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Is Our Archiving Reliable? Multiobjective Archiving
Methods on “Simple” Artificial Input Sequences

MIQING LI, University of Birmingham, U. K.

In evolutionary multi-objective optimisation (EMO), archiving is a common component that maintains an
(external or internal) set during the search process, typically with a fixed size, in order to provide a good
representation of high-quality solutions produced. Such an archive set can be used solely to store the final
results shown to the decision maker, but in many cases may participate in the process of producing solutions
(e.g., as a solution pool where the parental solutions are selected). Over the last three decades, archiving stands
as an important issue in EMO, leading to the emergence of various methods such as those based on Pareto,
indicator or decomposition criteria. Such methods have demonstrated their effectiveness in literature and
have been believed to be good options to many problems, particularly those having a regular Pareto front
shape, e.g., a simplex shape.

In this paper, we challenge this belief. We do this through artificially constructing several sequences
with extremely simple shapes, i.e. 1D/2D simplex Pareto front. We show the struggle of predominantly-used
archiving methods which have been deemed to well handle such shapes. This reveals that the order of solutions
entering the archive matters, and that current EMO algorithms may not be fully capable of maintaining a
representative population on problems with linear Pareto fronts even in the case that all of their optimal
solutions can be found.

CCS Concepts: • Mathematics of computing → Combinatorics; Combinatoric problems; • Applied
computing →Multi-criterion optimization and decision-making.

Additional Key Words and Phrases: multi-objective optimisation, archiving, elitism, population maintenance,
deterioration

1 INTRODUCTION
Two pivotal issues centred around evolutionary multiobjective optimisation (EMO) are solution
generation and population maintenance. The first one is concerned with mating selection and
variation (e.g., crossover and mutation) where we want to produce promising offspring, hopefully
better than their parents. The other is concerned with environmental selection (aka elitism) where
we want to avoid losing the very best solutions found during the search course. The second issue
can also be generalised as archiving, a process of taking new solutions, comparing them with the
old ones and deciding how to update the population/archive [47].

Archiving in EMO can be implemented in different ways. It can be done implicitly by combining
the old population and its offspring and then reducing them to the next population (such as in NSGA-
II [13]), or by maintaining an internal archive which helps produce high-quality solutions (such as
in SPEA2 [63]), or by explicitly maintaining an external archive for storing high-quality solutions
produced so far (such as inMOEA/D [60]). On the other hand, there are various theoretical/empirical
studies exclusively on archiving in the field, such as [4, 7, 30, 32, 38, 43, 47, 48, 53, 54]. They have
shown the importance of the archiving operation and its challenge faced in practice.
Since memory resources are usually restricted, criteria/rules have to be set to decide which

solutions are kept and which are removed. In general, there exist three classes of representative
criteria in archiving: Pareto-based criteria, indicator-based criteria and decomposition-based criteria.
Pareto-based criteria consider the Pareto dominance relation between solutions, and when solutions
are incomparable with respect to Pareto dominance, density information is introduced to distinguish
between them. Indicator-based criteria define a quality indicator, and compare solutions through
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their contributions to the indicator. Decomposition-based criteria often associate solutions with
reference vectors (points/rays), and compare their quality on the basis of specific reference vectors.
It is well known and studied in the field that the performance of archiving with these criteria
is significantly affected by properties of a given problem’s Pareto front (e.g., see [27, 40]). For
example, archiving with Pareto-based criteria typically performs poorly on a Pareto front with
high dimensions [51]; archiving with indicator-based criteria may favour knee areas of a Pareto
front [17]; and archiving with decomposition-based criteria usually struggle on an irregular Pareto
front shape [45].
Nevertheless, it is commonly believed that all the three classes of criteria work well on low-

dimensional Pareto fronts with simplex shapes, e.g., a linear/triangular shape [27, 42]. In this paper,
we challenge this belief. We construct several sequences1 of 2D/3D points (solutions) with the
simplest Pareto front shapes, but with “interesting” orders of the points fed to the archiver. For
example, the set of the points fed gradually expands/shrinks, or there are some early-coming
Dominance Resistant Solutions (DRS)2 in the sequence. We construct seven such sequences, and
show some interesting but disappointing observations from five well-established archiving methods
(i.e., those from NSGA-II [13], IBEA [62], SMS-EMOA [2], MOEA/D [60] and NSGA-III [11]) as well
as one more advanced archiving method MGA [38].
It is worth mentioning that the nature of optimisation problems (along with randomness in

evolutionary search) may lead to various sequences of solutions. For example, some test problems
(e.g., KUR [36], the UF suite [61] and the problems constructed in [46]) typically lead to the search
of an EMO algorithm in the objective space to start from a particular region, and some other test
problems (e.g., DTLZ3 [14] and ML-DMP [40]) often result in the generation of DRS solutions
during the search. In addition, there exist many algorithms which tend to find solutions in a certain
order3. For example, the algorithm in [50] starts the search from one extreme solution (i.e., the
best solution in one of the two objectives) and then gradually moves to the other. The algorithm
in [15] searches for solutions back and forth between the two objectives. The algorithms in [49]
and [22] were designed to find all the extreme solutions of a problem’s Pareto front first and then
inner solutions. Note that such practices are particularly common in conventional mathematical
programming since they typically compute solutions one by one [10, 55]. For example, to solve the
bi-objective minimum spanning tree problem, the algorithm in [55] first computes the two extreme
solutions and then a particular inner solution; these two steps are repeated by treating the inner
solution as a new extreme one until all Pareto optimal solutions are found.

Given the above, an independent investigation of archiving methods in handling various solution
sequences is worthwhile. Being immune from the interference of randomness in the search, it tells
us how reliable multiobjective optimisation algorithms are in maintaining high-quality solutions
found. In addition, we would like to clarify that the sequences presented here are not designed to
simulate various real-world scenarios, but to challenge well-established EMO archiving methods
on even simple Pareto fronts.

1A sequence of points is an enumerated collection of points in which order matters. Archiving for a sequence of points is
different from for a set of points as in the latter the selection operation is conducted after all the points arrived. Archiving
for a point sequence is an online process in which the archiver does not know what point is coming next.
2Dominance resistant solutions are those with a very poor value in one objective but with (near) optimal values in the
others [23].
3For multi-objective problems whose single-objective version can be solved polynomially like TSP, the search may not
be executed in a certain order (since one can directly generate supported solutions and then fill the gaps between them,
namely, working on non-supported solutions).
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2 PRELIMINARY
Multi-objective optimisation problems (MOPs) are mathematical optimisation problems involving
more than one objective to be minimised/maximised. Without loss of generality, in this paper
we consider a minimisation MOP with 𝑚 objective functions 𝑓 : 𝑋 → 𝑍 ⊂ R𝑚 . The objective
functions map a decision vector x ∈ 𝑋 in the decision space to a vector 𝑓 (x) = (𝑓1 (x), ..., 𝑓𝑚 (x)) in
the objective space. Our study focuses on archiving objective vectors. For simplicity, we refer to an
objective vector as a solution (or a point).
Considering two solutions z1, z2 ∈ 𝑍 , solution z1 is said to (Pareto) dominate z2 (denoted as

z1 ≺ z2) if z1𝑖 ≤ z2𝑖 for 1 ≤ 𝑖 ≤ 𝑚 and there exists at least one objective 𝑗 on which z1𝑗 < z2𝑗 . A
solution z ∈ 𝑍 is called Pareto optimal if there is no solution in 𝑍 that dominates z. The set of all
Pareto optimal solutions in 𝑍 of an MOP is called its Pareto front.

As the size of an MOP’s Pareto front is usually prohibitively large (or even infinite), one may be
interested in finding an approximation set of it with a (fixed) manageable size. This is particularly
useful for population-based search (e.g., evolutionary computation), where the search population,
typically consisting of a fixed number of members, is used to approximate the Pareto front gradually.
As such, rules/criteria have to be set to decide how to update the approximation set on the fly,
i.e., which solutions are kept and which are removed with the introduction of new solutions. This
update process can be generalised as archiving, a process to deal with a sequence of solutions with
no knowledge of future inputs [31, 47].
Note that although we here consider a sequence of discrete Pareto optimal points, the Pareto

front of an MOP can be continuous. For such problems, the size of the Pareto front is necessarily
infinite. A tolerance level should be used to make it practically manageable. However, setting a
proper tolerance level may not be easy; it depends on the properties of the problem in hand (e.g.,
its objective dimensionality and the correlation between the objectives) [5].

3 TEST SEQUENCES
To the best of our knowledge, there exist two studies in the literature [30, 47] which artificially
constructed point sequences to test archiving methods. They designed several sequences, with
an intention of showing that commonly-used archiving methods suffer from keeping a point
that is dominated by some point eliminated previously in the archiving process, a problem called
deterioration [37].

In this study, apart from the deterioration, we also investigate the effect of sequenceswith different
patterns of the points on the Pareto front (e.g. expanding and shrinking). More importantly, we
consider sequences with the simplest Pareto front shapes, which it is long believed that current
archiving methods are capable of handling. The Pareto optimal solutions of the considered seven
sequences4 are given in Figure 1. As can be seen, Sequences 1 and 2 only have a handful of Pareto
optimal solutions, whilst the rest have hundreds and thousands. The last four sequences share the
same 3D Pareto front. Minimisation of objectives is considered for all the sequences.
The main challenges of the constructed sequences lie in the order of points fed to the archives,

which is shown in Figure 2. Sequence 1 is comprised of points with generally declining quality,
(i.e., the quality of early-coming points is generally better than that of late-coming ones), but the
capacity of the archives is set not big enough to store all Pareto optimal points. Sequences 2 and 7
have one DRS point which appears early in the sequence but only is dominated by very last points
of the sequence. The points in Sequence 3 shift from one corner to the other corner. The points in
Sequence 4 shrink from outside to inside, the points in Sequence 5 do exactly the opposite. The
points in Sequence 6 go along a zigzag line, and with a turn in the middle. The Sequences 3–6

4The sequences considered in our study are available at https://www.cs.bham.ac.uk/~limx/Data/Sequences.rar.

https://www.cs.bham.ac.uk/~limx/Data/Sequences.rar
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(a) Sequence 1 (b) Sequence 2 (c) Sequence 3 (d) Sequences 4–7

Fig. 1. Pareto optimal solutions of the seven point sequences.
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(a) Sequence 1 (b) Sequence 2 (c) Sequence 3

(d) Sequence 4 (e) Sequence 5 (f) Sequence 6 (g) Sequence 7

Fig. 2. Illustrations of the seven sequences of points, where Sequences 1 and 2 are actual ones considered
and Sequences 3–7 are downsized ones (i.e., with fewer points) for clearer viewing. The blue arrow indicates
the order of the points fed to the archiver. For Sequences 2 and 7, the Dominance Resistant Solution (DRS)
is labelled. For Sequence 1, points arrives with generally declining quality. For Sequence 2, please note the
difference of the scale on the objective 𝑓1 between Fig. 2(b) and Fig. 1(b), and the leftmost ten points in
Sequence 2 in Fig. 2(b) are nondominated to each other which are the Pareto optimal solutions shown in
Fig. 1(b).

challenge archivers in maintaining a set of diverse solutions when the search moves on from one
region to another along the Pareto front.

4 ARCHIVERS INVESTIGATED
We first consider three classes of five well-established archiving methods: 1) a Pareto-based archiver
which was used in NSGA-II [13]; 2) indicator-based archivers in IBEA [62] and SMS-EMOA [2];
3) decomposition-based archivers in MOEA/D [60] and NSGA-III [11]. Afterwards, we consider a
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Table 1. Settings of the sequences and archivers.

Sequence Dimension No. of points No. of Pareto optimal points Archive capacity ℎ in MOEA/D, NSGA-III
1 2D 47 11 10 9
2 2D 20 10 10 9
3 2D 201 201 10 9
4 3D 5151 5151 105 13
5 3D 5151 5151 105 13
6 3D 5151 5151 105 13
7 3D 20302 20301 105 13

state-of-the-art archiver, multi-level grid archiver (MGA) [38], to see how well a very advanced
archiver performs on these sequences.
The Pareto-based archiver in NSGA-II sorts solutions into layers according to the Pareto domi-

nance relation. When the archive cannot accommodate all nondominated solutions in a particular
layer, a density metric, called crowding distance, is used to distinguish between them in order
to keep well-distributed solutions. The indicator-based archivers IBEA and SMS-EMOA use an
indicator to measure the quality of a solution set; specifically, IBEA considers either the 𝜖 [37]
or hypervolume [64] indicator while SMS-EMOA considers the hypervolume indicator. A major
difference between IBEA’s archiver and SMS-EMOA’s is that the former considers pairwise com-
parison whilst the latter considers set-based comparison. The decomposition-based archivers in
MOEA/D and NSGA-III decompose the objective space into a set of subspaces, ideally each solution
corresponding to one subspace. A notable difference of NSGA-III’s archiver to MOEA/D’s is that
NSGA-III inherits the non-dominated sorting strategy of NSGA-II; that is, first sort all solutions
on the basis of Pareto dominance and then decompose the solutions on the same layer. The same
applies to SMS-EMOA. Note that whether or not Pareto dominance sorting is used first in the
archiving process will not affect the results here since the new point fed to the archive is set to
be always nondominated to the current archive. MGA compares solutions by using a hierarchical
grid to define a family of 𝜖-dominance relations. To accept a new solution, it uses a function that
counts the number of occupied boxes (on various levels). It can maintain a monotonous progress
to a solution set that covers the Pareto front with non-overlapping boxes at finest resolution
possible [38].
It is necessary to note that some of the algorithms investigated (e.g. NSGA-II and IBEA) use

the batch-wise population/archive update mechanism (i.e., 𝜇 + 𝜇). That is, they only update the
population/archive after there are 𝜇 new solutions produced/arriving. Here, we adopted the one-by-
one update mechanism (i.e., 𝜇 + 1) following the practice in [43, 47]. That is, to update the archive
once a new point arrives. As such, the conclusions drawn from the experiments apply only to
point-by-point archivers. In addition, for convenience we may sometimes use the name of an EMO
algorithm to represent its archiver in result descriptions.

Some of the archivers need configurations, e.g., IBEA and MOEA/D. Here, all the parameters were
configured as the same as in their original papers unless expressly stated otherwise. In MOEA/D,
the Tchebycheff scalarising function was used. The reference point in MOEA/D was checked for
update by the new point before performing the archiving. That is, if the value of any objective of
the new point is better (i.e., smaller) than that of the reference point, then update the corresponding
objective of the reference point by that value. During the archiving process, all the current points
in the archive were compared with the new point for the replacement (i.e. the whole archive is
considered as the neighbourhood in MOEA/D). As for IBEA, the quality indicator 𝜖 was used and
the scaling factor 𝜅 was 0.05.
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In order to challenge the archivers, we intentionally set the capacities of the archives to those
that are not very “comfortable” for the archivers to handle. For example, in Sequence 1, the number
of the Pareto optimal points is 11, and we then set the archive capacity to be 10, so that archivers
cannot determine the points solely by Pareto dominance. Yet, we do consider specific requirements
of some archivers (i.e. the decomposition-based archivers of MOEA/D and NSGA-III); we set the
archive capacity so that a set of perfectly distributed points can be maintained if done properly.
Overall, our intention is to make the performance of archivers least affected by other factors but
the order of the points in the sequences. Table 1 summarises the settings of the sequences and
archivers.

5 RESULTS
In this section, we first report the results of the five widely-used archiving methods, i.e., those
in NSGA-II, IBEA, SMS-EMOA, MOEA/D and NSGA-III. This is followed by the results of the
state-of-the-art archiver MGA. Lastly, we summarise those results.
Figures 3, 5, 6, 7, 9, 11 and 13 show the final solution sets obtained by the five archivers on the

seven sequences. For quantitative comparison, we also give the evaluation results of the solution sets
on the quality indicator hypervolume [64]. The hypervolume indicator of a solution set calculates
the volume of the union of the hypercubes determined by each of its solutions and a reference
point. It is a comprehensive indicator which can (partially) reflect four quality aspects of a solution
set, convergence, spread, uniformity and cardinality [44]. Note that here the Pareto fronts of the
sequences considered are of simplex shapes; there is no knee point, and hypervolume will not
prefer particular points on the Pareto front. In addition, due to the simplex Pareto front, according
to [25], it is appropriate to set the reference point as 𝑛𝑎𝑑𝑖𝑟𝑖 + 𝑙𝑖/ℎ, where 𝑛𝑎𝑑𝑖𝑟𝑖 is the nadir point
of the Pareto front on its 𝑖th objective, 𝑙𝑖 is the range of the Pareto front on the 𝑖th objective, and ℎ
is an integer subject to 𝐶ℎ+𝑚−1

𝑚−1 ≤ 𝑛 < 𝐶ℎ+𝑚
𝑚−1 (𝑚 and 𝑛 being the number of objectives and the size

of the solution set, respectively). That is, the reference point (2 + 1/9, 2 + 1/9) for the bi-objective
sequences, and (1 + 1/13, 1 + 1/13, 1 + 1/13) for the tri-objective ones. Here, we report the ratio of
the hypervolume value of the obtained solution set to the Pareto front (i.e., a collection of all the
nondominated solutions of the sequence), denoted by HVR. Table 2 gives the HVR results of the
five archivers on the seven sequences.

It is worth mentioning that there exist other quality indicators that can also reflect comprehensive
quality of a solution set, such as IGD [9]. Evaluation results obtained by them may not be exactly
the same as those obtained by HVR, since quality indicators may not “agree” with each other,
particularly between Pareto compliant indicators and non-Pareto compliant ones. Fortunately, here
all the fronts of the sequences are of simplex shapes, in which case the results obtained by different
indicators tend to much more consistent [3, 29].
Table 3 summarises the quality of the solution sets obtained by the archivers on the seven

sequences, where their quality has been classified into five levels, excellent, good, fair, poor, and
very bad. As it can be seen, there is no archiver that is able to achieve a reasonable level (good
or excellent) on all the sequences, or even on a majority of the sequences. For some sequences,
it is even hard for many archivers to achieve the fair level, such as Sequences 2, 6 and 7. In the
following subsections, we will detail how the archivers behave on each sequence.

5.1 Sequence 1 (Figure 3)
As shown in Figure 2(a), the points of Sequence 1 come with declining quality. The sequence can
easily be maintained well by most of the investigated archivers as shown in Figure 3, but certainly
not by NSGA-II. The point set of NSGA-II is the worst possible nondominated set obtained from
this sequence.
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Table 2. The HVR value of the five widely used archivers on the seven sequences.

Sequence NSGA-II IBEA SMS-EMOA MOEA/D NSGA-III
1 35.714% 98.539% 98.540% 88.335% 98.539%
2 94.563% 34.633% 76.409% 89.089% 83.658%
3 92.207% 89.349% 89.506% 77.017% 86.480%
4 92.311% 83.717% 95.092% 96.517% 96.681%
5 95.120% 96.251% 96.267% 94.797% 94.600%
6 92.880% 95.338% 95.012% 93.647% 96.011%
7 89.649% 22.569% 60.165% 95.958% 73.318%

Table 3. Properties of the test sequences and the behaviour of the five archivers on them.

Sequence Dimensionality Characteristic NSGA-II IBEA SMS-EMOA MOEA/D NSGA-III
1 2D deterioration very bad excellent excellent fair excellent
2 2D DRS fair very bad poor good poor
3 2D shifting good fair fair poor poor
4 3D shrinking fair very bad fair excellent excellent
5 3D expanding fair good good poor poor
6 3D shifting poor poor poor poor fair
7 3D DRS poor very bad very bad good very bad
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(a) NSGA-II (b) IBEA (c) SMS-EMOA (d) MOEA/D (e) NSGA-III
HVR=35.714% HVR=98.539% HVR=98.540% HVR=88.335% HVR=98.539%

Fig. 3. The final point sets obtained by the five archiving methods on Sequence 1 and their corresponding
HVR results.

To understand why this happened, we give several consecutive iterations of the step-by-step
archiving process of NSGA-II in Figure 4. First, the point C is fed to and accepted by the archive in
Figure 4(a), and then the archive reaches its maximum capacity (10). Next, D is fed to the archive
(Figure 4(b)), and then one of the 11 nondominated points will be eliminated. Note that we set
the distance between points C and D to be slightly smaller than that between the other adjacent
points. So, according to the crowding distance [13] the point C will be eliminated since D is the
extreme point. Next, E is fed to the archive (Figure 4(c)). As C has been already eliminated, there is
no point in the current archive which dominates E. Note that points B and D do not dominate E —
we intentionally set that they are very close to but actually not dominate E (i.e., E is slightly better
than B on the objective 𝑓2 and than D on the objective 𝑓1). Now, all the 11 points are mutually
nondominated, and one of them will be eliminated. Point B is that point since it has the smallest
crowding distance (though the margin is tiny). In Figure 4(d), likewise, point F enters the archive
and edges out point A. This archiving process continues and the procedure ends with the final
archive containing very poor quality points, as shown in Figure 3(a).

In fact, such a deterioration phenomenon has been frequently observed and studied since early
2000s, e.g., in [19, 32, 37, 52]. The reason for this occurrence is that the archiver cannot prevent
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Fig. 4. Several consecutive iterations of the archiving process of NSGA-II. Note that points B and D are very
close but not to dominate E (i.e., E is slightly better than B on the objective 𝑓2 and than D on the objective 𝑓1).

0 2 0 4 0 6 0 8 0 1 0 0
1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0

f 1

f2  

 

0 2 0 4 0 6 0 8 0 1 0 0
1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0

f 1

f2  

 

0 2 0 4 0 6 0 8 0 1 0 0
1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0

f 1

f2  

 

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0
1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0

f 1
f2  

 

0 2 0 4 0 6 0 8 0 1 0 0
1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0

f 1

f2  

 

(a) NSGA-II (b) IBEA (c) SMS-EMOA (d) MOEA/D (e) NSGA-III
HVR=94.563% HVR=34.633% HVR=76.409% HVR=89.089% HVR=83.658%

Fig. 5. The final point sets obtained by the five archiving methods on Sequence 2 and their corresponding
HVR results.

the entry of new points that are dominated by some points eliminated previously. In the extreme
situation, this may lead to the whole archive deteriorating gradually with time, as shown in our
example. In addition, it is necessary to mention that the deterioration also applies to other archiving
methods, e.g., the indicator-based [1, 33, 47] and decomposition-based [8, 18]. Readers who are
interested in this respect can refer to related theoretical [32, 47] and empirical [43] work.
Consider the HVR values of the five archivers. NSGA-II and MOEA/D are expected to receive

lower values as their Pareto optimal points are fewer than those of the other three archivers. Only
two points preserved by NGSA-II are on the Pareto front of the sequence, and only seven points
preserved by MOEA/D, compared to the fact that all the 10 points preserved by the other three
archivers are on the Pareto front. Amongst the other three point sets, IBEA and NSGA-III have the
same HVR value (as their solution sets are the same), and SMS-EMOA has a marginally higher value.
The reason is as follows. The setting of the reference point and the simplex shape of the sequence’s
Pareto front make all Pareto optimal points (when they are perfectly uniformly distributed) have
the same contributions to the hypervolume result [25]. Here, the point gap (bottom-right) of SMS-
EMOA is marginally shorter than that (middle) of IBEA and NSGA-III. As a result, the HVR value
received by SMS-EMOA is marginally higher than that by IBEA and NSGA-III.

5.2 Sequence 2 (Figure 5)
Sequence 2 challenges archiving methods via introducing a DRS point in the middle of the archiving
process which is the best on the objective 𝑓2 so far but extremely poor on the objective 𝑓1 compared
with other points (see Figure 2(b)). After the introduction of the DRS point, some points that are
nondominated to it arrive sequentially (i.e., with better 𝑓1 value and worse 𝑓2 value), until the last
point which dominates all the points since the DRS is introduced.
This sequence poses a big challenge to all the archivers. As shown in Figure 5, none of them is

able to preserve all the 10 Pareto optimal points (cf. Figure 1(b)). For MOEA/D, there exist some
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duplicate points, i.e., multiple weights corresponding to one point. The other four archivers share
the same pattern, with the DRS point and some dominated points always in the archive. The reason
for this is that effectively all the points in the sequence except the last one are nondominated with
each other. Those early-coming “true” Pareto optimal points may be favoured less than the DRS
point as well as the following points by the archivers (as their crowding degree is estimated higher
than the late comers’), thus being edged out from the archive. This becomes prominent in IBEA as
the algorithm favours points with bigger differences (but without considering the normalisation
among objectives).

5.3 Sequence 3 (Figure 6)
As shown in Figure 2(c), the points in Sequence 3 arrive from one extreme to another. We can see
from Figure 6 that the sequence has little effect on the Pareto-based archiver in NSGA-II, but more
on the indicator-based and decomposition-based archivers. This occurrence is due to the fact that
the density estimator in the Pareto-based archiver, which is entirely based on the distance between
points, is affected very little, if at all, by the order of the points fed to the archive. In contrast, the
other archivers need some reference in the calculation of their criteria, which may be affected
significantly by the order of the points fed. For example, in the process of archiving Sequence 3,
the reference point used to calculate the hypervolume indicator in SMS-EMOA and the ideal point
used to calculate the Tchebycheff scalarising function in MOEA/D keep changing with any new
point fed to the archive (since it enlarges the range of the points fed so far). This dynamic may
lead to a big difference between the quality of the archive instantly and its quality at the end of the
archiving process.

5.4 Sequence 4 (Figure 7)
The shape of Sequence 4 is a two-dimensional simplex, and the order of the points fed into the archive
is from outer triangle layers to inner triangle layers, as illustrated in Figure 2(d). Figure 7 plots the
final point sets obtained by the five archivers on the sequence. As can be seen, the decomposition-
based archivers have shown very good performance, with their points being distributed excellently
over the front. The reason for this is that the “global” ideal point used in the calculation of the
scalarising functions for the decomposition-based archivers can be found at the beginning of the
archiving process (i.e. the minimum on each objective comes from the points fed to the archive at
the early stage of the archiving). This will lead to the weights to spread perfectly over the whole
triangular hyperplane.
In contrast, the two indicator-based archivers appear to struggle, especially IBEA whose final

points are around the three medians of the triangle. To understand how this unusual distribution
pattern appears, we plot the archive obtained by IBEA at intermediate iterations 1000th, 2000th,
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(a) NSGA-II (b) IBEA (c) SMS-EMOA (d) MOEA/D (e) NSGA-III
HVR=92.207% HVR=89.349% HVR=89.506% HVR=77.017% HVR=86.480%

Fig. 6. The final point sets obtained by the five archiving methods on Sequence 3 and their corresponding
HVR results.



10 Miqing Li

(a) NSGA-II (b) IBEA (c) SMS-EMOA (d) MOEA/D (e) NSGA-III
HVR=92.311% HVR=83.717% HVR=95.092% HVR=96.517% HVR=96.681%

Fig. 7. The final point sets obtained by the five archiving methods on Sequence 4 and their corresponding
HVR results. Note that all the points are on the simplex, including those obtained by the IBEA archiver, which
are located around the three medians of the simplex.

(a) Iter. 1000th (b) Iter. 2000th (c) Iter. 3000th (d) Iter. 4000th (e) Iter. 5000th

Fig. 8. The point set obtained by the IBEA archiver at intermediate iterations 1000th, 2000th, 3000th, 4000th
and 5000th on Sequence 4.

3000th, 4000th and 5000th in Figure 8. As can be seen in the figure, with more inner-triangle-layer
points arriving, only extreme points of a layer are preserved in the archive. In fact, the behaviour
that IBEA preserves only extreme points of the Pareto front has been observed in the literature [40].
This eventually leads to the archive ending up with a set of points around the medians of the first
outer triangle.

5.5 Sequence 5 (Figure 9)
Exactly opposite to Sequence 4, the order of the points in Sequence 5 is from inner layers to outer
layers, as shown in Figure 2(e). Unsurprisingly, their behaviours are rather different from those for
Sequence 4. Figure 9 plots the final point sets obtained by the five archivers on Sequence 5. As seen
from the figure, the biggest contrast is from IBEA whose archive is maintained pretty well. This
occurrence can be attributed to the fact that the extreme points of the inner triangle layers, with
new outer-layer points arriving, are not extreme ones any more (as they are inside of the outer
triangle layer), thus not preferred by IBEA. In addition, interestingly, the point set obtained by
NSGA-II is affected by the order of the points, which is not the case for its 2D version (i.e., Sequence
3). One possible explanation for this is that the crowding distance used in NSGA-II is inaccurate to
measure points’ crowdedness when the dimension is up to three [35, 41].
As for the decomposition-based archivers in MOEA/D and NSGA-III, unlike the situation on

Sequence 4, they fail to returnwell-distributed sets on the sequence. Their final solutions concentrate
in the boundary of the triangle, with only several inner solutions. The reason for this is that the
ideal point, which is used in the calculation of the scalarising function in the decomposition-based
archivers, keeps changing with the introduction of new points fed. Since the points arrive from
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(a) NSGA-II (b) IBEA (c) SMS-EMOA (d) MOEA/D (e) NSGA-III
HVR=95.120% HVR=96.251% HVR=96.267% HVR=94.797% HVR=94.600%

Fig. 9. The final point sets obtained by the five archiving methods on Sequence 5 and their corresponding
HVR results.

(a) Iter. 1000th (b) Iter. 2000th (c) Iter. 3000th (d) Iter. 4000th (e) Iter. 5000th

Fig. 10. The point set obtained by the MOEA/D archiver at intermediate iterations 1000th, 2000th, 3000th,
4000th and 5000th on Sequence 5.

inner triangle layers to outer triangle layers, the boundary solutions of the old triangles become
inner solutions of the new triangles. For a current boundary solution, it is very likely for the
archive to keep it since it may achieve the best scalarising function value on a boundary weight
vector. For an inner solution, as essentially the change of the ideal point means the change of the
weight directions, it may not always associate with one weight vector at every update step during
the archiving process. In other words, with the constant change of weight directions, it is highly
unlikely that at every iteration there always exists one weight vector on which that same inner
solution achieves the best scalarising function value. Therefore, inner solutions are often eliminated
by the new boundary solutions. Figure 10 shows the point set obtained by the MOEA/D archiver at
several intermediate iterations. As seen, most of the boundary solutions of the triangle are kept. In
contrast, very few inner solutions are kept, and the number of inner solutions decreases during the
archiving process.

5.6 Sequence 6 (Figure 11)
As shown in Figure 2(f), the points in Sequence 6 arrive sequentially in a zigzag pattern, and with
a turn in the middle. On this sequence, all the five archivers appear to struggle (Figure 11). The
two decomposition-based archivers only maintain well the bottom-left triangle where its global
ideal point can be found at the beginning of the archiving process. An interesting result is from
SMS-EMOA which manages “okay” in the last two cases, but performs poorly here. To understand
how this happened, we plot the archive maintained by SMS-EMOA at intermediate iterations 1000th,
2000th, 3000th, 4000th and 5000th in Figure 12. As can be seen, when archiving the bottom-left
trapezoid-shape points, SMS-EMOA prefers boundary points, particularly those fed very recently.
This is because that the hypervolume-based criterion may fail to maintain a point set with the
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(a) NSGA-II (b) IBEA (c) SMS-EMOA (d) MOEA/D (e) NSGA-III
HVR=92.880% HVR=95.338% HVR=95.012% HVR=93.647% HVR=96.011%

Fig. 11. The final point sets obtained by the five archiving methods on Sequence 6 and their corresponding
HVR results.

(a) Iter. 1000th (b) Iter. 2000th (c) Iter. 3000th (d) Iter. 4000th (e) Iter. 5000th

Fig. 12. The point set obtained by the SMS-EMOA archiver at intermediate iterations 1000th, 2000th, 3000th,
4000th and 5000th on Sequence 6.

non-simplex shape in the 3D (or higher) space, especially those with many points sharing the same
maximum value on an objective, as shown in [24, 25]. When the reference point is not set properly,
the boundary points contribute much more than the inner ones to the hypervolume metric.

5.7 Sequence 7 (Figure 13)
Sequence 7, with a DRS point appearing at the beginning of the archiving process (see Figure 2(g)),
seems the hardest one for the archivers except MOEA/D to maintain. As can be seen from Figure 13,
IBEA cannot eliminate the DRS point and only keeps very late points in the sequence, and the
points obtained by NSGA-II, SMS-EMOA and NSGA-III concentrate around some boundaries of
the triangle. An interesting observation is that the decomposition-based MOEA/D, which shares a
similar pattern to NSGA-III in the previous three 3D sequences, performs very well on the sequence.
The reason for this is that the generation of the weight vectors inMOEA/D is not affected by the DRS
points, but only the best value on each objective. Once the global ideal point for determining a set of
optimal weight directions can be found at the beginning of the archiving process, as in this sequence,
the points can be maintained very well. In contrast, in NSGA-III a normalisation operation is needed
in order to generate the weight vectors, where both the best and worst value of all nondominated
solutions on each objective is considered. The DRS point, which is a nondominated solution but
performs extremely poorly on some objective, massively affects the accuracy of the normalisation
in NSGA-III.

5.8 Results of MGA
The above results have shown the struggle of three classes of the five representative and widely used
archivers in maintaining a set of points on simple simplex Pareto front shapes. One may ask what
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(a) NSGA-II (b) IBEA (c) SMS-EMOA (d) MOEA/D (e) NSGA-III
HVR=89.649% HVR=22.569% HVR=60.165% HVR=95.958% HVR=73.318%

Fig. 13. The final point sets obtained by the five archiving methods on Sequence 7 and their corresponding
HVR results.

about more advanced archivers, particularly those with desirable theoretical properties5. In this
section, we consider a state-of-the-art archiver, multi-level grid archiver (MGA) [38], which satisfies
several desirable properties such as ◁-monotone, limit-stable and limit-optimal [47]. MGA has
polynomial computational complexity in the size of the solution set and the number of objectives,
and it has been demonstrated to work very well in many scenarios, such as on the sequences
presented in [47].
Figure 14 shows the final point sets obtained by MGA on the seven sequences. As can be seen,

the results are mixed. On some sequences, MGA performs very well. For example, it can maintain
all the Pareto optimal solutions on Sequence 2. Yet on some other sequences, MGA performs
poorly. For example, on the four tri-objective sequences, MGA misses all the three extreme points
of the simplex, and also some part of the Pareto front, namely, some inner layers of Sequence 4,
outer layers of Sequence 5, right part of Sequence 6, and upper part of Sequence 7. Some possible
explanations for this occurrence are as follows. Firstly, the grid/𝜖 dominance criteria struggle
to keep the extreme and boundary solutions due to the relaxation of the Pareto dominance (i.e.,
boundary solutions are likely to be dominated by inner ones). This has been reported in various
grid/𝜖-based EMO algorithms [12, 21, 59]. Secondly, when the archive is at the maximum capacity
and all of its solutions are at the same grid level (i.e., each in its own box), the archive may not
accept a new solution with the same/finer grid level. That is why MGA maintains well the early
part (i.e., early-coming points) of Sequences 4–7, but fail to keep the late part.

5.9 Summary
Based on the observations made in the previous sections, the following comments with respect to
the three classes of archiving methods as well as MGA can be drawn.

• Archivers that consider Pareto dominance and density to distinguish between solutions
(e.g., in NSGA-II) appear to suffer from the deterioration more than the other two classes of
archivers. This is consistent with the observations in [43]. However, Pareto-based archivers
are little affected by the case that the points fed from one region to another region along the
Pareto front (e.g., shrinking and expanding), particularly for the 2D case.

• For indicator-based archivers, the points arriving in a shrinking pattern appear to be more
challenging than those in an expanding pattern. Such archivers maintain the points well
when they are in the shape of a filled triangle (e.g. on Sequence 5).

5The archiver in SMS-EMOA, despite using the hypervolume criterion, may not hold desirable theoretical properties since
its reference point is adaptively updated during the archiving process.
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(a) Sequence 1 (b) Sequence 2 (c) Sequence 3
HVR=98.377% HVR=100% HVR=90.931%

(d) Sequence 4 (e) Sequence 5 (f) Sequence 6 (g) Sequence 7
HVR=94.346% HVR=84.301% HVR=85.617% HVR=89.662%

Fig. 14. The final point sets obtained by MGA on the seven sequences and their corresponding HVR results.

• Opposite to indicator-based archivers, decomposition-based ones can handle the shrinking
pattern very well, but they fail on the expanding pattern where the ideal point used in the
calculation of the scalarising function keeps changing.

• It is known that Pareto-based archivers are difficult to get rid of the DRS points [23], but,
interestingly, we here have shown that they can also pose a big challenge to many other
archivers. Three of the four indicator/decomposition-based archivers struggle when the
sequence has a DRS point, no matter whether the normalisation operation is conducted (e.g.,
in IBEA and NSGA-III) or not (e.g., in SMS-EMOA). MOEA/D is the only algorithm which
can get rid of the DRS point in all the cases (Sequences 2 and 7), but still some small region
on the Pareto front is not well covered.

• Archivers with desirable theoretical properties like MGA may not necessarily produce better
results than those without. This is not very surprising since the theoretical properties are
concerned with convergence (e.g., deterioration); here, however, all the sequences except
Sequence 1 are introduced to challenge archivers in maintaining the diversity (i.e., spread
and uniformity) of the solutions over the Pareto front.

6 DISCUSSIONS
With very regular Pareto front shapes, our experiments have shown the struggle of popular archiving
methods in maintaining solution sets. This may explain the observations reported recently in [56]
of why there is a big difference of the quality between the final population/archive and all the
nondominated solutions found during the search. One straightforward way to deal with this
unwelcome issue is to design new archiving methods more robust to the order of the solutions
produced. Another solution is to develop new search models of EMO algorithms that fit the
behaviour of the archiver used. For example, when a decomposition-based archiver is used, the
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search for the best value on each objective of the MOP (in order to determine the global ideal point
used in the scalarising function) could be conducted first.

On the other hand, one may consider to use an unbounded archive to store all the nondominated
solutions found during the search. This has been practised in many studies such as [16, 19, 26, 34,
57, 58]. With the power of today’s computers and efficient data structures [20, 28], this approach
may become increasingly feasible.

It is necessary to point out that the observations reported here are derived from the (𝜇+1) archiving
mechanism, which may differ from the (𝜇+𝜇) archiving mechanism. Yet, which mechanism produces
better results may depend on specific archiving methods used in EMO algorithms. Based on whether
or not to adjust the “fitness” of solutions (i.e., the evaluation values of solutions under the archiving
criterion) during the archiving process, there are two types of methods in the (𝜇 + 𝜇) mechanism
in the area. One is to calculate the fitness of all the 𝜇 + 𝜇 solutions and then remove the worst 𝜇
solutions at once, i.e., without adjusting the remaining solutions’ fitness after any solution has
been removed. Such methods include the crowding distance-based method in NSGA-II. These types
of (𝜇 + 𝜇) archiving method are likely to lead to worse results than their (𝜇 + 1) counterparts since a
solution’s fitness is based on the comparison with other solutions in the considered set and thus is
changed when the set changes. This is actually the reason that in the experiments the NSGA-II
archiver (with the (𝜇 + 1) archiving mechanism) performs very well on Sequence 3. The other type
of (𝜇 + 𝜇) archiving methods is to remove the 𝜇 solutions one by one, i.e., find the worst solution
in the considered set, remove it, and adjust the fitness of the remaining solutions; these steps are
repeated until 𝜇 solutions are removed. Such methods include the archiving method in IBEA. This
type of archiving methods is likely to produce better results than their (𝜇 + 1) counterparts since it
is like conducting the (𝜇 + 1) archiving but knowing some future inputs.

Lastly, it is worth mentioning that in the evolutionary search, the population replacement/update
process can be different from the archive truncation process despite the fact that they can share the
same selection criteria/rules. The former typically comes with a fixed-size population; dominated
solutions can also be preserved provided that there are some slots in the population which have
not been filled by nondominated ones. Preserving such dominated solutions is conducive since it
can lead to lower chance of premature convergence than maintaining a smaller population which
only consists of nondominated solutions [6, 39]. Fortunately, the results obtained by this work
can also apply to population replacement/update since the new point fed to the archive is always
nondominated to the current archive on all the sequences.

7 CONCLUSION
Solution generation and maintenance are two cornerstones that make up an EMO algorithm,
particularly for the latter (aka archiving) which is the focus of studies in the area over decades.
Some algorithms, in essence, only design solution maintenance rules, such as NSGA-III — their
solution generation component (mating selection, crossover andmutation) follows common practice.
It is well known that the effectiveness of archiving methods is significantly affected by the shape of
problems’ Pareto front, but it is long believed that archiving methods work well on simple simplex
Pareto fronts provided that all the solutions are available (i.e., can be found by the search algorithm).

In this study, we challenged this belief by showing that the order of solutions produced matters.
We constructed seven solution sequences whose Pareto front is a 1D or 2D simplex. We showed
that the struggle of five representative archiving methods as well as a more advanced one — none
of them performs well on half of the sequences (Table 3). This suggests archiving techniques still
far from maturity and new methodologies needed.
The complexity and variety of real-world optimisation problems and randomness elements in

evolutionary search can in theory lead to any solution sequence. As there is no knowledge of future
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inputs, it is difficult for archiving methods to decide which solutions to preserve and which to
discard, as we have shown. It may be worth studying the archiving operation more independently
(i.e., separating from the design of search algorithms), e.g., by considering solution sequences
having a variety of orders, shapes, etc. This would avoid interference from randomness elements
involved in the evolutionary search, and help quickly detect problems of archiving methods through
various sequences that could be easily constructed.
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