property that relates to 
HOMO and LUMO energies as follows:

and

where EHOMO and ELUMO denote the highest occupied 
molecular orbitals and lowest unoccupied molecular orbit-
als’ potentials respectively, �m and �O denote the absolute 
electronegativity of metal and oxygen atoms respectively 
[76], a and b are number of metal of oxygen atoms in chemi-
cal formula, n is the total number of atoms in the chemical 
formula, Eo is the standard electrode potential that assumes 
the value of 4.5 eV on the hydrogen scale, and Eg is the 
estimated band gap.

Changes in the wave function due to quantum confine-
ment of electrons results in a change of electronic prop-
erties for metal oxides. Hence, the electronegativity of 
the same kind of an atom in different systems is not the 
same. Moreover, for different facets of the same mate-
rial, the electron wave function is not the same, thus its 
electronegativity also. It follows that varied facets of a 
metal oxide will yield different oxidative and reductive 
reactions as a result of varied electron properties (Fig. 3). 
This result was also observed experimentally and reported 
in the literature [8]. 

Metal electronegativity count was identified as a descrip-
tor significant for predicting toxicity of metal oxides and 
is related to the band gap energy (Eg), the LUMO and the 
HOMO according to Eqs. 10 and 11. Thus, while the model 
descriptor is the electronegativity with respect to the exposed 
facet, the band edges can be used to describe the toxicologi-
cal potential of metal oxides in cellular environments where 
the aqueous redox potential ranges from − 4.12 to − 4.84 eV 
[77]. In our study, HOMO energies for  La2O3,  Sb2O3,  In2O3, 
 TiO2, and NiO metal oxides fall within the range of aqueous 
redox potential. These findings show that the apparent toxic-
ity of metal oxides is due to a distinct mechanism involv-
ing the ability to transport electrons between the surface of 
NPs and intracellular redox couples. When a metal oxide is 
irradiated under UV light, electrons are extracted from the 
valence band into the conduction band, leaving unoccupied 
electron states (holes). The holes (h+) are capable of trans-
ferring between biological media and metal oxide, reacting 
with  OH¯ and/or  H2O to produce hydroxide radicals (•OH). 
The free electrons may react with  O2 to form superoxide 
radical anions (O•‾

2). These reactive oxygen species (ROS) 
are capable of causing membrane disruptions that can lead 
to cell death [78–80].

(10)EHOMO = (�m
a�b

O
)
1∕n

− Eo + 0.5Eg

(11)ELUMO = EHOMO − Eg
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Conclusion

The study used toxicity data from the literature to develop 
a (Q)SAR model for the prediction of the toxicity of 
metal oxide NPs using a combination of physicochemi-
cal, molecular, and periodic table-based descriptors. The 
additional descriptors used in this study were calculated 
with the aid of DFT on the basis of up to 3 different crystal 
facets per NM composition (i.e. {100}, {110} and {111}), 
TEM images of the NMs (extracted from the original 
publications and processed via the NanoXtract tool). The 
materials’ core size, chemical potential, enthalpy of for-
mation, and electronegativity count of metal oxides were 
found to be the most significant descriptors of the model. 
All DFT calculations for the metal oxides were based on 
low index facets. Metal oxide chemical space was lim-
ited to four types of metal oxides  (M3O4,  M2O3,  MO2, and 

MO). A model that is both reliable and basic for theoreti-
cal assessment of the toxicity of untested metal oxides, 
was successfully developed and validated using the OECD 
guidelines for the validation of (Q)SAR models for regu-
latory purposes. The model provides an insight into how 
facet tuning could lead to different degrees of toxicity. 
Finally, the types of mechanistic pathways that can lead to 
toxicity have been explained based on electronic properties 
of the metal oxide NMs. Defined structure–activity rela-
tionships in the study could play a vital role in the design 
of safer nanomaterials.
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