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Abstract. In 2016, Galbraith et al. presented an adaptive attack on
the SIDH key exchange protocol. In SIKE, one applies a variant of the
Fujisaki-Okamoto transform to force Bob to reveal his encryption key to
Alice, which Alice then uses to re-encrypt Bob’s ciphertext and verify its
validity. Therefore, Bob can not reuse his encryption keys. There have
been two other proposed countermeasures enabling static-static private
keys: k-SIDH and its variant by Jao and Urbanik. These countermeasures
are relatively expensive since they consist in running multiple parallel
instances of SIDH.
In this paper, firstly, we propose a new countermeasure to the GPST
adaptive attack on SIDH. Our countermeasure does not require key dis-
closure as in SIKE, nor multiple parallel instances as in k-SIDH. We
translate our countermeasure into a key validation method for SIDH-
type schemes. Secondly, we use our key validation to design HealSIDH,
an efficient SIDH-type static-static key interactive exchange protocol.
Thirdly, we derive a PKE scheme SHealS using HealSIDH. SHealS uses
larger primes compared to SIKE, has larger keys and ciphertexts, but
only 4 isogenies are computed in a full execution of the scheme, as op-
posed to 5 isogenies in SIKE. We prove that SHealS is IND-CPA secure
relying on a new assumption we introduce and we conjecture its IND-
CCA security. We suggest HealS, a variant of SHealS using a smaller
prime, providing smaller keys and ciphertexts.
As a result, HealSIDH is a practically efficient SIDH based (interac-
tive) key exchange incorporating a ”direct” countermeasure to the GPST
adaptive attack.

Keywords: Post-quantum cryptography · SIDH · SIKE · adaptive at-
tacks · HealSIDH · SHealS · HealS.

1 Introduction

The general isogeny computational problem is the following: given two isoge-
nous elliptic curves E and E′, compute an isogeny from E to E′. This hard
problem was used by J. M. Couveignes [8], Rostovtsev and Stolbunov [28] to
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design a key exchange protocol using ordinary isogenies, and by Charles, Goren
and Lauter [5] to design a cryptographic hash function using supersingular isoge-
nies. The CRS (Couveignes-Rostovtsev-Stolbunov) key exchange scheme is less
practical in general and is vulnerable to a sub-exponential quantum attack [6].

In 2011, Jao and De Feo proposed SIDH [21] that uses isogenies of supersingu-
lar elliptic curves. SIDH is efficient and it is not vulnerable to the sub-exponential
quantum attack presented in [6]. Nevertheless, a recent paper by Kutas et al. [22]
proves that hidden-shift like attacks apply to variants of SIDH with consider-
ably overstretched parameters. The isogeny computational problem underlying
the security of SIDH is believed to be hard to break, even when using a quantum
computer. SIKE [20] (which is the state of art implementation of SIDH [21,13]) is
the only isogeny-based Key Encapsulation Mechanism (KEM) submitted to the
NIST post-quantum standardization process. Even though SIKE is not the most
efficient candidate among KEMs in this competition, SIKE provides the most
compact keys and ciphertexts. This has certainly contributed to its selection for
the third round of the competition as an alternate candidate [25].

Contrarily to the ordinary case where isogenies commute, supersingular iso-
genies do not commute in general. In order to solve this issue in SIDH, the images
of some well-chosen torsion points through the secret isogeny are computed and
included in the public keys.

In 2016, Galbraith et al. [18] exploited this supplementary information to
develop adaptive attacks on SIDH when one party has a static secret key. The
main idea of the attack is that Bob replaces the images of the torsion points
in his public key by malicious ones and obtains some information on Alice’s
static secret when looking at the obtained shared secret. Repeating this process
a polynomial number of times, Bob totally recovers Alice’s private key.

In SIKE, the attack is avoided by applying a variant [19] of the Fujisaki-
Okamoto transform [16]. This transform forces Bob to reveal his encryption key
to Alice. Two countermeasures enabling static-static key exchange have been
proposed: k-SIDH [1] and a variant by Jao and Urbanik [31]. These schemes
essentially consist in running k2 parallel instances of SIDH with each party
having k SIDH private keys, hence each party computes about k2 isogenies.
In [11] and in [2], it is shown that variants of the adaptive attacks still apply to
these schemes, and that the attacks are exponential in k in general. Hence one
needs a relatively large k, say k = 46 as suggested by [11], for these schemes to be
secure. For k = 46, about 462 = 2116 isogenies are computed in k-SIDH, hence
the scheme is arguably not practical. To the best of our knowledge, there exists
no practically efficient method to counter the adaptive attack on SIDH without
revealing the encryption key and using re-encryption to verify the validity of the
ciphertext.

CSIDH [4] is the perfect post-quantum alternative to the classical Diffie-
Hellman key exchange due to its analogy to the later primitive. Meanwhile,
its quantum security has been considerably degraded recently [26], [3], [7] and
remains to be precisely estimated. CSIDH was originally instantiated with a 512
bit prime, but due to analysis of its actual quantum security, in [7] it is suggested
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to use primes of up to 4000 bits to achieve the NIST level 1 security. The increase
of the prime size impacts the efficiency of the scheme.

Contributions. The contributions of this paper are fourfold.

Firstly, we propose a new countermeasure to the GPST adaptive attack on
SIDH. The main idea is that Bob enable Alice to verify that his torsion points
were honestly generated. Consider an SIDH setting, let φA : E0 → EA and
φ′A : EB → EBA be Alice’s secret isogenies, φB : E0 → EB and φ′B : EA → EAB
be Bob’s secret isogenies in an SIDH instance. In Section 3, we prove that if
Bob publishes the action of φB on E0[`2eAA ] and that of φ′B on EA[`2eAA ], then
Alice can exploit this information to verify Bob’s torsion points correctness.
Working with SIDH parameters where p = `eAA `eBB f , the torsion points of order
`2eAA and `2eBB would be defined over extensions of Fp2 of degree roughly `eAA and

`eBB respectively. We hence increase the field characteristic to p = `2eAA `2eBB f − 1
(where f is a small co-factor) such that the later torsion groups are defined over
Fp2 . Also, we set the starting curve E0 to be a random supersingular curve with
unknown endomorphism ring to avoid improved torsion points attacks. We hence
obtain an efficient key validation method which does not require key disclosure
and re-encryption, as it is the case in SIKE.

Secondly, we incorporate this key validation method into a key exchange
scheme: HealSIDH (Healed SIDH). Let p = `2eAA `2eBB f − 1 as required by the
countermeasure, let φA : E0 → EA, φ′A : EB → EBA, and φB : E0 → EB ,
φ′B : EA → EAB be Alice’s and Bob’ secret isogenies respectively. Alice reveals
the action of φA on E0[`2eBB ] and that of φ′A on EB [`2eBB ]. Analogously, Bob
reveals the action of φB on E0[`2eAA ] and that of φ′B on EA[`2eAA ]. Revealing the
action of φ′A and φ′B on torsion points implies revealing points on the shared
curve EAB = EBA. To avoid this, each party canonically generates a basis of
the corresponding subgroup and reveals the coordinates of the points in this
canonical basis. HealSIDH is an order of magnitude more efficient compared
to k-SIDH (the existing countermeasure to the adaptive attack on SIDH) since
only four isogenies are computed in HealSIDH while more than k2 (with 46 ≤
k) of them are computed in k-SIDH. The security of HealSIDH against key
recovery relies on Problem 4 which is a variant of the Supersingular Isogeny
Computational Diffie-Hellman Problem (SSICDHP), Problem 1.

Thirdly, we design a PKE scheme using HealSIDH. Our PKE scheme is
named SHealS: Static-static key Healed SIKE. The idea in SHealS is to use the
points to encrypt the plaintext, in such a way that the receiver solves a discrete
logarithm problem in a group of smooth order to recover the plaintext. A similar
idea is used in SiGamal [24] and SimS [15], but our design is different. SHealS
uses primes two times larger (in terms of bit size) compared to SIKE primes,
has larger keys and ciphertexts, but only 4 isogenies are computed and evaluated
on torsion points in a full execution (KeyGeneration + Encryption + Decryption)
of the scheme, as opposed to 5 isogenies in SIKE, among which 3 isogenies are
evaluated on torsion points while the remaining two are not. For this reason, we
believe SHealS efficiency is comparable to that of SIKE, but only an optimised
implementation of SHealS would help evaluate the exact timings and do a more
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precise efficiency comparison. The main advantage of SHealS over SIKE is the
reuse of encryption keys. In fact, since there is no key disclosure, the encryption
key can remain static for a given user. Moreover, this user can use this same key
as a private key in the SHealS PKE setting. We prove that SHealS is IND-CPA
secure relying on one new assumption we introduce. Despite not being able to
come up with a succinct proof of IND-CCA security, we conjecture that SHealS
is IND-CCA secure and provide arguments to support our conjecture.

Lastly, we suggest HealS, a variant of SHealS using a smaller prime, providing
the same security level, smaller keys and ciphertexts. The size of the prime used
in HealS is only 1.5 times that of the prime used in SIKE. This yields a speed-
up over SHealS, smaller keys and ciphertexts; hence reducing the efficiency and
key sizes gap between SHealS and SIKE. The drawback of HealS compared to
SHealS is that private keys can not be used as encryption keys.

As a result, beside CSIDH whose quantum security remains to be precisely
estimated, HealSIDH is a new efficient post-quantum key exchange scheme en-
abling static-static key setting. Nevertheless, note that HealSIDH is interactive
while CSIDH is not. We believe the fact that there is no key disclosure in SHealS
and HealS makes of them promising PKE schemes.

Related work. While this work was under submission, an SIDH Proof of Isogeny
Knowledge mechanism [12] was published online by De Feo et al. This mecha-
nism enables each party in an SIDH instance to prove that his public key was
honestly generated. The proof attached to the public key is obtained by perform-
ing an SIDH-type signature on the public key, which proves the knowledge of
the secret isogeny and the correctness of the torsion points. For this reason, the
proof is relatively large (O(λ2)), computing and verifying the proof are relatively
time consuming compared to our schemes. Nevertheless, their Proof of Isogeny
Knowledge enables the design of an SIDH-based non interactive key exchange
while our key exchange HealSIDH is interactive.

Outline. The remaining of this paper is organized as follows: in Section 2, we
recall some generalities about PKE schemes, elliptic curves and isogenies. We
briefly present SIDH, the improved torsion points attacks and the GPST adap-
tive attack. We end Section 2 by describing existing countermeasures to the
GPST adaptive attacks. Section 3 is devoted to our countermeasure. In Sec-
tion 4 we present HealSIDH key exchange and in Section 5 we construct the
SHealS PKE scheme. In Section 6, we provide a concrete instantiation of Heal-
SIDH and SHealS, and provide a high level comparison to k-SIDH and SIKE
respectively. In Section 7, we present HealS and in Section 8 we conclude the
paper.

2 Preliminaries

2.1 Public key encryption

We recall standard security definitions related to public key encryption.
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Definition 1 (PKE). A Public Key Encryption scheme Pλ is a triple of PPT
algorithms (KeyGeneration, Encryption, Decryption) that satisfy the following.

1. Given a security parameter λ as input, the key generation algorithm
KeyGeneration outputs a public key pk, a private key sk and a plaintext space
M.

2. Given a plaintext µ ∈ M and a public key pk as inputs, the encryption
algorithm Encryption outputs a ciphertext c = Encryptionpk(µ).

3. Given a ciphertext c and sk as inputs, the decryption algorithm Decryption
outputs a plain text = Decryptionsk(c).

Definition 2 (Correctness). A PKE scheme Pλ is correct if for any pair of
keys (pk, sk) and for every plaintext µ ∈M,

Decryptionsk
(
Encryptionpk(µ)

)
= µ.

Definition 3 (IND-CPA secure). A PKE scheme Pλ is IND-CPA secure if
for every PPT adversary A,

Pr

[
b = b∗

∣∣∣∣∣ (pk, sk)← KeyGeneration(λ), µ0, µ1 ←M,

b
$←− {0, 1}, c← Encryptionpk(µb), b

∗ ← A(pk, c)

]
=

1

2
+ negl(λ).

Definition 4 (IND-CCA secure). A PKE scheme Pλ is IND-CCA secure if
for every PPT adversary A,

Pr

[
b = b∗

∣∣∣∣∣ (pk, sk)← KeyGeneration(λ), µ0, µ1 ← AO(·)(pk,M),

b
$←− {0, 1}, c← Encryptionpk(µb), b

∗ ← AO(·)(pk, c)

]
=

1

2
+ negl(λ),

where O(·) is a decryption oracle that when given a ciphertext c′ 6= c, outputs
Decryptionsk(c′) or ⊥ if the ciphertext c′ is invalid.

2.2 Elliptic curves and isogenies

An elliptic curve is a rational smooth curve of genus one with a distinguished
point at infinity. Elliptic curves can be seen as commutative groups with respect
to a group addition having the point at infinity as neutral element. When an
elliptic curve E is defined over a finite field Fq, the set of Fq-rational points
E(Fq) of E is a subgroup of E. For every integer N coprime with q, the N -
torsion subgroup E[N ] of E is isomorphic to ZN ⊕ ZN .

An isogeny from E to E′ is a rational map from E to E′ which is also a
group morphism. The kernel of an isogeny is always finite and entirely defines
the isogeny up to powers of the Frobenius. Given a finite subgroup G of E, there
exists a Frobenius free isogeny of domain E having kernel G, called a separable
isogeny. Its degree is equal to the size of its kernel. The co-domain of this isogeny
is denoted by E/G. The isogeny and the co-domain E/G can be computed from
the knowledge of the kernel using Vélu’s formulas [29] whose efficiency depends
on the smoothness of the isogeny degree.
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An endomorphism of an elliptic curve E is an isogeny from E to E. The
group structure of E is closely related to that of its endomorphism ring. When
E is defined over a finite field, the endomorphism ring of E is either an order in
a quadratic field, in which case we say E is ordinary, or a maximal order in a
quaternion algebra in which case we say E is supersingular. The generic isogeny
problem is harder to solve for supersingular curves (for which the best attacks
are exponential) than ordinary curves (for which there exists a sub-exponential
attack [6]). SIDH is based on supersingular isogenies.

2.3 SIDH

The SIDH scheme is defined as follows.

Setup. Let p = `eAA `eBB − 1 be a prime such that `eAA ≈ `eBB ≈ √p. Let E0 be
a supersingular curve defined over Fp2 . Set E0[`eAA ] = 〈PA, QA〉 and E0[`eBB ] =
〈PB , QB〉. The public parameters are E0, p, `A, `B , eA, eB , PA, QA, PB , QB .

KeyGeneration. The secret key skA of Alice is a uniformly random integer α sam-
pled from Z`eAA . Compute the cyclic isogeny φA : E0 → EA = E0/ 〈PA + [α]QA〉.
The public key of Alice is the tuple pkA = (EA, φA(PB), φA(QB)). Analo-
gously, Bob’s secret key skB is a uniformly random integer β sampled from Z`eBB
and his public key is pkB = (EB , φB(PA), φB(QA)) where φB : E0 → EB =
E0/ 〈PB + [β]QB〉.

KeyExchange. Upon receiving (EB , Ra, Sa), Alice checks that

e(Ra, Sa) = e(PA, QA)`
eB
B , if not she aborts. She computes the isogeny φ′A :

EB → EBA = EB/ 〈Ra + [α]Sa〉. Her shared key is j(EBA). Similarly, upon re-

ceiving (EA, Rb, Sb), Bob checks that e(Rb, Sb) = e(PB , QB)`
eA
A , if not he aborts.

He computes the isogeny φ′B : EA → EAB = EA/ 〈Rb + [β]Sb〉. His shared key
is j(EAB).

The correctness of the key exchange follows from the fact that

EA/ 〈φA(PB) + [β]φA(QB)〉 ' E0/ 〈PA + [α]QA, PB + [β]QB〉 ' EB/ 〈φB(PA) + [α]φB(QA)〉 .

The security of the SIDH key exchange protocol against shared key recov-
ery relies on Problem 1. Furthermore, Problem 2 states that it is difficult to
distinguish the shared secret from a random supersingular elliptic curve.

Problem 1 (Supersingular Isogeny Computational Diffie-Hellman). Given E0,
PA, QA, PB , QB , EA, φA(PB), φA(QB), EB , φB(PA), φB(QA) (defined as in
SIDH), compute EAB .

Problem 2 (Supersingular Isogeny Decisional Diffie-Hellman). Given E0, PA,
QA, PB , QB , EA, φA(PB), φA(QB), EB , φB(PA), φB(QA) (defined as in SIDH)
and a random supersingular curve E, distinguish between E = EAB and E 6=
EAB .
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An IND-CPA secure PKE from SIDH. One canonically derives a PKE
schemes from SIDH as follows. Let H : Fp2 → {0, 1}n be a cryptographic hash
function.

KeyGeneration. Alice generates her key pair exactly as in SIDH.

Encryption. Let m be a plaintext. Bob generates a random integer β ∈ Z`eBB and

executes the SIDH key exchange using Alice’s public key to obtain
c0 = (EB , φB(PA), φB(QA)) and jAB = j(EAB). The returned ciphertext is
(c0, c1 = H(jAB)⊕m).

Decryption. Given a ciphertext (c0, c1), Alice completes the underlying SIDH key
exchange to obtain jBA = j(EBA) and recovers the plaintext m = c1⊕H(jBA).

The above scheme is IND-CPA secure assuming Problem 2 is hard [13], but
it is not IND-CCA since it is vulnerable to the GPST adaptive attack [18] that
we present later in Section 2.5.

2.4 Passive torsion point attacks on SIDH

The direct key recovery attack (attacking one party’s secret key) in SIDH trans-
lates into solving the following Computational Supersingular Isogeny Problem.

Problem 3. Let A and B be two integers such that gcd(A,B) = 1. Let E0 be
a supersingular elliptic curve defined over Fp2 . Set E0[B] = {P,Q} and let
φ : E0 → EA be a random isogeny of degree A. Given E0, EA, P , Q, φ(P ) and
φ(Q), compute φ.

The difference between Problem 3 and the general isogeny problem is the fact
that the action of φ on the group E0[B] is revealed. In 2017, Petit [27] exploited
these torsion point images to design an algorithm that solves Problem 3 for a
certain choice of unbalanced (A� B) parameters when the endomorphism ring
of the starting curve E0 is public. Petit’s attack has recently been considerably
improved by de Quehen et al. [10]. We refer to [10] for more details.

To counter the attack in unbalanced SIDH instances, one sets the starting
curve E0 to be a random supersingular curve with unknown endomorphism ring.
We don’t know how to generate random supersingular elliptic curves for which
the endomorphism ring is unknown (also to the party generating the curve). This
is considered as an open problem [9]. Hence one generally relies on a trusted
party to generate a random curve which is then used as a public parameter of
the scheme. This will be the case for the schemes presented in this paper.

2.5 GPST adaptive attack

In SIDH [13] one does a pairing-based check on the torsion points φB(PA) and
φB(QA) returned by a potentially malicious Bob. Let E be a supersingular el-
liptic curve, let N be an integer and let µN be the group of N -roots of unity.



8 T. B. Fouotsa and C. Petit

Let eN : E[N ] × E[N ] → µN be the Weil pairing [17]. Let φ : E → E′ be an
isogeny of degree M , then for P,Q ∈ E[N ],

eN (φ(P ), φ(Q)) = eN (P,Q)M

where the first pairing is computed on E′ and the second one on E.
In SIDH, given (EB , R, S) returned by Bob as public key, Alice checks if

e`eAA
(R,S) = e`eAA

(PA, QA)`
eB
B .

As we will see below, this verification does not assure that the points R,S were
honestly generated. More precisely, the pairing verification does not capture the
GPST adaptive attack.

The GPST adaptive attack. The main idea of the Galbraith et al. adaptive
attack [18] is that if Bob manipulates the torsion points φB(PA) and φB(QA)
conveniently, then he can get some information about Alice’s private key α given
that he knows if the secret curve computed by Alice is equal to EAB or not. Hence
in the attack scenario, Bob needs to have access to the later information. This
access is provided to Bob through a key exchange oracle:

O(E,R, S,E′) which returns 1 if j(E′) = j(E/ 〈R+ [α]S〉) and 0 otherwise

If one supposes that `A = 2 and eA = n, then after each query, Bob recovers one
bit of

α = α0 + 21α1 + 22α2 + · · ·+ 2n−1αn−1.

The attack recovers the first n− 2 bits of α using n− 2 oracle queries, and it
recovers the two remaining bits by brute force. We refer to [18] for more details.

2.6 Existing countermeasures to the GPST adaptive attacks

The previous section has highlighted the need for a ”better” key validation
method for SIDH-type schemes. We now present SIKE and k-SIDH, that are
currently the two main countermeasures to the GPST attack on SIDH.

SIKE (Supersingular Isogeny Key Encapsulation). Our description is
more general compared to that submitted to the third round of the NIST com-
petition [20], and it does not include key compression features. In the following
scheme, G, H and F are hash functions and n is an integer, we refer to [20] for
more details.

Setup. As in SIDH.

KeyGeneration. Generate a secret key sk = α ∈ Z`eAA and a public key pk =

(EA, φA(PB), φA(QB)) as in SIDH. Sample a uniformly random integer s ∈
{0, 1}n and return (s, sk, pk).

Encapsulation. Sample a uniformly random integer m from {0, 1}n. Compute
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β = G(m||pk) ∈ Z`eBB and compute c0 = (EB , φB(PA), φB(QA)) and EAB as

in the SIDH, together with c1 = F (j(EAB)) ⊕m and K = H(m||(c0, c1)) and
return ((c0, c1),K).

Decapsulation. From (c0, c1), compute EBA as in SIDH and m′ = c1⊕F (j(EBA)).
Re-encrypt m′ to obtain c′0 = (E′B , ψB(PA), ψB(QA)). If c0 = c′0, return
K = H(m′||(c0, c1)), else return K = H(s||(c0, c1)).

In SIKE, the adaptive attacks are not applicable since during the decapsula-
tion, Alice recomputes Bob’s encryption key β′ = G(m′||pk) ∈ Z`eBB and checks if

the obtained key leads to the curve and torsion points sent by Bob, this enables
her to detect maliciously generated public keys. Therefore, the scheme requires
key disclosure to the recipient. This is a common drawback to all post-quantum
PKEs engaged in the NIST standardization process. In fact, as noticed in [1, §1],
these schemes use ephemeral keys or indirect validation techniques that would
expose one’s key in the static-static setting.

Other countermeasures to the GPST attack. As a countermeasure to the
GPST attack, Azarderakhsh et al. introduced k-SIDH [1]. In k-SIDH, Alice’s
private key is a tuple α = (α1, · · · , αk) ∈ (ZeA`A )k and Bob’s private key is a

tuple β = (β1, · · · , βk) ∈ (ZeB`B )k. Alice and Bob simultaneously run k2 SIDH

key exchange instances corresponding to the k2 couples of Alice and Bob’s SIDH
private keys (αi, βj), 1 ≤ i, j ≤ k. The shared secret is then obtained by applying
a key derivation function to the corresponding k2 SIDH shared secrets. The
scheme quickly becomes impractical as k grows.

In [31], Jao and Urbanik propose a variant of k-SIDH that they expected
to be more efficient. Their variant exploits non trivial automorphisms of the
starting curve E0 when this supersingular curve has j-invariant 0 or 1728 to
reduce the number k of SIDH instances in k-SIDH. For example, in the case
where the starting supersingular curve E0 has j-invariant 0, there exists a non
trivial automorphism η6 of E0 of order 6. Given a finite subgroup G ⊂ E0, the
curves E0/G, E0/η6(G) and E0/η

2
6(G), are isomorphic but it is not the case for

the isogenies E0 → E0/G, E0 → E0/η6(G) and E0 → E0/η
2
6(G). Hence when

performing a key exchange, these three isogenies will lead to three distinct SIDH
shared keys. Hence with α′ = (α1, · · · , αk′) ∈ (ZeA`A )k

′
and β′ = (β1, · · · , βk′) ∈

(ZeB`B )k
′
, Alice and Bob can derive 3k′2 SIDH shared secrets contrarily to k′2 for

k-SIDH.

In [11], Dobson et al. show that the GPST attack can be adapted to k-SIDH.
Nevertheless, the cost of the attack (number of queries to the key exchange
oracle) grows exponentially with k. Dobson et al.’s attack does not directly apply
to the Jao-Urbanik variant of k-SIDH. In [2], Basso et al. present an adaptation
of this attack to the Jao-Urbanik variant. Moreover, they prove that considering
their attack, for the same security level, k-SIDH is more efficient compared to
the Jao-Urbanik variant. From these two attacks, one concludes that for k-SIDH
and the Jao-Urbanik variant to be secure against adaptive attacks, one needs
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k to be relatively large ([11] suggests k = 46 for about 128 bits of security),
consequently the schemes become less practical.

To sum up, as countermeasures to the GPST adaptive attack, SIKE imposes
key disclosure while k-SIDH comes with a considerable efficiency drawback. We
address this in the next section by providing a new countermeasure which is
more efficient compared to k-SIDH and without key disclosure.

3 A new countermeasure to the GPST adaptive attack

In this section, we describe a mechanism which enables Alice, when using a
static key, to decide on the correctness of the torsion points returned by BoB.
We translate this point correctness mechanism into a new key validation method.

3.1 Overview

In our scenario, like in SIKE, we suppose that the initiator of the communication
(Bob) has to prove the correctness of his torsion points to the other party (Alice).
Let E0, PA, QA, PB , QB , EA, φA(PB), φA(PB) be the public parameters and
Alice’s public key in an SIDH instance. For simplicity, we suppose that the
degree of Alice’s isogeny is 2a and that the degree of Bob’s isogeny is 3b for
some integers a and b. In SIDH, Bob computes a cyclic isogeny φB : E0 → EB
of degree 3b together with the images φB(PA) and φB(QA) of PA and QA.
We say that the torsion points R,S ∈ EB [2a] returned by Bob are correct if
R = [λ]φB(PA) and S = [λ]φB(QA) for some λ ∈ Z/2aZ×. We establish a
Points Correctness Verification (PCV) mechanism for Alice to determine if the
torsion points computed by Bob are correct.

We start with an observation of Leonardi [23]: ”in an honest SIDH, φ′A◦φB =

φ′B ◦ φA”. Composing by φ̂′A on the left, we get

[2a] ◦ φB = φ̂′A ◦ φ
′
B ◦ φA. (1)

Let P2, Q2 ∈ E0[22a] be points such that [2a]P2 = PA and [2a]Q2 = QA. Then{
φ′A ◦ φB(P2) = φ′B ◦ φA(P2)
φ′A ◦ φB(Q2) = φ′B ◦ φA(Q2),

(2)

hence {
φB(PA) = φB([2a]P2) = φ̂′A ◦ φ′B ◦ φA(P2)

φB(QA) = φB([2a]Q2) = φ̂′A ◦ φ′B ◦ φA(Q2)
(3)

Equation 3 suggests that if Alice can successfully check the equalities in Equa-
tion 2, then she can verify if Bob’s torsion points are correct.

The idea of the PCV mechanism is that instead of revealing the action of
φB : E0 → EB on the 2a-torsion sub-group of E0, Bob reveals the action of φB
on the 22a-torsion sub-group of E0 and the action of φ′B : EA → EAB on the
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22a-torsion sub-group of EA. In our PCV mechanism, Bob’s public key (when
honestly computed) is (EB , φB(P2), φB(Q2)). The action of φ′B : EA → EAB on
the 22a-torsion sub-group of EA is provided by canonically generating a new 22a-
torsion basis {RA, SA} of EA and revealing Rab = φ′B(RA) and Sab = φ′B(SA).

At this point, Bob can be malicious in the following three ways:

1. honestly compute Ra = φB(P2) and Sa = φB(Q2), and maliciously compute
Rab = φ′B(RA) and Sab = φ′B(SA);

2. maliciously compute Ra = φB(P2) and Sa = φB(Q2), and honestly compute
Rab = φ′B(RA) and Sab = φ′B(SA);

3. maliciously compute Ra = φB(P2) and Sa = φB(Q2), and maliciously com-
pute Rab = φ′B(RA) and Sab = φ′B(SA).

In the first two cases, we say that Bob is partially point-malicious and in the
third case we say that Bob is doubly point-malicious.

Remark 1. We use the term point-malicious to highlight the fact that we focus
only on the correctness of the torsion points outputted by BoB, not on the
validity of the Bob’s entire public key. Hence we are supposing that φB and
φ′B are cyclic isogenies of degree 3b and only the torsion point were maliciously
evaluated.

When Bob is partially point-malicious, then either the right hand term or
the left hand term in Equation 2 is correctly computed by Alice. Hence the
partial point-maliciousness of Bob would be detected since the other term of the
equation would be different. Concretely, we have the following theorem.

Theorem 1. Let E0, PA, QA, PB, QB, EA, φA(PB), φA(PB) be the public pa-
rameters and Alice’s public key in an SIDH instance. Let P2, Q2 ∈ E0[22a] such
that [2a]P2 = PA and [2a]Q2 = QA. Let (EB , Ra, Sa) be Bob’s public key. More-
over, let {RA, SA} be a canonical basis of EA[22a] and let {Rab, Sab} be its image
through φ′B : EA → EAB outputted by Bob. Write φA(P2) = [e1]RA+[f1]SA and
φA(Q2) = [e2]RA+ [f2]SA. Let us suppose that Bob is eventually partially point-
malicious and let ψ′A : EB → EB/ 〈[2a]Ra + [α][2a]Sa〉 be the isogeny computed
by Alice.

If e22a(Ra, Sa) = e22a(P2, Q2)3
b

, [e1]Rab + [f1]Sab = ψ′A(Ra) and [e2]Rab +
[f2]Sab = ψ′A(Sa), then Bob’s torsion points are correct.

Proof. Noticing that [e1]Rab + [f1]Sab stands for φ′B ◦ φA(P2) and ψ′A(Ra) for
φ′A ◦ φB(P2), while [e2]Rab + [f2]Sab stands for φ′B ◦ φA(Q2) and ψ′A(Sa) for
φ′A ◦ φB(Q2), the theorem follows from the previous discussion. ut

Remark 2. The points φA(P2), φA(Q2) ∈ EA[22a] are secret (known only by
Alice). In fact their knowledge is equivalent to the knowledge of Alice’s secret
since [2a]P2 = PA and [2a]Q2 = QA.

For the third case where Bob is doubly point-malicious, we provide a more
involved mathematical proof in the next paragraph.
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3.2 The main theorem

In the previous section, we make use of points of order 22a or 32b. In SIDH
parameters where p = 2a3bf − 1, these points are defined over a large extension
field of degree roughly 2a ≈ 3b. To make our countermeasure efficient, we use
primes of the form p = 22a32bf − 1. Moreover, we evaluate isogenies of degree
2a on points of order 32b ≈ 22a. To avoid improved torsion points attacks or any
variant of it, we set the starting curve E0 to be a random supersingular curve
with unknown endomorphism ring. We hence obtain a key validation mechanism
which is summarized in Figure 1.

E0, P2, Q2,

PB , QB

EA, φA(PB), φA(QB)
φA(P2) = [e1]RA + [f1]SA
φA(Q2) = [e2]RA + [f2]SA

EB , Ra, Sa

EAB , Rab, Sab

EBA, ψ
′
A(Ra), ψ′A(Sa)

e22a(Ra, Sa)
?
= e22a(P2, Q2)3

b

ψ′A(Ra)
?
= [e1]Rab + [f1]Sab

ψ′A(Sa)
?
= [e2]Rab + [f2]Sab

Ra = φB(P2), Sa = φ′B(Q2)

Rab = φ′B(RA), Sab = φB(SA)

Honest Bob

Key validation

Valid key Invalid key

φA

φ′
B

φB

ψ′
A

Yes No

Fig. 1: Key validation mechanism for SIDH-type schemes. The curve E0 is a
random supersingular elliptic curve with unknown endomorphism ring defined
over Fp2 where p = 22a32bf − 1.

We prove the following Theorem.

Theorem 2. Let p = 22a32bf − 1 and let E0 be a random supersingular elliptic
curve with unknown endomorphism ring defined over Fp2 . Let E0, PA, QA, PB,
QB, EA, φA(PB), φA(PB) be the public parameters and Alice’s public key in an
SIDH instance. Let P2, Q2 ∈ E0[22a] such that [2a]P2 = PA and [2a]Q2 = QA.
Let (EB , Ra, Sa) be Bob’s public key. Moreover, let {RA, SA} be a canonical basis
of EA[22a] and let {Rab, Sab} be its image through φ′B : EA → EAB outputted
by Bob. Write φA(P2) = [e1]RA + [f1]SA and φA(Q2) = [e2]RA + [f2]SA. Let
ψ′A : EB → EB/ 〈[2a]Ra + [α][2a]Sa〉 be the second isogeny computed by Alice
during the key exchange.

If e22a(Ra, Sa) = e22a(P2, Q2)3
b

, [e1]Rab + [f1]Sab = ψ′A(Ra) and [e2]Rab +
[f2]Sab = ψ′A(Sa), then Bob’s torsion points are correct.
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Proof. Let us suppose that Bob is possibly doubly point-malicious, say∣∣∣∣∣∣∣∣
Ra = [x]φB(P2) + [y]φB(Q2)
Sa = [z]φB(P2) + [t]φB(Q2)
Rab = [x′]φ′B(RA) + [y′]φ′B(SA)
Sab = [z′]φ′B(RA) + [t′]φ′B(SA)

for some integers x, y, z, t, x′, y′, z′ and t′ modulo 22a.

Let us suppose that e22a(Ra, Sa) = e22a(P2, Q2)3
b

, [e1]Rab+[f1]Sab = φ′A(Ra)
and [e2]Rab + [f2]Sab = φ′A(Sa). We prove that x = t = x′ = t′ = ±1 and
y = z = y′ = z′ = 0, which implies that Bob’s torsion points are correct. Let

φ′A : EB → EBA = EB/ 〈φB(PA) + [α]φB(QA)〉 = EB/ 〈[2a]φB(P2) + [α][2a]φB(Q2)〉

be the isogeny that ought to be computed by Alice if Bob’s torsion points were
correct and let

ψ′A : EB → EB/ 〈[2a]Ra + [α][2a]Sa〉
be the isogeny effectively computed by Alice. We distinguish two cases.

Case 1: φ′A 6= ψ′A. Then EAB 6= EB/ 〈[2a]Ra + [α][2a]Sa〉 with overwhelming
probability. In fact, if EAB = EB/ 〈[2a]Ra + [α][2a]Sa〉 with φ′A 6= ψ′A, then

φ′A ◦ ψ̂′A is an endomorphism of EAB of degree 22a ≈ √p. Since E0 is a random
supersingular curve, then the curve EAB which is 2a2b isogenous to E0 can be
assimilated to a random supersingular curve. Hence the probability that EAB
admits an endomorphism of degree 22a ≈ √p is negligible.

Hence Rab, Sab /∈ EB/ 〈[2a]Ra + [α][2a]Sa〉. Therefore [e1]Rab + [f1]Sab 6=
ψA(Ra) and [e2]Rab+[f2]Sab 6= ψA(Sa) since they are points on different curves.

Case 2: φ′A = ψA. Then Alice computes

ψ′A(Ra) = φ′A(Ra) = φ′A([x]φB(P2) + [y]φB(Q2))
= φ′B ◦ φA([x]P2 + [y]Q2)
= φ′B([x]φA(P2) + [y]φA(Q2))
= φ′B ([x]([e1]RA + [f1]SA) + [y]([e2]RA + [f2]SA))
= φ′B ([xe1 + ye2]RA + [xf1 + yf2]SA)
= [xe1 + ye2]φ′B(RA) + [xf1 + yf2]φ′B(SA)

and

ψ′A(Sa) = φ′A(Sa) = φ′A([z]φB(P2) + [t]φB(Q2))
= φ′A ◦ φB([z]P2 + [t]Q2)
= φ′B([z]φA(P2) + [t]φA(Q2))
= φ′B ([z]([e1]RA + [f1]SA) + [t]([e2]RA + [f2]SA))
= φ′B ([ze1 + te2]RA + [zf1 + tf2]SA)
= [ze1 + te2]φ′B(RA) + [zf1 + tf2]φ′B(SA)

On the other hand, Alice computes

[e1]Rab + [f1]Sab = [x′e1 + z′f1]φ′B(RA) + [y′e1 + t′f1]φ′B(SA)
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and
[e2]Rab + [f2]Sab = [x′e2 + z′f2]φ′B(RA) + [y′e2 + t′f2]φ′B(SA)

The integers x, y, z, t, x′, y′, z′ and t′ need to satisfy{
ψA(Ra) = [e1]Rab + [f1]Sab
ψA(Sa) = [e2]Rab + [f2]Sab

i.e. {
[xe1 + ye2]φ

′
B(RA) + [xf1 + yf2]φ

′
B(SA) = [x′e1 + z′f1]φ

′
B(RA) + [y′e1 + t′f1]φ

′
B(SA)

[ze1 + te2]φ
′
B(RA) + [zf1 + tf2]φ

′
B(SA) = [x′e2 + z′f2]φ

′
B(RA) + [y′e2 + t′f2]φ

′
B(SA)

i.e. 
xe1 + ye2 = x′e1 + z′f1
xf1 + yf2 = y′e1 + t′f1
ze1 + te2 = x′e2 + z′f2
zf1 + tf2 = y′e2 + t′f2

mod 22a

i.e. 
e1 e2 0 0
f1 f2 0 0
0 0 e1 e2
0 0 f1 f2



x
y
z
t

 =


e1 0 f1 0
0 e1 0 f1
e2 0 f2 0
0 e2 0 f2



x′

y′

z′

t′

 mod 22a (4)

From Remark 2, the knowledge of e1, e2, f1 and f2 is equivalent to the knowledge
of Alice’s private isogeny φA. Hence Bob does not have access neither to the
matrix

M1 =


e1 e2 0 0
f1 f2 0 0
0 0 e1 e2
0 0 f1 f2

 ∈M2(Z/22aZ) nor M2 =


e1 0 f1 0
0 e1 0 f1
e2 0 f2 0
0 e2 0 f2

 ∈M2(Z/22aZ).

The solutions of Equation 4 that are independent of M1 and M2 satisfy

y = z = y′ = z′ = 0, x = t = x′ = t′.

Since e22a(Ra, Sa) = e22a([x]φB(P2), [x]φB(Q2)) = e22a(φB(P2), φB(Q2))x
2

,

then from the pairing equation e22a(Ra, Sa) = e22a(P2, Q2)3
b

, x needs to satisfy
x2 = 1, hence x = ±1.
We finally get x = t = x′ = t′ = ±1 and y = z = y′ = z′ = 0.

ut

Remark 3. A formal proof of Theorem 1 can be obtained from that of Theorem 2
by setting x = 1 = t, y = 0 = z or x′ = 1 = t′, y′ = 0 = z′ at the beginning of
the proof depending on the points on which Bob decides to be partially point-
malicious.

Remark 4. Bob can use the same key validation method to detect a malicious
Alice. We set the isogeny degrees to powers of 2 and 3 just for simplicity. The
key validation method generalises to any SIDH-like setup.
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4 The HealSIDH (Healed SIDH) key exchange protocol

We now propose a variant of SIDH key exchange protocol which makes use
of the GPST adaptive attack countermeasure we have just described. We first
give the general idea behind the construction, then we concretely describe the
key exchange and we finally discuss the underlying Diffie-Hellman-type hard
problems.

4.1 An overview of HealSIDH

The idea behind HealSIDH is to incorporate the key validation mechanism de-
scribed in Section 3 in the SIDH key exchange.

Set p = 22a32bf−1 such that 2a ≈ 3b, E0[22a] = 〈P2, Q2〉, E0[32b] = 〈P3, Q3〉,
PA = [2a]P2, QA = [2a]Q2, PB = [3b]P3 and QB = [3b]Q3. Alice’s secret
is an integer α sampled uniformly from Z/2aZ while Bob’s secret is an in-
teger β sampled uniformly from Z/3bZ. Alice computes φA : E0 → EA =
E0/ 〈PA + [α]QA〉 together with φA(P2), φA(Q2), φA(PB) and φA(QB). She
canonically generates the basis {RA, SA} of EA[22a] and solves for e1, f1, e2
f2 such that φA(P2) = [e1]RA + [f1]SA and φA(Q2) = [e2]RA + [f2]SA. Her
public key is (EA, φA(P3), φA(Q3)) and her secret key is (α, e1, f1, e2, f2). Bob
does the same to obtain a public key (EB , φB(P2), φB(Q2)) and a secret key
(β, g1, h1, g2, h2).

If Bob wishes to establish a shared secret with Alice, he retrieves Alice’s
public key (EA, Rb, Sb), computes φ′B : EA → EAB = EA/

〈
[3b]Rb + [β][3b]Sb

〉
together with φ′B(RA), φ′B(SA), φ′B(Rb) and φ′B(Sb). The yet to be confirmed
shared secret is the j-invariant jAB of EAB . He sends (φ′B(RA), φ′B(SA)) to Alice.

Upon receiving (φ′B(RA), φ′B(SA)), Alice retrieves Bob’s public key tuple
(EB , Ra, Sa). She computes φ′A : EB → EBA = EB/ 〈[2a]Ra + [α][2a]Sa〉 to-
gether with φ′A(RB), φ′A(SB), φ′A(Ra) and φ′A(Sa).

If e22a(Ra, Sa) 6= e22a(P2, Q2)3
b

or [e1]φ′B(RA) + [f1]φ′B(SA) 6= φ′A(Ra) or
[e2]φ′B(RA) + [f2]φ′B(SA) 6= φ′A(Sa), Alice aborts. Otherwise, she sends φ′A(RB)
and φ′A(SB) to Bob and keeps the j-invariant jBA of EBA as the shared secret.

Upon receiving φ′A(RB) and φ′A(SB), Bob does the key validation check. If
e32b(Rb, Sb) 6= e32b(P3, Q3)2

a

or [g1]φ′A(RB) + [h1]φ′A(SB) 6= φ′B(Rb) or
[g2]φ′A(RB) + [h2]φ′A(SB) 6= φ′B(Sb), Bob aborts . If not he successfully takes
jAB as the shared secret.

Practically, if Bob reveals the points φ′B(RA) and φ′B(SA), or Alice reveals
φ′A(RB) and φ′A(SB), then an adversary can recover the curve EAB since for
P ∈ EAB , the Montgomery coefficient AEAB

of EAB satisfies

AEAB
=
y(P )2 − x(P )3 − x(P )

x(P )2
.

We avoid this by exploiting the ideas used in SIKE [20] for key compression:
represent a point P ∈ E[N ] by its coordinates in a basis of E[N ] which can be
canonically computed.
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4.2 HealSIDH Key Exchange

Instead of revealing the points φ′B(RA) and φ′B(SA), Bob canonically generates
a basis {RAB , SAB} of EAB [22a] and computes e3, f3, e4, f4 ∈ Z22a such that

φ′B(RA) = [e3]RAB + [f3]SAB and φ′B(SA) = [e4]RAB + [f4]SAB .

Similarly, Alice canonically generates a basis {RBA, SBA} of EBA[32b] and com-
putes g3, h3, g4, h4 ∈ Z32b such that

φ′A(RB) = [g3]RBA + [h3]SBA and φ′A(SB) = [g4]RBA + [h4]SBA.

Concretely, the HealSIDH Key Exchange is entirely described in Figure 2.

Lemma 1. HealSIDH is correct.

Proof. Follows from the correctness of SIDH and Theorem 2. ut

Remark 5. Two parties Alice and Bob need to run the key validation only once,
during their first communication. In the subsequent communications between
the two parties there is no need to revalidate the keys.

4.3 Security of HealSIDH

We present the Computational Diffie-Hellman-type problem underlying the se-
curity of HealSIDH. We argue that the Decisional variant of this problem is not
hard.

Problem 4 (HealSIDH-CDHP). Let p = 22a22bf−1 and E0 a supersingular curve
defined over Fp2 with unknown endomorphism ring. Let E0[22a] = 〈P2, Q2〉,
E0[32b] = 〈P3, Q3〉, PA = [2a]P2, QA = [2a]Q2, PB = [3b]P3, QB = [3b]Q3. Let
φA : E0 → EA, φB : E0 → EB , φ′A : EB → EBA and φ′B : EA → EAB be secret
isogenies as described in SIDH-type schemes. Let EA[22a] = 〈RA, SA〉 , EB [32b] =
〈RB , SB〉 , EAB [22a] = 〈RAB , SAB〉 , EAB [32b] = 〈RBA, SBA〉 . Let e3, f3, e4, f4 ∈
Z22a and g3, h3, g4, h4 ∈ Z32b such that φ′A(RB) = [g3]RBA+[h3]SBA, φ′A(SB) =
[g4]RBA + [h4]SBA, φ′B(RA) = [e3]RAB + [f3]SAB and φ′B(SA) = [e4]RAB +
[f4]SAB .

Given E0, P2, Q2, P3, Q3, EA, φA(P2), φA(Q3), RA, SA, EB , φB(P2),
φB(Q2), RB , SB , e3, f3, e4, f4, g3, h3, g4, h4, compute EAB .

The main differences between Problem 4 and Problem 1 are as follows:

– the action of the secret isogeny φA (resp. φB) of degree 2a (resp. 3b) on
E0[32b] (resp. E0[22a]) is revealed;

– in addition to image points through φA as in SIDH, the coordinates of some
image points through φ′A (resp. φ′B) in a canonical basis are revealed.
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p = 22a32bf − 1,
E0[22a] = 〈P2, Q2〉 , E0[32b] = 〈P3, Q3〉,

PA = [2a]P2, QA = [2a]Q2,

PB = [3b]P3, QB = [3b]Q3

α ← Z/2aZ,
kerφA = 〈PA + [α]QA〉 ,

E0
φA−−→ EA, φA(P3), φA(Q3)
EA[22a] = 〈RA, SA〉

φA(P2) = [e1]RA + [f1]SA
φA(Q2) = [e2]RA + [f2]SA

β ← Z/3bZ,
kerφB = 〈PB + [β]QB〉 ,

E0
φB−−→ EB , φB(P2), φB(Q2)
EB [22b] = 〈RB , SB〉

φB(P3) = [g1]RB + [h1]SB
φB(Q3) = [g2]RB + [h2]SB

α ∈ Z2a , e1, f1, e2, f2 ∈ Z22a EA, Rb, Sb β ∈ Z3b , g1, h1, g2, h2 ∈ Z32bEB , Ra, Ra

EB [32b] = 〈RB , SB〉
kerφ′A = 〈[2a]Ra + [α][2a]Sa〉 ,

EB
φ′
A−−→ EBA, φ

′
A(Ra), φ′A(Ra)

EBA[32b] = 〈RBA, SBA〉
φ′A(RB) = [g3]RBA + [h3]SBA
φ′A(SB) = [g4]RBA + [h4]SBA

EA[22a] = 〈RA, SA〉
kerφ′B =

〈
[3b]Rb + [β][3b]Sb

〉
,

EA
φ′
B−−→ EAB , φ

′
B(Rb), φ

′
B(Rb)

EAB [22a] = 〈RAB , SAB〉
φ′B(RA) = [e3]RAB + [f3]SAB
φ′B(SA) = [e4]RAB + [f4]SAB

EBA
φ′A(Ra), φ′A(Ra)

g3, h3,

g4, h4 ∈ Z32b

EAB
φ′B(Rb), φ

′
A(Rb)

e3, f3,

e4, f4 ∈ Z22a

EBA[22a] = 〈RAB , SAB〉
Rab = [e3]RAB + [f3]SAB
Sab = [e4]RAB + [f4]SAB

——————–
e22a(Ra, Sa)

?
= e22a(P2, Q2)3

b

φ′A(Ra)
?
= [e1]Rab + [f1]Sab

φ′A(Sa)
?
= [e2]Rab + [f2]Sab

EAB [32b] = 〈RBA, SBA〉
Rba = [g3]RBA + [h3]SBA
Sba = [g4]RBA + [h4]SBA

——————–
e32b(Rb, Sb)

?
= e32b(P3, Q3)2

a

φ′B(Rb)
?
= [g1]Rba + [h1]Sba

φ′B(Sb)
?
= [g2]Rba + [h2]Sba

Valid key

KA = j(EBA)

Invalid key

KA =⊥
Invalid key

KB =⊥
Valid key

KB = j(EAB)

Rb = φA(P3), Sb = φA(Q3)

Rba = φ′A(RB), Sba = φA(SB)

Honest Alice

Ra = φB(P2), Sa = φB(Q2)

Rab = φ′B(RA), Sab = φB(SA)

Honest Bob

skA pkA skBpkB

Abort

K = KA = KB

Shared key

K
ey

ge
n
er

a
ti

o
n

K
ey

ex
ch

an
ge

Note: the basis {RA, SA}, {RB , SB}, {RAB , SAB} and {RBA, SBA} are canonically generated.

Yes No YesNo

Fig. 2: HealSIDH interactive key exchange. E0 is a random supersingular curve.

With respect to the first point, we reveal the action of isogenies of degree
A ≈ p1/4 on a B-torsion subgroup where B ≈ p1/2. Since the endomorphism
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ring of the curve E0 is unknown, then HealSIDH is protected against improved
torsion attacks [10].

With respect to the second point, the coordinates g3, h3, g4, h4 of φ′A(RB)
and φ′A(SB) in a canonical basis of EBA[32b], and the coordinates e3, f3, e4, f4
of φ′B(RA) and φ′B(SA) in a canonical basis of EBA[22a] are revealed. We don’t
see how this could affect the hardness of Problem 4.

Nevertheless, revealing these coordinates implies that the decisional ver-
sion of Problem 4 is not hard. In fact, suppose that you are given a ran-
dom supersingular elliptic curve E and you wish to determine if E = EBA
or E 6= EBA. Then you can generate the canonical bases E[32b] = 〈RBA, SBA〉
and E[22a] = 〈RAB , SAB〉, perform the pairing checks

e22a ([e3]RAB + [f3]SAB , [e4]RAB + [f4]SAB)
?
= e22a(RA, SA)3

b

and

e32b ([g3]RBA + [h3]SBA, [g4]RBA + [h4]SBA)
?
= e32b(RB , SB)2

a

.

If E = EAB , then these checks will be successful. If E 6= EAB , then these
checks will fail with overwhelming probability since the points [e3]RAB+[f3]SAB ,
[e4]RAB + [f4]SAB , [g3]RBA+ [h3]SBA and [g4]RBA+ [h4]SBA would be random
points of E of order 22a, 22a, 32b and 32b respectively; hence likely would not
satisfy the pairing equalities.

Remark 6. There is a very recent adaptive attack on SIDH-type schemes by
Fouotsa and Petit [14]. This attack uses an access to a key exchange oracle
to recover the action of the secret isogeny on larger torsion groups, then uses
the improved torsion points attacks to recover secret isogeny. This attack does
not apply to HealSIDH since the starting curve in HealSIDH is chosen to be a
random supersingular curve with unknown endomorphism ring (which counters
the improved torsion points attack).

5 SHealS: a public key encryption scheme

Even though the DDH-type problem for HealSIDH is not hard, we still use
HealSIDH to design a secure public key encryption scheme, which we call SHealS.
We first give an overview of our construction, then we fully describe and analyze
it.

5.1 An overview of SHealS

Our aim is to derive a PKE scheme from HealSIDH.
A canonical way to design a PKE scheme from HealSIDH is to proceed as

follows. Consider the HealSIDH setting. Alice generates her key pair (skA, pkA)
where skA = (α, e1, f1, e2, f2) and pkA = (EA, Rb, Sb). In order to encrypt a
plaintext m of binary length n, Bob randomly samples β ∈ Z/3bZ, computes
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c0 = (EB , Ra, Sa, e3||f3||e4||f4) and c1 = H(jAB) ⊕m where H : Fp2 → {0, 1}n
is a cryptographic hash function. The ciphertext is c = (c0, c1). Decryption
consists in completing the underlying HealSIDH key exchange using skA and c0.
If the key exchange is successful, recover m = c1 ⊕ H(jBA) using the shared
secret EBA, else m =⊥.

As shown in the following lemma, the resulting PKE scheme is not IND-CCA
secure.

Lemma 2. Let m ∈ {0, 1}n be a plaintext and let k ≥ 1 be an integer such that
the kth bit of m (the coefficient of 2k−1 in the 2-adic expansion of m) is 0. If
c = (c0, c1) is a ciphertext for m, then c′ = (c0, c1 ⊕ 2k−1) is a ciphertext for
m + 2k−1.

Proof. Since the kth bit of m is 0, then m + 2k−1 = m⊕ 2k−1. Hence

c1⊕2k−1 = m⊕H(jAB)⊕2k−1 = (m⊕2k−1)⊕H(jAB) = (m+2k−1)⊕H(jAB).

Therefore c′ = (c0, c1 ⊕ 2k−1) is a ciphertext for m + 2k−1. ut

This IND-CCA attack applies to all PKE schemes in which the ciphertext is of
the form (c0, H(s)⊕m) where s and c0 are independent of m. We choose to use
points to encrypt the plaintext, as in SiGamal [24] and SimS [15].

5.2 SHealS Public Key Encryption scheme

The plaintext space is changed to M = Z×22a , the set of invertible elements in
the ring of integers modulo 22a. A ciphertext for a given plaintext m ∈ M is
c = (c0, c1) where c0 = (EB , Ra, Sa), c1 = H(jAB) ⊕ (me3||mf3||me4||mf4) and
H : Fp2 → {0, 1}8a is a cryptographic hash function.

Note that scaling e3, f3, e4 and f4 by m is equivalent to scaling the points
[e3]RAB + [f3]SAB and [e4]RAB + [f4]SAB by [m]. This enables Alice to recover
m by solving a discrete logarithm instance in a group of order 22a.

Concretely, Figure 3 entirely describes SHealS PKE.

Lemma 3. SHealS PKE is correct.

Proof. Follows from the correctness of HealSIDH.

Remark 7. In SHealS, since there is no key disclosure, Bob can reuse his encryp-
tion key β to encrypt other plaintexts. Moreover, since the 32b torsion points are
readily available, he can use the same β as a static private key.

5.3 Security analysis

We prove that SHealS is IND-CPA secure relying on Assumption 1. Next we
discuss the IND-CCA security of SHealS. We conjecture that SHealS is IND-
CCA secure and provide arguments to support our conjecture.
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p = 22a32bf − 1,
E0[22a] = 〈P2, Q2〉 ,
E0[32b] = 〈P3, Q3〉,

PA = [2a]P2, QA = [2a]Q2,

PB = [3b]P3, QB = [3b]Q3

α
$←− Z2a ,

kerφA = 〈PA + [α]QA〉 ,
E0

φA−−→ EA, φA(P3), φA(Q3)
EA[22a] = 〈RA, SA〉

φA(P2) = [e1]RA + [f1]SA
φA(Q2) = [e2]RA + [f2]SA

e1, f1, e2, f2 ∈ Z22a ,

α ∈ Z2a
EA, Rb, Sb

m ∈ M, β
$←− Z3b

kerφB = 〈PB + [β]QB〉 ,
E0

φB−−→ EB , φB(P2), φB(Q2)
EA[22a] = 〈RA, SA〉

kerφ′B =
〈
[3b]Rb + [β][3b]Sb

〉
,

EA
φ′
B−−→ EAB ,

EAB [22a] = 〈RAB , SAB〉
φ′B(RA) = [e3]RAB + [f3]SAB
φ′B(SA) = [e4]RAB + [f4]SAB

c0 = (EB , Ra, Sa),

c1 = H(jAB) ⊕
(me3||mf3||me4||mf4)

c = (c0, c1)

kerφ′A = 〈[2a]Ra + [α][2a]Sa〉 ,

EB
φ′
A−−→ EBA, φ

′
A(Ra), φ′A(Ra)

EBA[22a] = 〈RAB , SAB〉
e′3||f ′3||e′4||f ′4 = H(jBA) ⊕ c1,
Rab = [e′3]RAB + [f ′3]SAB
Sab = [e′4]RAB + [f ′4]SAB

e22a(Ra, Sa)
?
= e22a(P2, Q2)3

b

〈φ′A(Ra)〉 ?
= 〈[e1]Rab + [f1]Sab〉

〈φ′A(Sa)〉 ?
= 〈[e2]Rab + [f2]Sab〉

m′ = DLP ([e1]Rab+[f1]Sab, φ
′
A(Ra))

[m′]φ′A(Sa)
?
= [e2]Rab + [f2]Sab

return m′ return ⊥

Hash function:

H : Fp2 → {0, 1}8a

skA pkA

Public parameters

Key generation

Encryption

Decryption

Yes No

Fig. 3: SHealS PKE. E0 is a supersingular curve with unknown endomorphism
ring.

Assumption 1 Let E0, P2, Q2, PA, QA,P3, Q3, PB, QB, EA, RA, SA, φA(P3),
φA(Q3), EB, φB(P2), φB(Q2) the public parameters and keys of an HealSIDH
instance. Set EAB [22a] = 〈RAB , SAB〉 where the basis {RAB , SAB} is canonically
generated, let B0 = {φ′B(RA), φ′B(SA)} and let B1 = {R,S} be a uniformly

random basis of EAB [22a] such that e22a(R,S) = e22a(RA, SA)3
b

. Set φ′B(RA) =
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[e03]RAB + [f03]SAB, φ′B(SA) = [e04]RAB + [f04]SAB, R = [e13]RAB + [f13]SAB
and S = [e14]RAB + [f14]SAB. For any PPT algorithm A,

Pr

b = b∗

∣∣∣∣∣∣
b

$←− {0, 1},

b∗ ← A
(
EA, φA(P3), φA(Q3), EB , φB(P2),
φB(Q2), EAB , eb3||fb3||eb4||fb4

)  =
1

2
+ negl(λ).

Theorem 3. If Assumption 1 holds, then SHealS is IND-CPA secure.

Proof. Analogous to the proof of [15, Theorem 3]. ut

Concretely, Assumption 1 states that given EA, φA(P3), φA(Q3), EB , φB(P2),
φB(Q2), EAB , it is difficult to distinguish the images points φ′B(RA), φ′B(SA) of
a basis {RA, SA} of EA[22a] through φ′B and a uniformly random basis {R,S}
of EAB [22a] such that e22a(R,S) = e22a(RA, SA)3

b

.

Concerning the IND-CCA security of SHealS, one may be tempted to use a
knowledge of exponnent type as Fouotsa and Petit did to prove the IND-CCA
security of SimS [15]. But this type of assumption does not hold for SIDH type
schemes. In fact, one can not see SIDH as an analog to the classic Diffie-Hellman
as it is the case in CSIDH. In CSIDH, the secret isogeny can have any degree
in a well chosen key space. But in SIDH, the degree of the secret isogeny is
fixed. This eliminates the idea of assimilating the secret isogenies in SIDH to
”exponents”.

We have not been able to come up with a succinct proof of IND-CCA security
for SHealS, but we argue that SHealS is not vulnerable to any known attack on
SIDH type schemes since we have countered the GPST adaptive attack [18] and
possible variants of it, and the improved torsion points attacks [27,10]. Note that
we do not take side channel attacks into consideration in this analysis. We hence
state the following conjecture and leave it’s proof or its invalidation for future
work.

Conjecture 4 SHealS is IND-CCA secure.

Remark 8. As highlighted in Remark 6, the recent adaptive attack on SIDH-type
schemes by Fouotsa and Petit [14] does not apply to SHealS.

6 Concrete instantiations and comparisons: HealSIDH vs
k-SIDH; SHealS vs SIKE

6.1 Concrete instantiation

We performed a basic Sagemath [30] proof-of-concept implementation of our key
validation method, HealSIDH and SHealS. We use the prime p870 = 2432327410−
1 where a = 216 and b = 137 as in SIKEp434 [20, §1.6]. Hence we expect
SHealSp870 and SIKEp434 on one hand, HealSIDHp870 and k-SIDHp434 on
the other hand, to provide the same security level.



22 T. B. Fouotsa and C. Petit

The proof-of-concept implementation of SHealS is very basic and unopti-
mized, hence it cannot serve as a reference when comparing SHealS and SIKE
in terms of efficiency. In the following paragraph, we do a high level compar-
ison between SHealS and SIKE. We argue that the efficiency of an optimized
implementation of SHealS is comparable to that of SIKE (considering instances
providing the same security level).

6.2 SHealS vs SIKE

We provide a high level comparison between SHealS and SIKE and argue that
SHealS’s efficiency is close to that of SIKE. In what follows, we suppose that
in both SIKE and SHealS, an SIDH-type public key (E,P,Q) is represented by
(xP , xQ, xP−Q) as specified in [20]. Let λ be a security parameter, and let ph
and ps respectively be the HealSIDH (or SHealS) prime and the SIKE prime
providing λ bits of security. It follows that dlog pse ≈ 4λ and dlog phe ≈ 8λ.

Design. At the design level, in SHealS, the encryption public key is validated
through a ”direct” key validation mechanism while in SIKE, the validation is
done through re-encryption. For this reason, the number of isogenies computed in
SIKE (KeyGeneration+Encapsulation+Decapsulation) is 5 while only 4 isogenies
are computed in SHealS (KeyGeneration+Encryption+Decryption). Nevertheless,
all the 4 isogenies in SHealS are evaluated on torsion points as well, while only 3
of the 5 isogenies in SIKE are evaluated on torsion points. In SHealS, a trusted
party is needed for the generating the starting curve E0.

Security. SHealS’s IND-CCA security is conjectured while that of SIKE is inher-
itated from a variant Fujisaki-Okamoto transform [19].

Keys sizes. In SIKE and SHealS, the secret key is α and (α, e1, f1, e2, f2) respec-
tively. Since e1, f1, e2, f2 lie in Z/22aZ, then their bitsize is twice that of α ∈ Z2a .
Hence the secret key of HealSIDH is 9 times larger compared to that of SIKE.
The public key in SIKE and SHealS are both of the form (xP , xQ, xP−Q). Hence
in SIKE the public key has roughly 3(2dlog pse) = 6dlog pse ≈ 24λ bits while in
SHealS it has roughly 3(2dlog phe) = 6dlog phe ≈ 48λ bits. Therefore, the size of
the public key in SHealS is roughly twice that of the public key in SIKE.
For the ciphertext, the bitsize of c0 in SHealS is twice that of c0 in SIKE, while
the bit size of c1 in ShealS is 8a = 16λ, opposed to n ∈ {128, 192, 256} in SIKE.
It follows that the size of SHealS ciphertexts is about 2.45 times that of SIKE
ciphertexts.

Efficiency. As mentioned before, only 4 isogenies are computed in SHealS while
5 isogenies are computed in SIKE. Meanwhile, the prime used in SHealS is twice
as large as SIKE prime. And, in SHealS, the isogenies φ′A : EB → EBA and
φ′B : EA → EAB are evaluated on two torsion points each, which is not the
case in SIKE. Without an advanced implementation of SHealS, it is difficult to
provide a precise efficiency comparison between both schemes.

We summarize the comparison in Table 1. Let λ be a desired security level.
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SIKE SHealS
Field characteristic size ≈ 4λ ≈ 8λ
Private key size ≈ 2λ ≈ 18λ
Public key size ≈ 24λ ≈ 48λ
Ciphertext size ≈ 26λ ≈ 64λ
KeyGen (isog. comp.) 1 1
Encaps/Encrypt (isog. comp.) 2 2
Decaps/Decrypt (isog. comp.) 2 1
Adaptive attacks No No (conjecture)
Key disclosure Yes No
Encryption key reuse No Yes
Key validation method used re-encryption Key val. method in § 3

Table 1: High level comparison between SHealSIDH and SIKE.

6.3 HealSIDH vs k-SIDH

To the best of our knowledge, the only existing post-quantum key exchange
schemes enabling static-static key setting prior to this work4 were CSIDH [4], k-
SIDH [1] and its variant by Jao and Urbanik [31]. As highlighted in Section 2.6,
Basso et al. [2] showed that k-SIDH is preferable to the later variant from an
efficiency vs security point of view. We provide a high level comparison between
HealSIDH and k-SIDH since both are countermeasures to the GPST adaptive
attacks.

Design. At the design level, HealSIDH comes with an incorporated key validation
method, while k-SIDH mitigates the GPST adaptive attacks by running many
parallel SIDH intances. This implies that more than k2 isogenies are computed in
k-SIDH (full execution of the key exchange) while only 4 isogenies are computed
in HealSIDH. Nevertheless, There are two rounds in HealSIDH, as opposed to
one round in k-SIDH. Note that the starting curve in HealSIDH is generated by
a trusted party, which is not the case in k-SIDH.

Security. Security wise, HealSIDH is not vulnerable to the GPST adaptive at-
tacks since it incorporates a countermeasure. In k-SIDH, one does not eliminate
the attack completely, but one increases its cost in such a way that it becomes
exponential in k.

Keys sizes. From the comparison made in Section 6.2, the secret key in HealSIDH
has roughly 18λ bits. In k-SIDH, the size of the secret key is k times that of a
SIKE secret key, hence 2kλ. The public keys in HealSIDH have roughly 48λ bits
while in k-SIDH they have about 24kλ bits.

4 While this work was under submission, a proof of isogeny knowledge [12] was pub-
lished online. We will provide a concrete comparison with this construction in later
versions of this paper that we will make available on the IACR eprint database.
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Efficiency. As mentioned before, only 4 isogenies are computed in HealSIDH. In
k-SIDH, roughly 2k2 + 2k isogenies are computed. Even though the HealSIDH
prime size is twice that of the k-SIDH prime, k-SIDH is still an order of magni-
tude less efficient compared to HealSIDH because of the relatively large number
of isogenies computed.

Table 2 provides a high level comparison between HealSIDH and k-SIDH.
We refer to [1] for more details on k-SIDH.

HealSIDH k-SIDH
Field characteristic size ≈ 8λ ≈ 4λ
Private key size ≈ 18λ ≈ 2kλ
Public key size ≈ 48λ ≈ 24kλ
KeyGen 1 k
key exchange 2 2k2

Adaptive attacks No exp. in k
Static-static key yes yes
NIKE No yes

Table 2: High level comparison between HealSIDH and k-SIDH (46 ≤ k).

7 HealS (Healed SIKE): improving the efficiency of
SHealS

From the comparison in Section 6.2, one concludes that the prime size, the key
and ciphertext sizes in SHealS are at least twice that in SIKE. In this section,
our aim is to improve on this prime, key and ciphertext sizes.

7.1 HealS Public Key Encryption

Having a closer look at ShealS, one notices that since Bob does not run a key
validation on Alice’s public key in the PKE encryption scheme, then it is not
a requisite to have the 32b-torsion points defined over Fp2 . Hence when the
parameters are chosen for a PKE scheme purpose only, the prime p can be
relaxed to p = 22a3bf − 1 where 2a ≈ 3b and f is a small cofactor. Most of
the scheme remains unchanged. Concretely, HealS is SHealS with a prime of the
form p = 22a3bf − 1.

While the base prime change when going from SHealS to HealS comes with
considerable speed-up and considerable improvement on key and ciphertext sizes
(see Section 7.2), one should notice that Bob can no more use his encryption key
as secret key when receiving encrypted messages. In fact, in order to encrypt a
plaintext for Bob, one needs to compute the images of torsion points of order
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32b. For HealS primes, these torsion points are defined over large extensions
since p = 22a3bf − 1. Nevertheless, Bob can reuse the same encryption key β to
encrypt other messages to other parties or the same party, only he can not use it
as decryption key. This technical difference motivated us to rename the instance
HealS instead of keeping the name SHealS. Appendix A provides more details
about the KeyGeneration, Encryption and Decryption algorithms in HealS.

7.2 Concrete instantiation and comparison with SIKE

We instantiate HealS with the prime p650 = 24323137 − 1 where a = 216 and
b = 137 as in SIKEp434 [20, §1.6]. Hence HealSp650 and SIKEp434 are expected
to provide the same security level.

We summarise a high level comparison between HealS and SIKE in Table 3.
We also include SHealS in this table to highlight the advantages of HealS when
compared to SHealS.

SIKE SHealS HealS
Field characteristic size ≈ 4λ ≈ 8λ ≈ 6λ
Private key size ≈ 2λ ≈ 18λ ≈ 18λ
Public key size ≈ 24λ ≈ 48λ ≈ 36λ
Ciphertext size ≈ 26λ ≈ 64λ ≈ 48λ
KeyGen (isog. comp.) 1 1 1
Encaps/Encrypt (isog. comp.) 2 2 2
Decaps/Decrypt (isog. comp.) 2 1 1
Adaptive attacks No No (conj.) No (conj.)
Key disclosure Yes No No
Encryption key reuse No Yes Yes
Key validation method used re-encryption Key val. method in § 3

Table 3: High level comparison between HealS, SHealS and SIKE.

Table 4 compares the key and ciphertext sizes of our PKE with some NIST
finalists KEMs. We notice that the key sizes in HealS are more compact compared
to these finalists. The ciphertext size in HealS is close to that of Kyber, NTRU
and Saber, while being considerably larger compared to that of Classic McEliece.

8 Conclusion

In this paper, we introduced an efficient countermeasure to the GPST adap-
tive attack which does not require key disclosure nor re-encryption. Next, we
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HealS Kyber NTRU Classic McEliece Saber
sk 288 1632 935 6492 1568
pk 576 800 699 261120 672
c 768 768 699 128 736

Table 4: Key and ciphertext sizes comparison between HealS and the four NIST
finalists KEMs Kyber, NTRU, Classic McEliece and Saber, for 128 bits of secu-
rity (NIST level 1).

used this countermeasure to design an efficient static-static key interactive ex-
change scheme: HealSIDH. HealSIDH is not vulnerable to the GPST adaptive
attacks. We derive an IND-CPA secure PKE scheme with conjectured IND-CCA
security SHealS from HealSIDH. The full execution of SHealS contains only 4
isogeny computations while that of SIKE contains 5 isogeny computations. For
this reason, even though SHealS uses larger parameters and has larger keys, we
expect its efficiency to be comparable to that of SIKE. In order to optimize the
efficiency, keys and ciphertexts sizes, we suggest HealS, a variant of SHealS using
a smaller prime. The main advantage of SHealS on HealS is that in SHealS, a
party can use his private key as encryption key when encrypting ciphertexts for
other parties.

Moreover, we provided a high level comparison between HealSIDH and k-
SIDH on one hand, and between SHealS, HealS and SIKE on the other hand.
HealSIDH is an order of magnitude more efficient compared to k-SIDH and the
keys in k-SIDH are about k times bigger compared to those of HealSIDH. The
advantages of SHealS and HealS over SIKE are

– no encryption key disclosure to the recipient during encryption;
– incorporated key validation method (no re-encryption during decryption);
– encryption key reuse.

In order to evaluate the concrete efficiency of the schemes constructed in
this paper, an advanced implementation of SHealS and HealS is needed. We
leave this task to follow-up work. We believe the design of SHealS leaves room
for considerable optimisations. These may come from the implementation, from
variants of the key validation method or from redesigning the schemes.

Furthermore, there are possibly existing isogeny-based schemes that would
benefit from our key validation method. Also the key validation may enables the
design of new isogeny-based primitives. We also leave such an investigation for
future work.

Acknowledgements. We would like to express our sincere gratitude to the
anonymous reviewers for their helpful comments and suggestions. Christophe
Petit was supported by EPSRC grant EP/S01361X/1.



SHealS and HealS 27

References

1. Reza Azarderakhsh, David Jao, and Christopher Leonardi. Post-quantum static-
static key agreement using multiple protocol instances. In International Conference
on Selected Areas in Cryptography, pages 45–63. Springer, 2017.
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resistant isogeny Action with Low Exponents. Cryptology ePrint Archive, Report
2020/1520, 2020. https://eprint.iacr.org/2020/1520.

8. Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive,
Report 2006/291, 2006. https://eprint.iacr.org/2006/291.

9. Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable
delay functions from supersingular isogenies and pairings. In Steven D. Galbraith
and Shiho Moriai, editors, Advances in Cryptology – ASIACRYPT 2019, pages
248–277, Cham, 2019. Springer International Publishing.
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A HealS PKE

The HealS Public Key Encryption scheme is detailed in Figure 4.
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p = 22a3bf − 1,
E0[22a] = 〈P2, Q2〉 ,
E0[3b] = 〈PB , QB〉,

PA = [2a]P2, QA = [2a]Q2

α
$←− Z2a ,

kerφA = 〈PA + [α]QA〉 ,
E0

φA−−→ EA, φA(PB), φA(QB)
EA[22a] = 〈RA, SA〉

φA(P2) = [e1]RA + [f1]SA
φA(Q2) = [e2]RA + [f2]SA

e1, f1, e2, f2 ∈ Z22a ,

α ∈ Z2a
EA, Rb, Sb

m ∈ (Z/22aZ)×, β
$←− Z3b

kerφB = 〈PB + [β]QB〉 ,
E0

φB−−→ EB , φB(P2), φB(Q2)
EA[22a] = 〈RA, SA〉

kerφ′B = 〈Rb + [β]Sb〉 ,

EA
φ′
B−−→ EAB ,

EAB [22a] = 〈RAB , SAB〉
φ′B(RA) = [e3]RAB + [f3]SAB
φ′B(SA) = [e4]RAB + [f4]SAB

c0 = (EB , Ra, Sa),

c1 = H(jAB) ⊕
(me3||mf3||me4||mf4)

c = (c0, c1)

kerφ′A = 〈[2a]Ra + [α][2a]Sa〉 ,

EB
φ′
A−−→ EBA, φ

′
A(Ra), φ′A(Ra)

EBA[22a] = 〈RAB , SAB〉
e′3||f ′3||e′4||f ′4 = H(jBA) ⊕ c1,
Rab = [e′3]RAB + [f ′3]SAB
Sab = [e′4]RAB + [f ′4]SAB

e22a(Ra, Sa)
?
= e22a(P2, Q2)3

b

〈φ′A(Ra)〉 ?
= 〈[e1]Rab + [f1]Sab〉

〈φ′A(Sa)〉 ?
= 〈[e2]Rab + [f2]Sab〉

m′ = DLP ([e1]Rab+[f1]Sab, φ
′
A(Ra))

[m′]φ′A(Sa)
?
= [e2]Rab + [f2]Sab

return m′ return ⊥

Hash function:

H : Fp2 → {0, 1}8a

skA pkA

Public parameters

Key generation

Encryption

Decryption

Yes No

Fig. 4: HealS PKE.
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