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Lung diseases disproportionately affect elderly individuals. The lungs form a unique

environment: a highly elastic organ with gaseous exchange requiring the closest prox-

imity of inhaled air containing harmful agents and the circulating blood. The lungs are

highly susceptible to senescence, with age and ‘inflammageing’ creating a pro-

inflammatory environment with a reduced capacity to deal with challenges. While

lung diseases may have disparate causes, the burden of ageing and inflammation pro-

vides a common process that can exacerbate seemingly unrelated pathologies. How-

ever, these shared pathways may also provide a common route to treatment, with

increased interest in drugs that target ageing processes across respiratory diseases.

In this review, we will examine the evidence for the increased burden of lung disease

in older adults, the structural and functional changes seen with advancing age and

assess what our expanding knowledge of inflammation and ageing pathways could

mean for the treatment of lung disease.
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1 | INTRODUCTION

1.1 | The epidemiology of lung disease in the
elderly

While age is a risk factor for most diseases, the lungs have been

described as the worst affected organ for disease in the elderly

(Budinger et al., 2017). Older people are at a greater risk of developing

acute and chronic lung diseases and suffer worse outcomes from

these conditions.

Approximately 1% of the UK population is diagnosed with com-

munity acquired pneumonia (CAP) annually (The National Institute for

Health and Care Excellence, 2021). Over 70% of hospital-treated CAP

occur in those aged over 65, and the 30-day mortality is approximately

20% in this age group (Daniel et al., 2016; Grudzinska et al., 2017,

2019). Across Europe, the annual incidence of CAP in adults is 1.2 per

1000 person-years but 14 per 1000 person-years in those aged over

65 years (Torres et al., 2013). In the United States, approximately 1.6

million adults are estimated to be hospitalised with CAP with a median

age of 68 and a 1-year mortality as high as 30% (Ramirez et al., 2017).

The ongoing coronavirus disease 2019 (COVID-19) pandemic

demonstrates the potential impact of respiratory viruses on the
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elderly. To date, there have been 235 million cases and 4.8 million

deaths globally with over 73% of deaths occurring in those aged 65 or

older (World Health Organisation, 2021). Approximately 70% of hos-

pitalised COVID-19 patients in the United Kingdom are above

50 years, with 80% of deaths seen in those aged over 60 years of age

(Escher et al., 2021; Sapey et al., 2020). A similar trend can be seen

across Europe where there is a hospitalisation rate and hospitalised

case fatality rate of approximately 80% in those over 60 years of age

(European Centre for Disease Prevention and Control, 2021). In the

United States, 80% of those who have died from COVID-19 are over

the age of 65 (Centre for Disease Control and Prevention, 2021a).

The severity of infectious disease depends on the virulence of the

infecting organism, the dose or route of infection and the response of

the host. Given that exposure to infectious agents may be unchanged

or reduced (with potentially less social contact) with advanced age,

the increased burden and poorer outcomes seen from both CAP and

COVID-19 suggest an increased susceptibility to becoming infected

and developing severe disease. Indeed, in a recent systematic analysis

across infectious diseases as diverse as tuberculosis, polio, typhoid,

influenza, Middle East respiratory syndrome (MERS), severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), smallpox,

chickenpox, measles, infectious mononucleosis, hepatitis and HIV, a

higher prevalence, severity and increased deaths were reported in

older adults, with a trend towards poorer outcomes starting after the

age of 50 (Glynn & Moss, 2020).

Chronic lung diseases are also more common in older adults. This

not only reflects that these diseases are incurable; onset is more com-

mon with older age (Li, Cao, et al., 2020). One such example is chronic

obstructive pulmonary disease (COPD). The international GOLD

group defines COPD as a common, preventable and treatable disease

that is characterised by persistent respiratory symptoms and airflow

limitation that is due to airways and/or alveolar abnormalities and lung

and systemic inflammation (Global Initiative for Chronic Obstructive

Lung Disease, 2020). According to the Global Burden of Disease

(GBD) study, COPD is already the third leading cause of death world-

wide, something that the World Health Organisation had not

predicted to occur until 2030 (Lozano et al., 2012), and globally, the

burden of COPD is projected to increase because of continued expo-

sure to risk factors and our ageing population. In the United Kingdom,

the average age of diagnosis of COPD is 67 years (James et al., 2014).

In the absence of screening, symptoms precede diagnostic tests, and

the first symptoms suggestive of COPD are often described in

patients in their late 40s or early 50s (Yip et al., 2021). The average

age of hospitalised patients with COPD in Europe was 70 years, with

an average inpatient mortality of 250 deaths per 100,000 inhabitants

(Atsou et al., 2011). In the United States, as elsewhere, the death rate

for COPD is highest in those aged over 75 years (Thannickal

et al., 2015).

A similar pattern is seen with interstitial lung disease (ILD) where

the risk of developing it is 6.9 times higher (95% confidence interval

[CI]: 5.9–8.0) in those aged over 70 than those in their 40s (Choi

et al., 2018). Idiopathic pulmonary fibrosis (IPF) is a progressive

fibrosing interstitial lung disease with a median survival from diagnosis

of 2 to 5 years (Strongman et al., 2018), although the course of the

disease is highly variable. IPF is diagnosed mostly in older adults

(Strongman et al., 2018), with approximately 75% of those diagnosed

aged over 73 years, both in the United Kingdom (British Lung

Foundation, 2020) and in the United States (Raghu et al., 2006;

Thannickal et al., 2015). In registry studies, the age of symptom onset

was reported to be in people aged 60 and over (Hoyer et al., 2019).

Asthma is often considered a disease of children, but mortality is

currently greatest in those aged over 55. This group also experience

the most symptoms, more severe disease, more emergency presenta-

tions and a worse quality of life compared with younger adults (Hoyer

et al., 2019; Plaza et al., 2000). The impact of age on pulmonary malig-

nancies has been widely described and will not be discussed further

here.

These lung diseases have a huge global economic burden. The

annual cost of lung disease in Europe is estimated to be €380 billion

with pneumonia accounting for €46 billion and COPD alone account-

ing for €140 billion (Gibson et al., 2013). In the United States, the

annual cost of pneumonia is estimated to be over $17 billion (File &

Marrie, 2010), and the annual cost for COPD, $50 billion (Centre for

Disease Control and Prevention, 2021b).

Acute, communicable lung diseases such as CAP and COVID-19

have recommended treatment regimes. The mainstay of CAP treat-

ment is anti-microbial agents with national guidelines highlighting the

most commonly identified pathogens and their resistance patterns

(National Institute for Health and Care Excellence, 2021). Poor

responses to these therapies in older patients do not appear to be due

to differences in virulence or resistance patterns in different age

groups, and in general, our ability to diagnose CAP and initiate sup-

portive treatments has improved (Grudzinska et al., 2020). This sug-

gests that the poorer outcomes are more likely to be due to host

responses rather than the insult per se.

In chronic lung diseases, there are treatments to support com-

promised respiratory function and reduce symptomatic burden, and

these appear effective across age groups (Ferguson et al., 2020;

Hanania et al., 2021). However, there are few drugs that impact on

the biological processes that drive these conditions. Examples of

disease-modifying treatments are anti-IL-5 strategies for asthma. IL-5

is the main mediator of the inflammatory cascade in eosinophilic

asthma, exerting its effects by binding to the α chain of the IL-5

receptor (IL-5R), and controlling eosinophil development and matura-

tion in the bone marrow, as well as mobilisation. Anti-IL-5 has been

shown to be highly effective in subsets of patients with severe asthma

and eosinophilia. Although anti-IL-5 was shown to be effective across

all age groups, a systematic review of 10 studies demonstrated that,

in subjects with a high blood eosinophil count, the efficacy of these

therapies were reduced in older patients (Principe et al., 2019).

In summary, older age is associated with an increased susceptibil-

ity to lung disease, the outcomes of lung disease are worse and some

treatments appear less efficacious in older adults. With our population

ageing and diseases of older age likely to become even more common

globally, it is important to understand why this is and then mitigate

these factors where possible. There are a number of potential
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TABLE 1 Summary of common lung mechanics and physiology tests and how they change with increasing age

Lung function

measurement Description Type of test Changes with increasing age Reference

FEV1 Force expiratory volume = amount

of air that can be exhaled in 1 s

Spirometry Declines with increasing age, leading

to longer exhalation and at worst,

gas trapping

(Thomas et al., 2019)

FVC Forced vital capacity represents the

amount of air that can be forcibly

exhaled after taking the deepest

breath

Spirometry Declines with increasing age, but less

so than FEV1

(Thomas et al., 2019)

FEV1/FVC The ratio of FEV1 to FVC Spirometry Declines with increasing age and can

become obstructed

(Thomas et al., 2019)

PEF Peak expiratory flow—The maximum

speed at which air can be exhaled

from the lungs

Spirometry Declines with increasing age

reflecting airflow obstruction

(Thomas et al., 2019)

TLC Total lung capacity—Maximum

volume of air after maximum

inhalation

Lung volume

test

Decreases with older age, declining

from age 50 onwards

(McClaran et al., 1995;

Sharma & Goodwin, 2006)

RV Residual volume—Volume of air left

in the lungs after maximum

expiration

Lung volume

test

Increased in the elderly. An increased

RV reflects an inability to fully

empty the lungs due to a stiff

chest wall and ‘senile
hyperinflation’ with increased

airspace size

(Sharma & Goodwin, 2006)

VC Vital capacity—Volume of air exhaled

after the deepest inhalation

Lung volume

test

Decreases with increasing age.

Functional residual capacity and

residual volume increase with age,

resulting in a lower vital capacity

(McClaran et al., 1995;

Sharma & Goodwin, 2006)

MV Minute ventilation—Volume of air

inspired per minute

Lung volume

over time

test

Maintained with age as older people

increase the number of breaths

taken per minute

(McClaran et al., 1995)

Chest wall

compliance

The relative change in volume of the

chest wall to change in pressure

Mechanical Decreases with increasing age.

Reduced height of the thoracic

vertebrae. Stiffening of the

thoracic cage from calcification of

the rib cage and age-related

kyphosis places the diaphragm at a

mechanical disadvantage to

generate effective contraction

(Janssens et al., 1999)

Lung

compliance

Compliance is change in volume

relative to change in pressure in

the lung

Mechanical Increased to unchanged with

increasing age due to loss of

elastin fibres

(Sharma & Goodwin, 2006)

Respiratory

muscle

function

Diaphragm strength and maximal

inspiratory pressures

Mechanical Reduced by age and thought to

reflect muscle atrophy and age-

related decrease in fast twitch

fibres

(Polkey et al., 1997)

DLCO Diffusion capacity for carbon

monoxide (gaseous exchange

across capillary membrane)

Lung function Diffusion across the alveolar–
capillary interface is inversely

proportional to the alveolar–
capillary membrane thickness. The

DLCO declines with age

suggesting alteration with the

membrane thickness

(Stam et al., 1994)

PaO2 Partial pressure of oxygen in arterial

blood

Gas diffusion

test

Older people demonstrate a 50%

reduction in the response to

hypoxia

(Ebihara et al., 2016)

PaCO2 Partial pressure of carbon dioxide in

the blood

Gas diffusion

test

Older people demonstrate a 40%

reduction in the response to

hypercapnia

(Ebihara et al., 2016)

(Continues)
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mechanisms that might make older adults more susceptible to the

effects of acute and chronic lung insults and diseases, and these are

often host based, including structural changes to the lungs, lung

physiology, alterations to inflammatory pathways, changes to how

immune cells function and how the host can repair damaged cells and

tissues, which are impacted with age. Of importance, these mecha-

nisms are often shared, irrespective of lung disease, offering the

potential for shared therapeutic strategies, targeted more at the age-

ing process rather than the specific lung disease. These will be dis-

cussed, below.

2 | INCREASED SUSCEPTIBILITY TO LUNG
DISEASE: CHANGES IN LUNG STRUCTURE
AND PHYSIOLOGY WITHIN AN AGEING
HOST

There are broad structural and functional lung changes that occur dur-

ing older age (lung senescence) that are implicated in the pathogenesis

or progression of acute and chronic lung diseases. The changes impact

on every aspect of lung function, reducing the resilience of the host

when dealing with challenges. The impact of ageing on lung structure,

including senile emphysema, has been recognised for over 60 years

(Rappaport & Mayer, 1954), and a number of reviews have com-

mented on the causes and consequences of structural lung changes

with age (Janssens et al., 1999; Sharma & Goodwin, 2006), but a non-

exhaustive list of changes and potential consequences is described in

Table 1. Specific examples include the rate of decline in FEV1 (being

25–30 ml�year�1 from age 35–40 years but doubling to 60 ml�year�1

after the age of 70 years) (Sharma & Goodwin, 2006). This would

amplify the airflow obstruction seen with COPD or asthma. Another

example is the reduction in gas transfer across the alveolar–capillary

membrane in old age, which would further exacerbate hypoxia in the

presence of pneumonia or diseases of ventilation/perfusion mismatch

such as a pulmonary embolus or emphysema (Stam et al., 1994). Fur-

ther, the reduced response to hypoxia seen in the ageing host (with

less compensatory increase in the minute volume) might further exac-

erbate hypoxia, placing additional strain on end-organs (Polkey

et al., 1997). There are known differences in lung function with age by

sex (Becklake & Kauffmann, 1999), but less is known about how sex

might impact on the mechanisms underlying the ageing lung and

therefore will not be discussed further in the context of this review.

3 | PROTECTING THE AIRWAYS

3.1 | Cough reflex and aspirations

As well as the structural and functional changes described above,

elderly people may lose protective facets for lung health. This includes

the cough reflex and the mucociliary escalator.

The respiratory muscles involved in the cough reflex are weaker

in the elderly (Kim et al., 2009). The ‘urge to cough’ decreases with

normal ageing and is severely reduced in the frail elderly, even with

strong stimuli (Ebihara et al., 2016). A reduced cough reflex places the

person at risk of aspiration. Aspiration is the movement of gastroin-

testinal content from the mouth or stomach into the respiratory tract,

caused by poor swallowing (dysphagia) of food and oropharyngeal

secretions. Inflammation is thought to contribute to the risk of chronic

aspiration seen in the elderly (Ebihara et al., 2016). It has been pro-

posed that chronic micro-aspiration induces inflammation in the lung

and the recruitment of leukocytes to airways containing aspirate,

which secrete VEGF-related cytokines and TNF-α, among other medi-

ators (Costa et al., 2007). These elevated inflammatory cytokines are

associated with a reduction in muscle mass and strength, termed sar-

copenia, which is associated with frailty in the elderly (Wilson

et al., 2020). Sarcopenia of swallowing muscles is directly associated

with dysphagia and aspiration (Maeda & Akagi, 2016).

Dysphagia is very common among patients with chronic respira-

tory disease and can manifest as aspiration pneumonia (Verin

et al., 2017). Dysphagia is prevalent in COPD, for example, and is

associated with frequent exacerbations (Terada et al., 2010).

3.2 | The mucociliary escalator

The epithelial surface of the respiratory tract is continually exposed to

pathogens and particulates. In health, the airways produce

TABLE 1 (Continued)

Lung function

measurement Description Type of test Changes with increasing age Reference

VO2 max Exercise capacity Exercise test Maximum oxygen consumption

reduces with age, even in the

physically active. Reduced heart

rate responses, cardiac output and

peripheral muscle mass loss may

also contribute

(McClaran et al., 1995)

Note: A non-exhaustive list of changes in lung mechanics and physiology with advancing age.

Abbreviations: DLCO, diffusion capacity of carbon monoxide (a measure of the conductance or ease of transfer for CO molecules from alveolar gas to the

Hb of the red blood cells in the pulmonary circulation); FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; MV, minute ventilation; PaCO2,

partial pressure of carbon dioxide; PaO2, partial pressure of oxygen; PEF, peak expiratory flow; RV, residual volume; TLC, total lung capacity; VC, vital

capacity; VO2 max, maximal oxygen consumption.
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approximately 20–30 ml of secretions each day. The airway surfaces

are lined by ciliated epithelial cells and covered with an airway surface

layer (ASL), which consists of a mucus layer that entraps inhaled parti-

cles/foreign pathogens, and a low viscosity periciliary layer (PCL) that

lubricates airway surfaces and facilitates ciliary beating to enable

mucus clearance (Shei et al., 2018).

Mucociliary clearance decreases with age (Proença de Oliveira-

Maul et al., 2013). In elderly individuals, the frequency of cilia beating

is slower and the time taken to clear mucus is longer (Ho et al., 2001).

Environmental exposure to cigarette smoke (Pavia et al., 1971), pollu-

tion (Pedersen, 1990), repeated infections (Look et al., 2001) and

chronic lung diseases (Lam et al., 2013) have all been shown to impact

on ciliogenesis. The mechanisms underpinning this appear again asso-

ciated with inflammation and degranulation by recruited immune cells.

Neutrophil proteinases, for example, damage ciliated cells (Amitani

et al., 1991), leading to DNA damage responses over time (Johnson &

Collis, 2016), which hinder the effective replenishment of cilia (which

occurs approximately 14 days after injury, usually; Tilley et al., 2015).

This process is exacerbated in lung diseases, which are often associ-

ated with submucosal gland hypertrophy and goblet cell hyperplasia,

impairing mucociliary clearance, leading to mucostasis (Williams

et al., 2006). Mucostasis inhibits clearance of inhaled pathogens,

which favours microbial lung infection, airway muco-obstruction and

a progressive decrease in lung function as well as localised inflamma-

tion, the recruitment of immune cells, proteinase degranulation and

subsequent damage to other ciliated cells, in a vicious cycle of damage

(Lewis et al., 2019).

4 | INCREASED SUSCEPTIBILITY TO LUNG
DISEASE: CHANGES IN THE IMMUNE
SYSTEM, MICROBIOTA AND TOLERANCE IN
AN AGEING HOST

4.1 | The checks and balances of a healthy immune
response

The lungs are exposed to approximately 8500 L of air each day and

studies describe air holding approximately 105 viral or bacterial parti-

cles per 1000 L (Prussin et al., 2015), suggesting significant exposure

to potential pathogens, without considering other organic and inor-

ganic matter. Particles of less than 3 μm have the capacity to evade

the innate structural defences of the lungs and penetrate deep into

the small airways and alveoli. Not all these inhaled particles represent

a threat to host, and lung health requires a careful balance been

immune tolerance and activation. This balance is essential. A dimin-

ished response to a potentially pathogenic virus or bacteria may lead

to microbial replication and severe infection, leading to lung damage,

sepsis and even host death. An exaggerated response to a benign for-

eign particle can lead to the accumulation of recruited and activated

leukocytes. Their activation can result in proteinase and ROS release

through leukocyte degranulation, frustrated phagocytosis (so called

‘sloppy eating’) and release of neutrophil extracellular traps (NETosis),

which will lead to the degradation of host tissues, further inflamma-

tion and tissue scarring.

When a potentially pathogenic particle reaches the lung tissues, it

is exposed to the defence functions of the airway epithelium and sub-

mucosa. The airway epithelium can recognise pathogens via a variety

of receptors including pattern recognition receptors (PRRs) and then

modulate their environment through barrier tightness, secretion of

mucus and antimicrobials, and cytokine, chemokine and growth factor

production to enable systemic leukocytes to be recruited to the local

environment. Secretory IgA (sIgA) is the main antibody found in lung

secretions and it has unique structural and functional features not

observed in other antibody classes, enabling sIgA to protect the host

through immune exclusion and immune activation. Immune exclusion

refers to the ability of sIgA to prevent microbial pathogens and anti-

gens accessing the respiratory epithelium through agglutination

(essentially clumping of antibody around the pathogen), entrapment in

mucus and/or clearance. For example, sIgA can coat and sterically hin-

der microbial adhesins from interacting with the epithelium as well as

inhibiting specific pathogens by direct recognition of receptor-binding

domains (Helander et al., 2003). sIgA also mediates bacterial translo-

cation to dendritic cells for immune-mediated responses including

those leading to pathogen clearance and those leading to immune tol-

erance of that specific inhaled particle (Diana et al., 2013).

Alveolar macrophages line the alveoli and interstitium, where they

phagocytose organisms and release inflammatory or anti-

inflammatory mediators to control immune response (Belchamber &

Donnelly, 2020). There is considerable cellular crosstalk involving

alveolar macrophages as the resident sentinel immune cell and den-

dritic cells that project their dendrites into the airway lumen. These

mononuclear phagocytes have the ability to take up antigen, process

it for presentation on major histocompatibility complex (MHC)-I or II,

migrate and effectively activate and polarise naïve T cells. Intra-

epithelial lymphocytes (predominantly cytotoxic T cells) are seen

between epithelial cells, with CD4+ helper T cells and collections of B

lymphocytes organised into follicles known as inducible bronchus

associated lymphoid tissue (iBALT), which can initiate protective

humoral and T cell responses following infection.

A further facet of lung defence is the lung microbiota. The lung is

colonised by microorganisms that maintain a symbiotic relationship

with the host, creating an ecological community. In healthy lungs,

there is a relatively low bacterial replication rate caused by anti-

microbial peptides in mucus, sIgA and resident immune cells, but the

microbiota is continually renewed and replaced, with the majority of

microbe genera including Prevotella, Streptococcus, Veillonella,

Neisseria, Haemophilus and Fusobacterium (Dickson et al., 2016). The

microbiome helps maintain the structural integrity of the epithelium.

Tight junctions are a critical structure in restricting trans-epithelial

permeability. Microbial signals, from the metabolite indole, for exam-

ple, promote the strength of the epithelial barrier through up-

regulation of tight junctions and associated cytoskeletal proteins

(Bansal et al., 2010). The microbiota supports the high immune toler-

ance in the lungs, which is further maintained by alveolar macro-

phages and dendritic cells, which induce regulatory T cells (Tregs) and
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the release of PGE2, TGF-β and IL-10 (Hussell & Bell, 2014). Pattern

recognition receptors, such as Toll-like receptors (TLRs), sense micro-

bial signals during infection and elicit a protective immune response.

However, ligands for pattern recognition receptors are also produced

by commensal microbiota during healthy colonisation, and here, they

enable an immune response that is thought to regulate commensal

microbes by preventing over growth, thus maintaining tissue integrity

(Rakoff-Nahoum et al., 2004).

When a pathogen is detected and local immune responses require

systemic reinforcement, neutrophils respond swiftly to pathogen- and

damage-associated molecular pattern molecules (PAMPs and DAMPs),

chemokines, cytokines and lipid mediators and are recruited to sites

of inflammation, alongside monocytes and other trafficking inflamma-

tory cells. Neutrophils are effective phagocytes, but their granular

contents have the ability to cause immense local damage. Figure 1

contains a non-exhaustive overview of the contents of neutrophil

granules and their substrates, as examples of the tissue damaging

potential of these cells. This is more fully reviewed elsewhere (Hughes

et al., 2019).

All of the immune facets described above are impacted by host

ageing (termed immunosenescence), impairing the ability to respond

as effectively to pathogens and also to tolerate benign inhalants. This

has been reviewed in detail elsewhere (Hughes et al., 2019), but three

examples are given, below.

The lung microbiota is known to change in composition with age.

Lower microbiome diversity and the presence of specific microbial

taxa are associated with ageing and decreased lung function in patho-

genic disease states. Ageing is associated with a reduction in the rela-

tive abundance of Prevotella, Veillonella and Leptotrichia and an

increase in Rothia and Lactobacillus, compared with healthy young

adults. In the same study, bacterial density was increased in healthy

older adults compared with healthy young adults. During pneumonic

events, these differences were exaggerated, with even greater

dysbiosis in older patients with CAP (de Steenhuijsen Piters

et al., 2016). The results mirror those of studies of the gut microbiome

(more easily accessible via stool samples compared with lung wash-

ings), where in older, frail adults, a decline in overall microbiome func-

tion was noted, with a significant loss in diversity (Rampelli

et al., 2013). There are known associations of microbiome dysbiosis

and ill-health, including a loss of tolerance, decreased resistance to

and reduced containment of potential pathogens, leading to infections

such as pneumonia.

While the production of anti-microbial peptides appears to be

preserved with age (such as cathelicidin and β-defensin-2)
(Castañeda-Delgado et al., 2013), many facets of the innate immune

cell response are altered with ageing. This has been reviewed else-

where in depth, but in brief, studies have shown that a dysfunction in

neutrophils, including inaccurate migration (Sapey et al., 2014, 2017,

F IGURE 1 Neutrophilic contents and
activity. Neutrophils have primary
(azurophilic), secondary (specific) and
tertiary (gelatinase) granules. The granular
contents highlighted are aimed at
antimicrobial activity but can cause tissue
damage (shown as actions), when released
extracellularly. This can lead to excessive
inflammation if uncontrolled. ECM,
extracellular matrix; MPO,
myeloperoxidase; NE, neutrophil elastase;
PR3, proteinase 3
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2019), reduced phagocytosis of bacteria and impairment in release of

neutrophil extracellular traps (NETs) with no reduction and potentially

even increased unstimulated ROS release (Hazeldine et al., 2014) in

elderly individuals. This dysfunction is again exaggerated in patients

with pulmonary infections and appears sustained, lasting at least

6 weeks after the insult (Sapey et al., 2017, 2019). The altered effec-

tor functions contribute to excessive inflammation and degranulation,

leading to bystander extracellular matrix (ECM) and cellular damage,

tissue remodelling and worsening pathology. This damage is especially

problematic in the lungs. The elastin and collagen fibre structure of

the lung are vital for lung compliance. The elastic fibre is a complex

structure that contains at least two morphologically distinguishable

components: amorphous elastin and microfibrils. Previous studies

have conclusively shown that elastin degradation by leukocyte pro-

teinases is a key and irreversible step in the pathogenesis of COPD.

Lung cells cannot repair elastic fibres damaged by elastin degradation

(Shifren & Mecham, 2006), and this leads to permanently com-

promised lung function as elastic tissue is replaced with non-elastic,

scar formation.

The adaptive immune system is also compromised in ageing. The

relative number of CD8+ T cells decreases with age without a

corresponding change in CD4+ T cells; there is also a very pro-

nounced age-dependent loss of CD45RA+ naïve T cells and dys-

regulation of T-cell/B-cell interactions (Lazuardi et al., 2005). This

supports the hypothesis that older people are less able to respond to

new pathogens or mount an effective response to pathogens faced

before. Further, regulatory T cell function may be impaired in the

elderly, reducing immune tolerance and impairing the containment of

inflammation.

5 | WHY DO THE LUNGS AGE AND WHAT
IS THE EVIDENCE FOR THE HALLMARKS OF
AGEING IN LUNG DISEASE?

Certain changes characterise tissue ageing, and these are referred to

as the hallmarks of ageing. They include genomic instability, telomere

attrition, epigenetic alterations, loss of proteostasis, deregulated

nutrient-sensing, mitochondrial dysfunction, cellular senescence (dis-

cussed above in brief), stem cell exhaustion and altered intercellular

communication (L�opez-Otín et al., 2013). A 10th extrinsic hallmark,

dysregulation of ECM, has also been described in lung ageing due to

the impact of the inability to replace damaged elastin fibres (Meiners

et al., 2015). These hallmarks, though distinct, are interconnected and

arise over time as a result of exposure to sources of damage that ulti-

mately result in loss of cellular function and dysregulated tissue

homeostasis (Figure 2). Although an emerging field, there is evidence

of most of these processes in lung diseases, which most commonly

affect the elderly.

F IGURE 2 The inter-related hallmarks of ageing. Diagrammatic representation of the connection between the hallmarks of ageing that starts
with damage to the DNA that can translate to intracellular modifications that affect DNA replication and transcription as well as RNA translation
and post-translation modification of proteins. Cellular damage results in dysfunction and altered phenotype, which is represented by the
hallmarks outside the cell
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1. Genomic instability

Genomic instability is defined as decline in the DNA repair process in

response to DNA damage. In murine and human lung tissue, DNA

damage accumulates with age (Birch et al., 2015; Lee et al., 1999),

indicating that genomic instability is an important feature of normal

lung ageing. DNA damage affects both nuclear and mitochondrial

DNA, as well as the nuclear architecture (L�opez-Otín et al., 2013).

DNA damage occurs through external stimuli such as infections

and environmental pollutants or endogenously through replication

errors, ROS-associated damage and spontaneous mutations (L�opez-

Otín et al., 2013; Thannickal et al., 2015). For example, Streptococcus

pneumoniae and influenza virus (both acute respiratory pathogens)

have been shown to induce DNA damage in epithelial cells both

in vitro and, indirectly, in vivo as determined by increases in γ histone

2AX (γH2AX), a marker of DNA damage (Li et al., 2015).

The mitophagy pathway, phosphatase and tensin homologue

(PTEN)-induced kinase 1 (PINK1)–parkin (PARK2), is important in the

removal of damaged mitochondrial DNA. Using murine, ex vivo and

lung cancer cell line models, deletion of PARK2 increased chromo-

somal instability, inflammation and tumour growth, suggesting that

genome instability is linked to chronic inflammation and lung cancer

(Lee et al., 2016). The E3 ubiquitin ligase, PARK2, is also implicated in

COPD, with reduced level shown in COPD lungs and an increase in

ROS-induced mitochondrial DNA damage seen in primary human

bronchial epithelial cells with reduced expression of PARK2 (Ito

et al., 2015).

Patients with non-small cell lung cancer (NSCLC) are also known

to have a high rate of DNA damage due to the limitation of their DNA

repair processes (Orlow et al., 2008). Transcriptomic analysis shows

that genes involved in DNA replication, cell cycle, mismatch repair and

p53 signalling pathway are up-regulated in lung cancer and other lung

diseases suggesting an overlap of DNA-associated cellular dysfunction

across the spectrum of lung disease (Otálora-Otálora et al., 2019).

2. Telomere attrition

Telomeres, through telomerase activity, protect the ends of linear

chromosomes thereby ensuring genomic stability and integrity. Telo-

mere attrition is the reduction in the length and function of telomeres

through sustained stress created by excessive DNA damage and repli-

cation. Most somatic cells do not express telomerase and are there-

fore susceptible to telomere shortening or damage (L�opez-Otín

et al., 2013).

With increasing age, and repeated chromosome replication, telo-

mere length is naturally shortened (Daniali et al., 2013). Advanced age

is associated with a higher frequency of cellular proliferative events,

and once telomeres have reached a critical length, p53-dependent cell

cycle arrest occurs (Saretzki et al., 1999). Telomere length varies from

tissue to tissue, with less proliferative tissues such as muscle and fat

having longer telomeres while highly proliferative tissues such as skin

cells having shorter telomeres (Daniali et al., 2013). In the lung, envi-

ronmental factors such as cigarette smoke, pollution and repeated

infections can increase oxidative stress and inflammation, which accel-

erates telomere shortening due to increased cellular proliferation and

DNA replication in response to damage (Daniali et al., 2013). Indeed,

in a recent systematic review of 19 articles assessing pollution and

telomere length in adults, both long-term and short-term exposure to

PM2.5 showed an inverse association with telomere length, demon-

strating the importance of air quality on lung senescence (Miri

et al., 2019).

In COPD, telomere shortening appears to be tissue dependent.

There are inconsistent reports of telomere shortening in homogenised

lung tissue (Birch et al., 2015; Everaerts et al., 2018), but telomeres do

appear shortened in circulating leukocytes of COPD patients com-

pared with healthy controls (Rutten et al., 2016; Savale et al., 2009).

There is an association between telomere length and declining lung

function (Rutten et al., 2016).

Short telomere length is also a feature of IPF, and while it is more

common in patients with genetic mutations in the telomerase genes

TERT and TERC, as seen in familial IPF, it can also occur sporadically in

individuals without mutations (Courtwright & El-Chemaly, 2019).

Alveolar epithelial type II cells (AECIIs) from non-fibrotic areas of

patients with sporadic IPF have been shown to have longer telomere

compared with fibrotic areas emphasising the association of telomere

attrition with fibrosis and the need to assess hallmarks of ageing in

specific tissue locations where damage is present (Snetselaar

et al., 2017).

3. Epigenetic alterations

Epigenetic alterations are changes in DNA modification processes—

DNA methylation, histone modification and chromatin remodelling—

that in turn alter DNA function (L�opez-Otín et al., 2013). Normal epi-

genetic modifications are important for the translational and transcrip-

tional function of DNA. When alterations in the epigenetic process

occur, it manifests as transcriptional noise, impairment in DNA repair,

irregularity in RNA processing and chromosomal instability (L�opez-

Otín et al., 2013). Signals that induce DNA damage such as oxidative

stress, infection and cigarette smoke can be a trigger for epigenetic

alterations in the lungs.

In COPD, evidence suggests that alteration in the DNA methyla-

tion process is a contributing factor to disease pathology. DNA meth-

ylation genes in COPD are differentially expressed compared with

patients without COPD (Vucic et al., 2014). Nuclear factor-E2-related

factor 2 (Nrf2) drives the expression of numerous cytoprotective

genes involved in xenobiotic metabolism, antioxidant responses and

anti-inflammatory responses. In COPD, alterations in DNA methyla-

tion of genes involved in the Nrf2-mediated oxidative stress response

pathway compromise the function of this pathway, enabling a more

sustained inflammatory response to ROS, thereby exposing COPD air-

ways to greater ROS-associated damage (Vucic et al., 2014).

Underlying genetic factors such as α-1 antitrypsin deficiency

(AATD), which predisposes to COPD but at a younger age and with

less/no cigarette smoke exposure, also contribute to epigenetic alter-

ations. AATD patients can be heterogeneous in the age of onset, rate
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of decline and clinical manifestation of COPD despite a similar under-

lying genetic mutation of the SERPINA1 gene and similar AAT levels

present (Sapey, 2020). Heterogeneity of CpG methylation between

individuals with AATD may contribute to the varied clinical manifesta-

tions of AATD, highlighting the role of epigenetics in disease progres-

sion (Wang, Marek, et al., 2019).

Emerging evidence points to histone modification playing a role

in the pathophysiology of IPF. Histone acetylation reduces the binding

of histone to DNA, which expands chromatin and promotes transcrip-

tion. Cell free nucleosomes associated with histone modification,

HMGB1, mH2A1.1, H3K9Ac and H3K27Ac were significantly lower

in IPF patients compared with healthy controls (Guiot et al., 2017).

4. Loss of proteostasis

Misfolded or unfolded proteins are normally refolded through

chaperone-mediated pathways or degraded in a process known as

proteostasis (L�opez-Otín et al., 2013). Loss of proteostasis is the accu-

mulation of misfolded proteins, often occurring as a result of tissue

stress, and is a major contributor to age-related lung disease seen with

age (L�opez-Otín et al., 2013).

AATD causes a genetically driven loss of proteostasis with an

accumulation of misfolded AAT in hepatocytes and macrophages,

leading to low levels of functional AAT and cellular damage

(Belchamber et al., 2020) due to endoplasmic reticulum (ER) stress

responses. Patients with cystic fibrosis (CF) have a genetic dysfunc-

tion in the cystic fibrosis transmembrane regulator (CFTR) protein,

leading to a decline in lung health, an increased susceptibility to infec-

tion, pancreatic dysfunction and infertility (Gibson et al., 2003). Pro-

tein misfolding of the cystic fibrosis transmembrane regulator results

in a build-up of intracellular chloride ions, which is thought to draw in

sodium ions and water down electrochemical and osmotic gradients,

thickening secretions (Gibson et al., 2003). Environmental stress caus-

ing loss of proteostasis can be due to heat shock, ER stress or oxida-

tive stress (L�opez-Otín et al., 2013), all of which can cause acute lung

injury by interfering with activity of heat shock proteins and the

unfolded protein response (UPR) (Yang et al., 2021). Impaired activity

of the UPR to restore homeostasis has been seen in IPF, and this

response is a possible target for development of therapies aimed at

reducing ER stress (Burman et al., 2018). For example, binding immu-

noglobulin protein (BiP) keeps the ER proteins of the UPR pathway,

protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), acti-

vating transcription factor 6 (ATF6) and inositol requiring enzyme 1α

(IRE1α) inactive, but there is evidence of increased expression of bind-

ing immunoglobulin protein, a marker of ER stress, in AECII of IPF

patients (Burman et al., 2018), suggesting activation of UPR pathway

due to ER stress. Crucially, ER stress in AECII appears to contribute to

development of fibrosis after lung injury (Burman et al., 2018).

5. Deregulated nutrient-sensing

Nutritional regulation of cell growth, metabolism and proliferation is a

central part of normal tissue function. Deregulated nutrient sensing is

seen in the elderly and can manifest in the form of altered metabolism

and/or increased inflammation.

The insulin and insulin-like growth factor 1 (IGF-1) pathway,

when deregulated, can signal overexpression of mammalian target of

rapamycin (mTOR) through the PI3K–Akt pathway, which in turn can

accelerate the ageing of cells (L�opez-Otín et al., 2013). Dietary restric-

tion has been shown to increase life span in several models with this

mechanism also evolutionarily conserved (Lang et al., 2019). In murine

models of lung disease, mice on restricted calorie diet were recently

shown to be protected from pulmonary injury and inflammation when

exposed to particulate matter (Li, Chen, et al., 2020). Targeting the

nutrient sensing mTOR pathway has been shown to reduce pulmo-

nary fibrosis in mice with evidence of a reduction in lung collagen

(characteristic of fibrosis) (Korfhagen et al., 2009), and in vitro a reduc-

tion in senescence-associated, pro-inflammatory markers in primary

endothelial and smooth muscle cells taken from COPD patients

(Houssaini et al., 2018).

The IGF/mTOR ageing pathway is linked to other pathways in

lung diseases. In COPD, increased ROS leads to hypermetabolism with

increased mTOR activation and reduced autophagy, via Akt inhibition

of forkhead box O3A (FOXO3A), further exacerbating senescence

and age-related disease progression (Mercado et al., 2015). The

heightened metabolism increases the demand for more energy further

exacerbating the ROS production and creating oxidative stress. The

activity of mTOR also plays a role in maintaining protein homeostasis,

perhaps through interaction with the UPR (discussed above) or regula-

tion of autophagy via forkhead box O3A. Crucially, mTOR is involved

in both pro-inflammatory and anti-inflammatory pathways. Activation

by IGF via PI3K/Akt activates the nuclear factor κ-light-chain-

enhancer of activated B cells (NF-κB) via mTOR resulting in release of

pro-inflammatory cytokines. Conversely, metformin is believed to

exert its anti-inflammatory properties via mTOR perhaps through

AMP-activated protein kinase (AMPK) (Mercado et al., 2015). This evi-

dence shows mTOR as a central regulator of metabolism, with impor-

tance in maintaining energy and protein homeostasis and regulation

of inflammation, confirming why it is a target of novel therapeutics as

discussed below.

6. Mitochondrial dysfunction

Mitochondrial dysfunction is the loss of mitochondrial homeostasis

that alters the energy creating activity of this organelle. The bioener-

getic function of mitochondria can reduce with age due to an accumu-

lation of mutations in mitochondrial DNA, defective mitophagy,

electron transport destabilisation and reduced mitochondria replen-

ishment (L�opez-Otín et al., 2013).

In response to ER stress and age, mitochondria in AECIIs were

shown to have altered respiration and bioenergetics and impaired

fission and fusion using murine and cellular models, with AECIIs

from IPF lungs also demonstrating an accumulation of dysfunctional

mitochondria (Bueno et al., 2015). Reduced expression of the

PINK1, a regulator of mitophagy and mitochondrial homeostasis,

was observed in IPF lungs and ER stressed mice with PINK
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deficiency showed a pro-fibrotic phenotype (Bueno et al., 2015).

Broadly, dysfunction in mitochondria can drive changes in metabo-

lism of lipids, glucose and other nutrients that can promote a

fibrotic phenotype in the lung (Bueno et al., 2020). Increased inflam-

mation as a result of mitochondrial response to increased ROS,

impaired mitophagy and reduced mitochondrial bioenergetics have

all been associated with other lung diseases such as COPD, viral

pneumonia and lung cancer (Ahmad et al., 2015; Belchamber

et al., 2019; Lupfer et al., 2013).

Mitochondria also play an important role in antioxidant defence

against ROS. Despite being a major source of ROS, mitochondria pos-

sess antioxidant defence mechanism that helps in maintaining oxida-

tive balance. Reviewed elsewhere (Białas et al., 2016), manganese

SOD is the main mitochondria antioxidant enzyme, and peroxide pro-

duced by this enzyme from ROS is degraded by catalase. Together

with the GSH system, manganese SOD and catalase are important in

maintaining lung oxidative homeostasis. Oxidative imbalance as a

result of mitochondria dysfunction contributes to the pathogenesis of

COPD (Białas et al., 2016).

7. Cellular senescence

Immunosenescence has been outlined previously. Cellular senescence

refers to the ageing of cells resulting in a deterioration and loss of

function. Measurement of senescence is complex and can be difficult

to study in vivo, especially in the lungs (Hamsanathan et al., 2019).

However, several markers have been used to assess senescence,

which generally include senescence-associated β-galactosidase,

inflammatory cytokines in the senescence-associated secretory phe-

notype (SASP) and regulators of cell cycle, cyclin-dependent kinase

inhibitors p16 and p21 (Hamsanathan et al., 2019; L�opez-Otín

et al., 2013).

Senescent markers have been reported in human lung fibroblasts

from IPF patients (�Alvarez et al., 2017), while Serpine-1 was shown to

increase senescence in AECII (Jiang et al., 2017). Cellular senescence

in lung fibroblasts, epithelial and endothelial cells by cigarette smoke

is known to contribute to COPD and COPD co-morbidities (Ahmad

et al., 2015) and cigarette smoke induces expression of p16 and p21

in a murine model of COPD (Rashid et al., 2018). In aged mice, high

lung expression of p16 increases adhesion of bacterial ligands and

increases susceptibility to pneumococcal pneumonia (Shivshankar

et al., 2011). Logically, the higher population of senescent cells in

older people may be a contributing factor to the increased susceptibil-

ity to the SARS-Cov-2.

8. Stem cell exhaustion

Stem cell exhaustion refers to depletion of the stem cell reserve due

to excessive proliferation and differentiation. In health, the adult lung

is relatively quiescent with a slow cell turnover. However, after insult,

injury or infection, the lung can rapidly respond, replenishing damaged

tissue using tissue-specific lung stem/progenitor cells with self-

renewal and differentiation potential (Volckaert & De Langhe, 2014).

Studies have shown that the differentiation potential of lung basal

stem cells decreases with ageing in human patients (Wang, Lu,

et al., 2019).

The FGF FGF10–FGFR2B signalling pathway has been shown to

help maintain basal cells and can promote differentiation of basal cells

to AECIIs, which is important for epithelial regeneration (Yuan

et al., 2019). In COPD, airway basal progenitor cells are depleted, have

reduced self-renewal and multipotentiality and mostly differentiated

to basal and mucus epithelial cells and less to ciliated cells when com-

pared with progenitor cells from non-COPD patients (Ghosh

et al., 2018). A lack of ciliated cells can impair mucociliary escalator

function in these patients, contributing to mucus retention and airway

plugging. Further, evidence from COPD patients describe that airway

progenitor variant clones contribute to the squamous and goblet cell

metaplasia seen in patients (Rao et al., 2020).

9. Altered intercellular communication

Disruption in immune and metabolic cell signalling pathways is a hall-

mark of ageing that can result in inflammation, senescence and neuro-

endocrine dysfunction (L�opez-Otín et al., 2013). It has been recently

demonstrated that inhibition of PI3K/Akt can reduce bacterial num-

bers and pro-inflammatory cytokines in secondary bacterial pneumo-

nia after an initial viral challenge in mice (Yang et al., 2019). Activation

of this pathway in COPD peripheral blood mononuclear cells (PBMCs)

has also been demonstrated where it contributes to corticosteroid

resistance (To et al., 2010). While PI3K inhibition has no effect on

phagocytosis of macrophages from COPD patients (Bewley

et al., 2016), up-regulation of PI3K, which negatively correlates with

phosphatase and tensin homologue (PTEN), increases the release of

pro-inflammatory cytokines (Yanagisawa et al., 2017), suggesting that

targeting this altered pathway is a potential target for treating age-

related lung disease. Interestingly, inhibition of mTOR in PBMCs from

COPD patients has shown promise in restoration of corticosteroid

sensitivity (Mitani et al., 2016). The NF-κB pathway is also a site of

altered cellular communication in lung disease that can lead to

increased inflammation.

10. ECM dysregulation

This hallmark of ageing has been proposed specifically for the lungs.

The ECM provides support to help maintain lung integrity and biome-

chanics. Growing evidence suggests that ECM dysregulation is an

important hallmark of lung ageing, mostly as a result of proteinase/

anti-proteinase imbalance (Meiners et al., 2015). This is exemplified in

AATD, where ECM degradation is a hallmark of the disease (Crossley

et al., 2019). ECM degradation is closely associated with proteinases,

and although neutrophil serine proteinases are the quintessential pro-

teinase for ECM degradation (Butler et al., 2018), others are impli-

cated. For example, the MMP inducer, CD147, is elevated in serum of

patients with COPD (Berg et al., 2018) and metalloproteinase ECM

degradation is seen in COPD with ECM fragments increased in COPD

lung (Bihlet et al., 2017).
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In IPF, high levels of circulating MMPs and tissue inhibitor of

MMPs (TIMPs) suggest high ECM turnover in these patients (Todd

et al., 2020). MMPs enhance the development of IPF through dys-

regulation of ECM homeostasis (Craig et al., 2015). Ongoing advances

in the study of ECM in vitro such as the use of decellularized or acellu-

lar lung scaffolds could provide valuable avenue towards use of ECM

components to reengineer and remodel damaged lung tissue clinically

(Wagner et al., 2014).

6 | THERAPEUTICS THAT TARGET THE
AGEING PROCESS FOR THE TREATMENT OF
LUNG DISEASE

Many therapies in lung diseases treat symptoms, by enhancing bro-

nchodilation or enabling more effective mucus clearance. Some condi-

tions, such as asthma and IPF, have disease-modifying drugs, but

these remain limited in scope and available to only a subset of

patients.

There has been increasing interest in the concept of multi-

ceuticals or using one treatment to target a central driver of pathology

that might be present across a number of disease processes. Drugs

that target the hallmarks of ageing might form such a therapeutic

strategy for lung disease and could be used across any lung (or other

organ) pathology, where they are present. There are a number of

approaches under investigation, with three areas described to provide

key examples, below.

6.1 | Senolytics and drugs impacting on epigenetic
changes

Targeting the senescence pathway in age-related disease is of signifi-

cant interest and the subject of ongoing therapeutic investigations.

Senolytics are drugs that target senescent cells. Ex vivo treatment of

fibrotic primary mouse AECIIs with the senolytic drugs dasatinib plus

quercetin (DQ) resulted in a reduction in expression of senescent

marker P16, an increase in apoptosis and reduction in expression of

SASP markers Mmp12, Serpine1 and Spp1 (Lehmann et al., 2017). An

open-label pilot study in 14 IPF patients showed DQ improved physi-

cal performance, but this needs to be confirmed in larger randomised

control clinical trials (Justice et al., 2019). However, it is promising that

DQ has been proven to be effective in reducing senescence burden in

a bleomycin mice model of IPF. This landmark study showed that

secretome of senescent fibroblasts, which were selectively killed by

DQ, was fibrogenic and that DQ-mediated removal of senescent cells

improved pulmonary function and physical health, although lung fibro-

sis was visibly unaltered (Schafer et al., 2017). Findings from a recent

open-label trial in patients with diabetic and chronic kidney disease

further demonstrate the promise of this drug combination, as it dem-

onstrated a reduction in senescence-associated markers and cells

after treatment with DQ (Hickson et al., 2019). Metformin, a drug

used for decades to improve diabetes control, has also been shown to

inhibit the SASP by interfering with inhibitor of NF-κB kinase (IKK)/

NF-κB activation (Moiseeva et al., 2013) and has been shown to exert

antifibrotic effects in the lung by inhibiting TGFβ1 action, suppressing

collagen formation and activating PPARγ signalling in lung fibroblasts

derived from IPF patients (Kheirollahi et al., 2019).

Targeting underlying epigenetic modifications can help reduce

senescence. In a murine bleomycin model of IPF, the inhibition of his-

tone deacetylase using suberoylanilide hydroxamic acid (SAHA)

(which has been approved for clinical use in cancer) induced apoptosis

of IPF-promoting myofibroblasts, an effect that was mediated, at least

in part, by up-regulation of the pro-apoptotic gene Bak and down-

regulation of the anti-apoptotic gene Bcl-xL (Sanders et al., 2014). In

the same study, suberoylanilide hydroxamic acid (SAHA)-treated mice

displayed increased lung function compared with the bleomycin-only

group (Sanders et al., 2014). Further evidence of epigenetic drugs as

novel therapeutics for lung disease has been extensively reviewed

(Comer et al., 2015). For instance, the expression of the miRNA miR-

17–92 cluster, important in homeostasis of lung epithelial cells, is

reduced in IPF lung tissue and fibroblasts with a corresponding

increase in expression of DNA methyl transferase 1 (DNMT-1)

(Dakhlallah et al., 2013). Treatment with 50-aza-20-deoxycytidine, a

demethylating agent, in murine bleomycin IPF model reduced fibrosis

and resulted in increased expression of miR-17–92 demonstrating

therapeutic potential (Dakhlallah et al., 2013).

In addition, histone deacytelases (HDAC) are dysregulated in

COPD and the use of quercetin and theophylline to up-regulate

HDAC has shown some success in both murine and clinical models

(Comer et al., 2015). In particular, it was demonstrated that corticoste-

roid resistance, which can limit the use of steroids as an anti-inflamma-

tory, in COPD patients was ameliorated by treatment with low-dose

theophylline by up-regulating HDAC2 activity via inhibition of PI3K δ

(To et al., 2010). This suggests that targeting HDAC2 up-regulation

can be a useful strategy for COPD patients, especially in patients with

steroid resistance where long-term use can be detrimental through

physical weight gain and excessive suppression of the immune system.

6.2 | Metabolism and inflammation

Therapies targeting metabolism focus on the mTOR pathway due to

its central role in metabolism. Evidence from studies in mice and clini-

cal trials has demonstrated that use of rapamycin, an inhibitor of

mTOR, can alleviate the progression of pulmonary fibrosis and the

severity of pneumonia (Houssaini et al., 2018; Korfhagen et al., 2009).

The use of rapamycin as an adjuvant therapy with corticosteroids sig-

nificantly improved PaO2/FiO2 and lessened the requirement for ven-

tilator support in patients with influenza virus-induced severe

pneumonia and acute respiratory failure (Wang et al., 2014). Similar

results were obtained in mice showing a reduction in lung injury and

viral titres as well as reduced NLRP3 inflammasome activation via

inhibition of the mTOR pathway in mice receiving adjuvant therapy

with rapamycin and antiviral drugs (Jia et al., 2018). Upstream of

mTOR, inhibition of PI3K can improve neutrophil migration in elderly
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patients (Sapey et al., 2014). Large randomised clinical trials targeting

this pathway in treatment of age-related lung disease would be very

useful in providing definitive evidence of their efficacy.

Both steroids and non-steroids anti-inflammatory drugs are used

to reduce lung inflammation. Notably, dexamethasone was the first

drug proven effective at reducing mortality of severe COVID-19

(Horby et al., 2021), with other drugs targeting inflammation now

proven to be effective (such as tocilizumab and remdesivir) and many

more under investigation. Our recent study of elderly patients with

CAP and sepsis demonstrated that using simvastatin as adjuvant ther-

apy improved neutrophil function (chemotaxis and NETosis) and

reduced neutrophil elastase in circulation while improving clinical end-

points such as hospital free mortality and SOFA scores (Greenwood

et al., 2014; Sapey et al., 2019).

Adjuvant therapy of steroids with PI3K δ inhibitors may also be a

useful strategy in treatment of COPD as discussed earlier (To

et al., 2010). PBMCs from COPD patients have also been demon-

strated to show improved sensitivity to dexamethasone after treat-

ment with rapamycin (Mitani et al., 2016). The use of steroids with

adjuvant therapy may prove useful in the elderly as steroid use in this

patient group requires caution due to side effects such as delirium,

confusion, agitation and the presence of other co-morbidities.

6.3 | Stem cells

Advanced therapies such as stem cells targeting regeneration and tis-

sue repair remain a subject of increasing research. In particular, in a

preclinical model of acute respiratory distress syndrome, mesenchy-

mal stem cells (MSCs) have been shown to reduce inflammation and

increase expression of alternate macrophage markers (Morrison

et al., 2017) that function in tissue repair and homeostasis. Sun

et al. (2018) reviewed mesenchymal stem cells in COPD, with some

evidence of efficacy in reducing inflammation in preclinical models of

COPD; however, clinical trials are yet to show similar efficacy,

although they have been proven safe in clinical studies. Mesenchymal

cell therapy is expensive, has limited availability and may not form a

treatment that can be provided at scale to many individuals with a

chronic illness on a repeated basis. However, if the application of stem

cells can reverse organ damage or stop further damage following a

single or limited number of cycles of therapy, there is great potential

for its use.

7 | CONCLUDING REMARKS

Our population is ageing and there is a pressing need to ensure old

age is associated with good health, not only for the individual but also

for society, to support economies and ensure healthcare and social

care services are sustainable and resilient. Age is associated with

multi-morbidity and many of these conditions are driven by the hall-

marks of ageing. The lungs appear particularly prone to age-associated

tissue damage leading to dysfunction, and lung diseases are common

with advancing age. Traditional management of chronic lung diseases

aim for symptom management with a small number of disease-

modifying drugs for which there is limited access for specific groups

of individuals. Treatments for acute lung infections, such as antibi-

otics, are not always effective in the elderly. More therapeutic options

are urgently needed to reduce both mortality and morbidity and pre-

serve lung function.

A new way of tackling these conditions may be to focus on

shared underlying mechanisms. Here, one therapy might address a

number of pathological outputs potentially within the same disease,

the same organ and maybe across damaged organs within the host.

The hallmarks of ageing have been described in many age-related ill-

nesses including lung diseases. These result in immunesenescence,

dysfunctional metabolism and excessive inflammation, all of which

have been linked to lung damage. There is already some evidence that

targeting ageing can impact positively on aspects of lung disease, with

preclinical and early phase clinical studies demonstrating clinical bene-

fit. There are a suite of clinical therapies (both novel and repurposed)

being investigated within this field. Should these be successful, it is

likely that drugs targeting ageing will improve multi-morbidity

and increase the percentage of people who experience healthy

ageing. With lung disease increasing globally, targeting ageing path-

ways to reduce the burden of age-related lung disease may offer ther-

apeutic hope.

7.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, and

are permanently archived in the Concise Guide to PHARMACOLOGY

2021/22 (Alexander, Christopoulos, et al., 2021; Alexander, Cidlowski,

et al., 2021; Alexander, Fabbro, et al., 2021a, 2021b; Alexander, Kelly,

et al., 2021; Alexander, Mathie, et al., 2021).
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