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A Kernel-Based Indicator for Multi/Many-Objective
Optimization

Xinye Cai, Member, IEEE, Yushun Xiao, Zhenhua Li, Member, IEEE, Qi Sun, Hanchuan Xu, Miqing
Li, Member, IEEE, Hisao Ishibuchi Fellow, IEEE

Abstract—How to evaluate Pareto front approximations gen-
erated by multi/many-objective optimizers is a critical issue in
the field of multiobjective optimization. Currently, there exist
two types of comprehensive quality indicators (i.e., volume-based
and distance-based indicators). Distance-based indicators, such as
Inverted Generational Distance (IGD), are usually computed by
summing up the distance of each reference point to its nearest
solution. Their high computational efficiency leads to their preva-
lence in many-objective optimization. However, in the existing
distance-based indicators, the distributions of the solution sets
are usually neglected, leading to their lacks of ability to well
distinguish between different solution sets. This phenomenon
may become even more severe in high-dimensional space. To
address such an issue, a kernel-based indicator (KBI) is proposed
as a comprehensive indicator. Different from other distance-
based indicators, a kernel-based maximum mean discrepancy is
adopted in KBI for directly measuring the difference that can
characterize the convergence, spread and uniformity of two sets,
i.e., the solution set and reference set, by embedding them in
Reproducing Kernel Hilbert Space (RKHS). As a result, KBI
not only reflects the distance between the solution set and the
reference set, but also can reflect the distribution of the solution
set itself. In addition, to maintain the desirable weak Pareto
compliance property of KBI, a nondominated set reconstruction
approach is also proposed to shift the original solution set. The
detailed theoretical and experimental analysis of KBI is provided
in this paper. The properties of KBI have also been analyzed by
the optimal µ-distribution.

Index Terms—Multiobjective optimization; many-objective op-
timization, quality evaluation, kernel method.

I. INTRODUCTION

In real-world optimization problems, multiple conflicting
objectives usually need to be optimized simultaneously. Dif-
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ferent from a single-objective optimization problem, the goal
of a multiobjective optimization problem (MOP) is to obtain a
set of Pareto optimal solutions, which represents the trade-offs
between objectives. These Pareto optimal solutions are usually
called a Pareto Set (PS); and its projection in the objective
space is usually called a Pareto Front (PF) [1]. A good PF
approximation apparently can provide useful information for
the decision makers for choosing their preferred solution.

For MOPs, how to evaluate the quality of the high-
dimensional PF approximations is a critical issue [2]. Most
quality indicators [3], [4], [5] are designed for evaluating
approximations in some or all of the following aspects: 1) con-
vergence [6], 2) spread [7] (i.e., coverage [8] or extensity [9])
and 3) uniformity [10]. The latter two are combined and
usually called diversity of a solution set [3], [9]. In addition,
the Pareto compliance is a desirable property for multi/many-
objective indicators. The lack of such a property in indicators
may result in unfair evaluation results [11].

Over several decades, a considerable number of comprehen-
sive indicators that measure both convergence and diversity
of a PF approximation have been proposed in the field of
evolutionary multiobjective optimization [12], [13], [14], [15].
In general, these comprehensive indicators can be classified
into two types: volume-based indicators and distance-based in-
dicators [11]. The former type of indicators measures the size
of the volume determined by PF approximation under consid-
eration with some specification. Hypervolume (HV) [16] is a
prevalent representative of volume-based indicators. However,
high computational cost of calculating HV makes it difficult
to use for high-dimensional PFs [17]. The proper choice of
the reference point is also a tedious task, which will largely
affect the ability of HV to correctly distinguish the quality of
approximations [18].

The latter type measures the distance of the reference
PF to the considered solution set. Thus distance-based indi-
cators (such as Inverted Generational Distance (IGD) [19],
IGD+ [20] and ∆p [21]) usually can be calculated very
efficiently, leading to their prevalence in many-objective op-
timization. However, they somehow suffer from shortcomings
that may severely limit their further applications [12].

1) The existing distance-based indicators may fail to distin-
guish between approximations as they are computed by
summing up the distances between each reference point
with its nearest solution, without the consideration of
the distribution of the solution set itself. Fig. 1 shows
such an example in a two-dimensional space, where
IGD/IGD+/∆p values of solution sets A and B are the

https://github.com/xinyecai/KBI
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same, as each of the three reference points has the same
distance to multiple solutions. However, we can visual-
ize that the diversity of A is better than that of B (their
convergence is the same). Such a phenomenon becomes
even more severe in high-dimensional space [11].

2) Most attention has been put in designing new indicators
or indicator-based algorithms in the literature. However,
the validation of the indicator properties is often over-
looked in the existing studies.

In this paper, we propose a new distance-based compre-
hensive indicator that addresses the aforementioned issues.
The major contributions of this work can be summarized as
follows:

1) Maximum Mean Discrepancy (MMD), which originally
measures the difference of two distributions [22], can
also be applied as a measure of the difference between
two sets [23]. Based on it, a kernel-based indicator
(KBI) is proposed as a comprehensive quality indicator.
Different from IGD (or its variants) that sums up the
distance between each reference point with its nearest
solution, KBI computes the upper bounded difference
that can characterize convergence, spread and unifor-
mity between the solution set and the reference set by
embedding them in Reproducing Kernel Hilbert Space
(RKHS). As a result, KBI not only reflects the distance
between the solution set and the reference set, but also
can reflect the distribution of the solution set itself, thus
being able to well-distinguish between different solution
sets, as shown in Fig. 1.

2) The optimal µ-distribution [24] is introduced for vali-
dating the preferences and the properties of KBI. The
experimental results on the optimal µ-distributions AI
of KBI has shown its effectiveness and uniqueness com-
pared with other comprehensive indicators (see Section
IV. E).
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Fig. 1: An example of approximations in terms of
IGD/IGD+/∆p and KBI. Solution set A can be visualized
better than B in terms of diversity. IGD/IGD+/∆p(A) =
IGD/IGD+/∆p(B) = 0.1, KBI(A) = 0.041 < KBI(B) = 0.0466.

The rest of this paper is organized as follows. Related
studies on the proposed indicator are introduced in Section
II. Section III elaborates the proposed kernel-based indicator
(KBI). In Section IV, the systematic experiments are conducted

to verify the effectiveness of KBI. The optimal µ-distributions
of KBI, compared with other comprehensive indicators, are
also investigated in this section. Finally this paper is concluded
in Section V where some future research topics are suggested.

II. BACKGROUND

A. Basic Definitions

A multiobjective optimization problem (MOP) can be de-
fined as follows:

min F (x) = (f1(x), . . . , fm(x)) (1)
s.t. x ∈ Ω

where Ω is the decision space, F : Ω → Rm consists of m
real-valued objective functions. Note that an MOP is usually
called a many-objective optimization problem (MaOPs) when
m > 3.

Let a, b ∈ Rm, a is said to dominate b, denoted by a ≺ b,
if and only if ai ≤ bi for every i ∈ {1, . . . ,m} and aj < bj
for at least one index j ∈ {1, . . . ,m}; a is said to weakly
dominate b, denoted by a � b, if and only if ai ≤ bi for
every i ∈ {1, . . . ,m}1 [11]. Given a set S in Rm, a solution
in S is called non-dominated in S if no other solution in S
dominates it. A solution x∗ ∈ Ω is Pareto-optimal if F (x∗) is
non-dominated in the attainable objective set. F (x∗) is then
called a Pareto-optimal (objective) vector. In other words, any
improvement in one objective of a Pareto optimal solution
must lead to deterioration in at least another objective. The
set of all the Pareto-optimal points is called the Pareto set
(PS) and the set of all the Pareto-optimal objective vectors is
called the Pareto front (PF) [1].

The dominance relationship can be extended to solution
sets [25], as follows. Set A is said to dominate set B (denoted
as A ≺ B) if every solution b ∈ B is dominated by at least
one solution a ∈ A, i.e., ∀b ∈ B, ∃a ∈ A, a ≺ b. Similarly, set
A is said to weakly dominate B (denoted as A � B) if every
solution b ∈ B is weakly dominated by at least one solution
a ∈ A, i.e., ∀b ∈ B, ∃a ∈ A, a � b.

A quality indicator is said to be strictly Pareto compli-
ant [25], [11], if and only if ∀A,B : A � B ∧ B � A =⇒
I(A) < I(B); where I(.) is a mapping from an objective
vector to an indicator value. Similarly, a quality indicator is
said to be weakly Pareto compliant [25], [11], if and only if
∀A,B : A � B =⇒ I(A) ≤ I(B).

B. Related studies on quality indicators

As two representative volume-based indicators, Hypervol-
ume (HV) [16] and R2 [26] have been widely used in the field
of multiobjective optimization. Their definitions are given as
follows.

• Hypervolume (HV) [16]: Let r∗ = (r∗1 , r
∗
2 , ..., r

∗
m)T be a

reference point in the objective space that is dominated by
all solutions in a PF approximation set S. HV measures

1In the case of maximization, the inequality signs should be reversed.
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the volume of the objective space dominated by the
solutions in S and bounded by r∗.

HV (S) = V OL(
⋃
y∈S

[y1, r
∗
1 ]× ...[ym, r∗m]) (2)

where V OL(•) indicates the Lebesgue measure. The
value of HV can be computed as the union volume of
the hypercubes determined by the solution set S and the
reference point r∗. The larger the HV value is, the better
the quality of a solution set S is. The main advantage
of HV is its strictly Pareto compliance property [27].
However, it is difficult to compute the exact value of HV
for a large solution set with many objectives, although
some fast computational methods have been proposed
for approximating HV [28], [29], [30], [31], [32]. For
example, Sharpe-Ratio [33], [34] is such an indicator
with interesting properties and not as time consuming
as hypervolume indicator. Another weakness of HV is
its favor of very non-uniform solution sets on a highly
nonlinear Pareto front no matter what the reference point
is, possibly leading to unfair comparison results [35]. It
is worth to mention that some ideas on using kernels for
approximating Hypervolume already exist in the litera-
ture [36], [37]. Their weakness is also similar to that of
Hypervolume.

• R2 [26]: The indicator of R2, integrated the decision
maker’s preference, was proposed to assess the quality
of two individual sets separately. Having the standard
weighted Tchebycheff function with a particular refer-
ence point z∗, the indicator can be used to assess the
quality of a single individual set against z∗[38]. Given
an approximation set S, a set of weight vectors W , and
the standard Tchebycheff aggregation function, the R2
indicator can be defined as follow.

R2(S,W, z∗) =
1

|W |
∑
w∈W

min
y∈S
{max{wi(yi− z∗i )} (3)

where i ∈ {1, . . . ,m}, w = (w1, . . . , wm) is a weight
vector; z∗ is the ideal point. A smaller R2 value indicates
that a solution set S is closer to the reference point.
The R2 indicator possesses a desirable weak Pareto
compliance property. However, the R2 indicator, using
a set of weight vectors W , naturally has a low accuracy,
which may result in its lack of ability to distinguish
different solution sets.

Beside the above volume-based indicators, the following
distance-based quality indicators have also been prevalently
used in multi/many-objective optimization community.
• Inverted Generational Distance (IGD) [19]: Let S be the

set of solutions obtained by an multiobjective optimizer,
and P ∗ be the set of points uniformly sampled over the
true PF. The value of IGD is calculated as:

IGD(S, P ∗) =

∑
y∈P∗ dist(y, S)

|P ∗|
(4)

where dist(y, S) denotes the Euclidean distance between
a point y ∈ P ∗ and its nearest neighbor in S, and
|P ∗| is the cardinality of P ∗. IGD calculates an average

minimum distance from each point in P ∗ to the nearest
solution in S, which measures both convergence and
diversity of a solution set S. The smaller the IGD value
is, the better the quality of S is. The drawbacks of IGD
include its lack of Pareto compliance property and the
sensitivity to the dominated solutions, both of which may
lead to biased comparison results. In addition, the use of
Euclidean distance may result in similar evaluation results
of different solution sets in a high-dimensional space [11].

• Modified Inverted Generational Distance (IGD+) [20]:
Let S be a set of solutions obtained by an optimizer, and
P ∗ be a set of points uniformly sampled over the true PF.
The only difference between IGD(S, P ∗) and IGD+(S,
P ∗) lies in the distance calculation. In the minimization
problems, the distance calculation for IGD+ is

dist+(y, S) =

√√√√ m∑
i=1

(max{yi − zi, 0})2 (5)

where dist+(y, S) is the modified distance between
a point y ∈ P ∗ and its nearest neighbor z ∈ S.
This distance modification ensures that IGD+ is weakly
Pareto compliant whereas the original IGD is Pareto non-
compliant. Like IGD, the smaller the IGD+ value is, the
better the quality of S is. Similar to IGD, One drawback
of IGD+ is its lack of ability to distinguish different
solution sets, as shown in Fig. 1.

• Iε+ [39]: Let S be the set of solutions obtained by a
multiobjective optimizer, and P ∗ be the set of reference
points uniformly sampled over the true PF. The value Iε+
of two points y ∈ P ∗ and s ∈ S is given as follows.

Ivecε+ (s, y) = max
i∈{1,..m}

{si − yi} (6)

where the Ivecε+ (s, y) value is the minimal shift such that s
weakly dominates y. It should be noted that Ivecε+ (s, y) 6=
Ivecε+ (y, s) in Eq.(6). The Iε+ indicator can be computed
as follows.

Iε+(S) = max
y∈P∗

{min
s∈S
{Ivecε+ (s, y)}} (7)

where the Iε+ value of S is the minimal shift such that
each reference point y ∈ P ∗ is weakly dominated by at
least one solution s ∈ S. The smaller the Iε+ value is,
the better quality of S is. However, the Ivecε+ (s, y) value
depends on one particular objective of one particular
solution in each set, the indicator may ignore a significant
amount of sets’ difference. It was demonstrated in the
computational experiments in [40] that two different
solution sets often have the same value of Iε+.

• ∆p [21]: “Averaged Hausdorff distance” is adopted to
calculate the distance between the obtained solution set
S and the reference set R, which evaluates both conver-
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gence and diversity as follows [41], [42].

∆p(S,R) = max(GDp(S,R), IGDp(S,R))

= max((
1

|S|
∑
s∈S

dist(s,R)p)
1
p ,

(
1

|R|
∑
r∈R

dist(r, S)p)
1
p )

(8)

where dist(s,R) is the Euclidean distance between a
solution s ∈ S and its nearest point in reference set R,
and |S| is the cardinality of S, dist(r, S) is the Euclidean
distance between a solution r ∈ R and its nearest point
in solution set S, and |R| is the cardinality of R. The
smaller the ∆p value is, the better the quality of S for
approximating the whole PF is. Like IGD/IGD+, it also
lacks of ability to distinguish different solution sets, as
shown in Fig. 1.

C. Distance metrics between two sets

In the literature, there exist a number of metrics for mea-
suring the difference between two sets. The most popular ones
include Kullback-Leibler (KL) divergence [43], maximum
mean discrepancy (MMD) [23], Wasserstein distance [44],
and Hausdorff distance [45]. Among them, KL divergence
technically is not a distance metric, as it neither is symmetric
nor satisfies triangle inequality [46]. Wasserstein distance is
too computational expensive to use for designing an indicator.
Although the variant of Hausdorff distance [47] is able to
satisfy all axioms of a distance metric, one clear disadvantage
of Hausdorff distance and its variants are their negligence of
the distributions of the solution sets, which leads to the fact
that they may not be able to well distinguish between different
solution sets in some cases, as explained in Fig. 1. In this
paper, MMD is adopted to design a comprehensive indicator
for multiobjective/many-objective optimization.

III. THE PROPOSED INDICATOR

In this section, the intuitions of why maximum mean dis-
crepancy works for measuring the convergence and diversity of
a solution set are explained, followed by its computation with
the kernel function. After that, the algorithm of using MMD
for computing KBI is specified in detail. The computational
complexity and weak Pareto compliance of KBI are also given
in this section. Finally, KBI is compared with other indicators
in terms of desirable properties.

A. Why and how MMD works?

Maximum Mean Discrepancy (MMD), originally used for
measuring the difference of two distributions [22], can also be
applied to measuring the difference between two sets [23].

Let S = {s1, ..., su} be a solution set and R = {r1, ..., rv}
be a reference set. Maximum Mean Discrepancy (MMD) [23],
[48] can be used for computing the difference of these two
sets by embedding them in Reproducing Kernel Hilbert Space
(RKHS). Let G be a class of functions g : Y → R. MMD
between R and S can be estimated as follows.

MMD(G, R, S) := sup
g∈G

(ER[g(r)]− ES [g(s)])

= sup
g∈G

(
1

u

u∑
i=1

g(ri)−
1

v

v∑
j=1

g(sj)).
(9)

where sup (supremum) denotes the maximum difference be-
tween the two sets. When g is a first-order function, the above
equation actually compares the means of the two sets, i.e.,
ER[r] and ES [s], which can be interpreted as the convergence
of the solution set S to the reference set R (case 1, as shown
in Fig. 2a) or the spread between S and R (case 2, as shown
in Fig. 2b). When ER[r] = ES [s] and g is a second-order
function, the above equation compares the variance of the
two sets, i.e., ER[r2] and ES [s2], which can be interpreted
as the comparison of the spread between S and R (case 3,
as shown in Fig. 2c). When ER[r] = ES [s] and g is a third-
order function, the above equation compares the skewness of
the two sets, i.e., ER[r3] and ES [s3], which, to some extent,
can be interpreted as the comparison between the uniformity
for S and R (case 4, as shown in Fig. 2d). This indicates that
MMD can be used to design a comprehensive indicator that
characterizes both convergence and diversity of a solution set
S by comparing it with the reference set R.

Furthermore, the kernel function can be added into Eq. 9 for
practical computation as follows. Let H be a complete inner
product space (i.e., a Hilbert Space) of functions g : Y → R,
where Y is a nonempty compact set. H is called a RKHS if
for all y ∈ Y , the linear point evaluation functional mapping
g → g(y) exists and is continuous. In this case, g(y) can be
expressed as an inner product:

g(y) = 〈φ(y), g〉H (10)

where φ : Y → H is known as the feature space map from y
to H. The inner product between two feature maps is called
the kernel, k(y, y′) := 〈φ(y), φ(y′)〉H.

Moreover, µr := Er[φ(y)] is the mean of φ(y) in feature
space (assume that it exists) [49]. Then, MMD can be written
as:

MMD(G, R, S) = ||µR − µS ||H (11)

From the Eq. 9- 11, MMD can be reformulated as:

MMD(G, R, S) = sup
||g||H≤1

ER[g(r)]− ES [g(s)]

= sup
||g||H≤1

ER[〈φ(r), g〉H]− ES [〈φ(s), g〉H]

= sup
||g||H≤1

〈µR − µS , g〉H

= ||µR − µS ||H
= [〈µR − µS , µR − µS〉H]

1
2

= [〈µR, µR〉H + 〈µS , µS〉H − 2〈µR, µS〉H]
1
2

(12)
where sup (supremum) denotes the maximum difference be-
tween the two sets. ||.|| is the norm for computing the distance
between the solution set and the true PF in feature space. As a
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(a) Case 1: When g is a first-order
function, MMD can be interpreted as
the convergence of the solution set S
to the reference set R.

(b) Case 2: When g is a first-order
function, MMD can also be interpreted
as the spread of the solution set S,
compared with the reference set R.

(c) Case 3: ER[r] = ES [s] and g is
a second-order function; MMD can be
interpreted as the comparison of the
spread between S and R.

(d) Case 4: ER[r] = ES [s] and g is
a third-order function; MMD can be
interpreted as the comparison between
the uniformity for S and R.

Fig. 2: The intuitions of why MMD can characterize both convergence and diversity of a solution set S by comparing it with
the reference set R.

result, the proposed KBI is able to evaluate the comprehensive
quality of a solution set in terms of convergence, spread and
uniformity.

As µR := 1
v

∑v
i=1 φ(ri), µS := 1

u

∑u
i=1 φ(si) and

k(y, y′) := 〈φ(y), φ(y′)〉H [23], [48], [49], an empirical
estimate of MMD can be rewritten as follows.

MMD(G, R, S) =[
1

v2
K(R,R′) +

1

u2
K(S, S′)

− 2

uv
K(R,S)]

1
2

=[
1

u2

v∑
i 6=j

k(ri, rj) +
1

v2

u∑
i 6=j

k(si, sj)

− 2

uv

u,v∑
i,j=1

k(ri, sj)]
1
2 .

(13)

where K(R,S) is the summation of all k(r, s).
When |S| = |R|, the above Eq. 13 can be rewritten as

follows.

MMD(R,S) =(
1

|R|2
K(R,R′) +

1

|R|2
K(S, S′)

− 2

|R|2
K(R,S))

1
2

(14)

It can be obtained from Eq. 13 and Eq. 14 MMD(R,S) =
0, when R = S; and MMD has a positive value. It can also
be observed that the distance between the solution set and the
reference set is quantified by MMD in terms of K(R,S), and
the distribution of the solution set itself is quantified by MMD
in terms of K(S, S′), which explains why it has the ability of
well-distinguishing different solution sets compared with other
distance-based indicators, as shown in Fig. 1.

In addition, the induction of g in MMD usually requires a
universal kernel [23], [49], [36]. As Gaussian Kernel function
contains the least prior knowledge, it is safer to use when the
distributions of the solution sets are not known in advance, as
follows.

k(y, y′) = exp(−||y − y
′||2

2σ2
) (15)

where σ is a standard deviation parameter for controlling the
range of Gaussian distribution. More information on MMD
can be referred to in [23].

B. Algorithms for computing KBI
Based on MMD specified above, the KBI value of a solution

set S is calculated by Algorithm 1 using a reference set R and
the parameter σ of the Gaussian kernel function.

In Algorithm 1, KBI is divided into two major steps: 1)
shift-based nondominated set reconstruction and 2) computing
Gaussian-Kernel and KBI. In the following sections, each step
is specified in detail.

Algorithm 1: Pseudo code for computing KBI
Input : A reference set R ;

A solution set S ;
The parameter: σ;

Output: KBI
1 [R,S] = Normalization(R,S);
2 MMD(R,S, σ) = 0;
Step 1: Shift-Based Non-Dominated Set
Reconstruction:

3 S = SNSR(S,R);
Step 2: Computing Kernel:
//Compute MMD based on Eq.13.

4 KBI = MMD(R,S, σ) =

[ 1
|R|2K(R,R, σ)+ 1

|S|2K(S, S, σ)− 2
|R|·|S|K(R,S, σ)]

1
2 ;

5 return KBI;

1) Shift-Based NonDominated Set Reconstruction(SNSR):
Inspired from [20], [50], [51], a shift-based nondominated set
reconstruction (SNSR) is proposed to ensure the weak Pareto
compliance property of KBI. In Step 1 of Algorithm 1, SNSR
is called for obtaining a nondominated set S, as shown in
Algorithm 2.

The procedures of Algorithm 2 are described as follows. In
Step 1, a reference subset Rwds ∈ R, each of which dominates
at least one solution s ∈ S, is firstly obtained. The difference
set Rs between the original reference set R and Rwds is
considered as the reference set to be shifted. In Step 2, for
each solution r ∈ Rs, its nearest solution s ∈ S is obtained.
Then, a direction vector d between r and s is computed as
d = max{s−r, 0}. The solution s′ can be obtained by shifting
the reference point r with the direction vector d and it is finally
merged into S.
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Algorithm 2: Shift-based nondominated set reconstruction
(SNSR)
Input : The solution set: S;

The reference set: R;
Output: S;
Step 1: Initialization:
// Rwds is a reference subset.

1 Rwds = {r|r � s,∀r ∈ R,∃s ∈ S};
// Rs is the reference set to be

shifted.
2 Rs = R\Rwds;
Step 2: Shift the reference points:

3 foreach r ∈ Rs do
4 s = argmins∈Sdist(s, r);

//d = [d1, · · · , dm] is a direction vector.
5 d = max{s− r, 0};
6 s′ = r + d;
7 S = S ∪ {s′};
8 end
9 return S;

f2 Reference Point r
Solution s

Shifted Solution s’ 

f10

Fig. 3: An example of Shift-based nondominated set recon-
struction (SNSR).

Fig.3 shows an example of reconstructing the shift-based
nondominated set S. Each reference point r ∈ Rs has been
shifted to s′ (marked by green “�”). Each shifted solution s′

is weakly dominated by its nearest solution s (marked by red
“◦”).

2) Computing KBI: In Step 2 of Algorithm 1, KBI is
evaluated based on the maximum mean discrepancy (Eq.14),
which is computed by calling Algorithm 3.

In Algorithm 3, K(P,Q, σ) is firstly initialized to 0. Then,
for each p ∈ P and q ∈ Q, k(p, q, σ) is computed based on
Eq. (15). After that, K(P,Q, σ) is obtained by summing up
all k(p, q, σ).

C. Computational Complexity of KBI

The average computational complexity of SNSR (Step 2 in
Algorithm 1) is O(|R| ∗ |S|). Step 3 of Algorithm 1 requires
O(|R|2) to compute the kernel values. As the number of the
reference points (i.e., |R|) is usually equal or larger than
that of solutions in the approximation (i.e., |S|), the total
computational complexity of KBI is O(|R|2).

Algorithm 3: Computing Kernel (K)
Input : The set: P ;

The set: Q;
The parameter: σ;

Output: K(P,Q, σ);
Step 1: Initialization:

1 K(P,Q,σ) = 0
Step 2: Computing Kernel:

2 foreach p ∈ P do
3 foreach q ∈ Q do

//Compute k(p, q, σ) based on Eq. 15.

4 k(p, q, σ) = exp(− ||p−q||
2

2σ2 ) ;
5 K(P,Q, σ) = K(P,Q, σ) + k(p, q, σ);
6 end
7 end
8 return K(P,Q, σ);

D. Weak Pareto Compliance of KBI

KBI is weakly Pareto compliant (i.e., ∀A,B : A � B =⇒
I(A) ≤ I(B)). This indicates that KBI(A) ≤ KBI(B) always
holds whenever A � B holds between two nondominated sets
A and B. The proof of the weakly Pareto compliant property
of KBI can be found in the supplementary material.

E. Comparisons with other indicators

The major properties of our proposed KBI and other
indicators are summarized in Table I. It can be observed
that the dominated or duplicate solutions have unwanted
effect on IGD/Iε+/∆p. The distance-based indicators including
IGD/IGD+/Iε+/∆p and the volume-based indicator including
R2, lack of the ability to distinguish different solution sets.
The computational complexity of HV grows exponentially
with the increase in the number of objectives, which makes
it computationally expensive for many-objective optimization.
IGD and ∆p are Pareto non-compliant. As a comprehensive
quality indicator, only KBI possesses all the above desirable
properties.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we conduct computational experiments for
• validating KBI on artificial PFs;
• validating KBI on PF approximations;
• validating the optimal µ distributions of KBI;
• investigating the effects of σ on KBI;

A. Experimental Setup

In the experimental studies, KBI is verified on both artificial
PFs and PF approximations delivered by five multi/many-
objective optimizers (NSGA-II [52], IBEA [53], PAES [54],
GrEA [55], NSGA-III [56] and MaOEA/D-2ADV [57]) on
the DTLZ and WFG benchmark problems [58], [59]. For each
algorithm, the population size is set to the size of the reference
vector set, which is obtained by uniformly sampling on a unit
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TABLE I: The comparisons between KBI and other comprehensive indicators.

Indicator HV R2 IGD IGD+ Iε+ ∆p KBI

No effects for dominated/
X X X Xduplicate solutions

Effective for high
X X X X X Xdimensional PFs

Ability to distinguish
X Xdifferent solution sets

Computational exponential
quadratic quadratic quadratic quadratic quadratic quadraticeffort in m

Pareto Compliant strictly weakly weakly weakly weakly

simplex. This is usually called Das and Dennis’s systematic
approach [60]. In this approach, the reference vector size is

N =

(
m− 1

H +m− 1

)
(16)

where H > 0 is the number of divisions along each objective
coordinate and m is the number of objectives. However,
as pointed out in [56], the direct use of Das and Dennis’s
approach may not be appropriate for m > 6. Instead, a two-
layer direction vector generation method [56], [61] has been
usually used for MaOPs with more than 6 objectives.

In the experimental studies, KBI is compared with other
five indicators including HV [16], IGD [19], IGD+ [20],
Iε+ [39] and R2 [26]. For HV, the reference point is set
to 1.1 times of the maximum values of PF approximations.
For IGD/IGD+/KBI, the reference set is uniformly sampled
on PF. The size of the PF approximations (i.e., |S|), the size
of the reference set (i.e., |R|) for different problems, and the
parameter σ in KBI on m-objective optimization problems are
listed in Table II. It is worth noting that the σ values are set to
1 for various problems based on the sensitivity test in Section
IV. F.

B. KBD on Artificial PF Approximations

Three groups of artificial PF approximations are generated
and presented in Figs. 4- 6. In the first group, solutions in each
artificial PF approximations are uniformly distributed on the
same hyperplane f1 + f2 + f3 = 1 with a different range
of objective values. Fig. 4a shows a uniformly distributed
PF approximation with the objective values ranging in [0, 1].
Fig. 4b shows a uniformly distributed PF approximation with
the objective values ranging in [0.1, 0.8]. Fig. 4c shows a
uniformly distributed pf approximation with the objective
values ranging in [0.2, 0.6]. It can be clearly seen in Fig. 4d
that the three artificial PF approximations are all located on
the same hyperplane f1 + f2 + f3 = 1. It can be observed
from Figs. 4a- 4c that the approximations with larger spread
have smaller (better) KBI values, which indicates that KBI can
accurately reflect the spread of PF approximations.

In the second group, solutions in different PF approxi-
mations are uniformly distributed with different convergence
levels. Figs. 5a - 5c show the generated three artificial
PF approximations, which are uniformly distributed on the
hyperplanes f1 + f2 + f3 = 1, f1 + f2 + f3 = 0.8 and
f1 + f2 + f3 = 0.5, respectively. It can be observed that KBI
values decrease for the artificial PF approximations with better

TABLE II: The approximation/reference set size and the
parameter σ for MaOPs.

the number of objectives m 3 5 10

the approximation size |S| 120 126 276

the parameter σ 1 1 1

reference set size |R| for DTLZ2/DTLZ2−1 9870 8855 7007

reference set size |R| for DTLZ7 10000 10000 19683

reference set size |R| for WFG1 9870 8855 7007

reference set size |R| for WFG2 7425 7932 7007

convergence levels. Obviously, KBI can correctly reflect the
convergence of PF approximations.

In the third group, four artificial PF approximations are
distributed over the entire PF, although their uniformities are
quite different from each other. These four artificial PF ap-
proximations are generated in the following way. The solutions
are firstly uniformly generated on the plane f1 + f2 + f3 = 1,
ranging in [0, 1], as shown in Fig. 4a. After that, by randomly
selecting 30%, 50%, 70% or 100% of solutions and disturb
them with randomly generated noise on the same hyperplane,
approximations with different uniformities are obtained, as
shown in Figs. 6a, 6b, 6c and 6d. It can be observed from
these figures that the artificial PF approximations with better
uniformities have smaller (better) KBI values. Clearly, KBI is
able to correctly reflect the uniformity of PF approximations.

C. KBI on solution sets for regular PFs

DTLZ2 [58] and WFG1 [59] , whose PFs are regular, have
been selected for verifying the effectiveness of KBI. DTLZ2−1

has the inverted front of DTLZ2. For DTLZ2/DTLZ2−1

and WFG1, it is relatively easy for all the optimizers to
converge to their PFs. This characteristic can help to test
the diversity performance of approximations obtained by the
different algorithms. KBI, IGD, IGD+, HV, Iε+ and R2
values/ranks of solution sets obtained by the six algorithms
on DTLZ2/DTLZ2−1/WFG1 are presented in Table III.

Approximations delivered by the five many-objective op-
timizers on tri-objective DTLZ2 are plotted in Fig. 7. Their
performance, in terms of KBI/IGD/HV/IGD+/Iε+/R2 values,
are given in Table III. For five-objective DTLZ2, the parallel
coordinate plots of five approximations are plotted in Fig. 8.
Their corresponding KBI values are presented in Table III.

For the tri-objective DTLZ2, it can be observed from Fig. 7
that the approximation obtained by NSGA-III is uniformly
distributed on the whole PF, thus it has the best (lowest) KBI
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(a) Every objective value
of the PF approximation
ranges in [0, 1] and its KBI
is 0.000000.

(b) Every objective value
of the PF approximation
ranges in [0.1, 0.8] and its
KBI is 0.010639.

(c) Every objective value
of the PF approximation
ranges in [0.2, 0.6] and its
KBI is 0.027228.

(d) The PF approximations
in Figs. 4a, 4b and 4c are
located on the hyperplane
f1 + f2 + f3 = 1.

Fig. 4: Three artificial PF approximations with different spread, uniformly located on the same hyperplane f1 + f2 + f3 = 1.

(a) The PF approximation
is uniformly located on the
hyperplane f1 + f2 + f3 =
1 and its KBI is 0.000000.

(b) The PF approximation
is uniformly located on
the hyperplane f1 + f2 +
f3 = 0.8 and its KBI is
0.038138.

(c) The PF approximation
is uniformly located on
the hyperplane f1 + f2 +
f3 = 0.5 and its KBI is
0.095652.

(d) The PF approximations
in Figs. 5a, 5b and 5c are
uniformly located on three
different hyperplanes thus
they have different conver-
gence levels.

Fig. 5: Three artificial PF approximations uniformly located on three different hyperplanes.

(a) 30% of solutions are re-
placed with randomly gen-
erated solutions on the
same hyperplane. Its KBI is
0.001287.

(b) 50% of solutions are re-
placed with randomly gen-
erated solutions on the
same hyperplane. Its KBI is
0.002574.

(c) 70% of solutions are re-
placed with randomly gen-
erated solutions on the
same hyperplane. Its KBI is
0.003025.

(d) 100% of solutions are
replaced with randomly
generated solutions on the
same hyperplane. Its KBI
is 0.007761.

Fig. 6: Artificial PF approximations with different uniformities located on the hyperplane f1 + f2 + f3 = 1.

(a) KBI=0.010376 (5),
NSGA-II

(b) KBI=0.008351 (2),
IBEA

(c) KBI=0.059429 (6),
PAES

(d) KBI=0.009480 (4),
GrEA

(e) KBI=0.006145 (1),
NSGA-III

(f) KBI=0.008376 (3),
MaOEA/D-2ADV

Fig. 7: The nondominated sets obtained by the six algorithms and the corresponding ranks in terms of KBI values on the
tri-objective DTLZ2.

(a) KBI=0.036642 (5),
NSGA-II

(b) KBI=0.009722 (1),
IBEA

(c) KBI=0.082184 (6),
PAES

(d) KBI=0.012632 (3),
GrEA

(e) KBI=0.011059 (2),
NSGA-III

(f) KBI=0.020862 (4),
MaOEA/D-2ADV

Fig. 8: The nondominated sets obtained by the six algorithms and the corresponding ranks in terms of KBI values on the
five-objective DTLZ2.
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TABLE III: KBI, IGD, IGD+, HV, Iε+ and R2 values/ranks of solution sets obtained by six algorithms on
DTLZ2/DTLZ2−1/WFG1.

instances (m-obj) indicator NSGA-II IBEA PAES GrEA NSGA-III MaOEA/D-2ADV

DTLZ2 (3-obj)

KBI 1.04E − 02 (5) 8.35E − 03 (2) 5.94E − 02 (6) 9.48E − 03 (4) 6.15E − 03 (1) 8.38E − 03 (3)
IGD 6.37E − 02 (3) 8.26E − 02 (5) 2.97E − 01 (6) 7.72E − 02 (4) 4.68E − 02 (1) 5.61E − 02 (2)
HV 7.09E − 01 (5) 7.57E − 01 (1) 4.74E − 01 (6) 7.25E − 01 (4) 7.53E − 01 (2) 7.41E − 01 (3)

IGD+ 3.47E − 02 (5) 1.87E − 02 (1) 1.96E − 01 (6) 3.02E − 02 (4) 1.96E − 02 (2) 2.63E − 02 (3)
Iε+ 1.08E − 01 (5) 6.40E − 02 (1) 7.09E − 01 (6) 1.07E − 01 (4) 7.09E − 02 (2) 7.61E − 02 (3)
R2 9.33E − 02 (4) 9.18E − 02 (2) 1.42E − 01 (6) 9.33E − 02 (5) 9.17E − 02 (1) 9.20E − 01 (3)

DTLZ2 (5-obj)

KBI 3.66E − 02 (5) 9.72E − 03 (1) 8.22E − 02 (6) 1.26E − 02 (3) 1.11E − 02 (2) 2.09E − 02 (4)
IGD 3.03E − 01 (5) 2.36E − 01 (4) 6.75E − 01 (6) 1.99E − 01 (2) 1.95E − 01 (1) 2.04E − 01 (3)
HV 7.17E − 01 (5) 1.30E − 00 (1) 4.30E − 01 (6) 1.27E − 00 (3) 1.28E − 00 (2) 1.10E − 00 (4)

IGD+ 2.34E − 01 (5) 6.33E − 02 (1) 4.55E − 01 (6) 7.68E − 02 (3) 7.19E − 02 (2) 1.36E − 01 (4)
Iε+ 3.49E − 01 (5) 1.74E − 01 (1) 6.01E − 01 (6) 1.86E − 01 (2) 1.87E − 01 (3) 3.06E − 01 (4)
R2 2.29E − 02 (4) 1.84E − 02 (2) 1.30E − 01 (6) 1.88E − 02 (3) 1.83E − 02 (1) 2.51E − 02 (5)

DTLZ2 (10-obj)

KBI 1.01E − 01 (6) 2.23E − 02 (2) 4.04E − 02 (5) 2.31E − 02 (3) 1.56E − 02 (1) 3.59E − 02 (4)
IGD 1.35E − 00 (6) 7.90E − 01 (5) 6.81E − 01 (4) 5.00E − 01 (2) 4.22E − 01 (1) 5.68E − 01 (3)
HV 4.60E − 03 (6) 2.09E − 00 (2) 1.29E − 00 (4) 1.90E − 00 (3) 2.51E − 00 (1) 1.07E − 00 (5)

IGD+ 1.19E − 00 (6) 3.64E − 01 (3) 4.55E − 01 (4) 2.95E − 01 (2) 1.79E − 01 (1) 4.92E − 01 (5)
Iε+ 8.76E − 01 (6) 5.84E − 01 (5) 4.96E − 01 (4) 4.18E − 01 (2) 2.03E − 01 (1) 4.64E − 01 (3)
R2 2.31E − 02 (5) 9.31E − 03 (2) 3.93E − 02 (6) 9.53E − 03 (3) 8.28E − 03 (1) 1.42E − 02 (4)

WFG1 (3-obj)

KBI 2.98E − 01 (3) 1.98E − 01 (1) 4.62E − 01 (6) 2.81E − 01 (2) 3.45E − 01 (4) 3.51E − 01 (5)
IGD 1.04E − 00 (3) 7.07E − 01 (1) 1.68E − 00 (6) 9.79E − 01 (2) 1.23E − 00 (5) 1.21E − 00 (4)
HV 3.02E + 01 (2) 3.83E + 01 (1) 1.13E + 01 (6) 2.99E + 01 (3) 2.33E + 01 (5) 2.48E + 01 (4)

IGD+ 1.02E − 00 (3) 6.94E − 01 (1) 1.62E − 00 (6) 9.65E − 01 (2) 1.18E − 00 (4) 1.20E − 00 (5)
Iε+ 1.14E − 00 (3) 8.00E − 01 (1) 1.64E − 00 (6) 1.09E − 00 (2) 1.30E − 00 (5) 1.23E − 00 (4)
R2 4.14E − 01 (2) 3.24E − 01 (1) 6.29E − 01 (6) 4.22E − 01 (3) 4.68E − 01 (4) 5.07E − 01 (5)

WFG1 (5-obj)

KBI 3.26E − 01 (3) 2.15E − 01 (1) 3.82E − 01 (6) 2.64E − 01 (2) 3.32E − 01 (5) 3.32E − 01 (4)
IGD 1.86E − 00 (4) 1.27E − 00 (1) 2.20E − 00 (6) 1.53E − 00 (2) 1.86E − 00 (3) 1.87E − 00 (5)
HV 2.30E + 03 (3) 3.12E + 03 (1) 1.53E + 03 (6) 2.62E + 03 (2) 1.97E + 03 (4) 1.94E + 03 (5)

IGD+ 1.83E − 00 (3) 1.22E − 00 (1) 2.13E − 00 (6) 1.49E − 00 (2) 1.84E − 00 (4) 1.86E − 00 (5)
Iε+ 1.45E − 00 (5) 9.28E − 01 (1) 1.59E − 00 (6) 1.11E − 00 (2) 1.23E − 00 (3) 1.32E − 00 (4)
R2 3.78E − 01 (3) 2.77E − 01 (1) 4.64E − 01 (6) 3.48E − 01 (2) 4.39E − 01 (4) 4.44E − 01 (5)

WFG1 (10-obj)

KBI 2.60E − 01 (4) 2.36E − 01 (1) 2.73E − 01 (6) 2.52E − 01 (2) 2.67E − 01 (5) 2.56E − 01 (3)
IGD 2.98E − 00 (3) 2.74E − 00 (1) 3.21E − 00 (6) 2.91E − 00 (2) 3.13E − 00 (5) 2.99E − 00 (4)
HV 2.06E + 09 (3) 2.31E + 09 (1) 1.90E + 09 (6) 2.06E + 09 (2) 2.03E + 09 (4) 1.99E + 09 (5)

IGD+ 2.87E − 00 (4) 2.62E − 00 (1) 3.01E − 00 (6) 2.79E − 00 (2) 2.94E − 00 (5) 2.82E − 00 (3)
Iε+ 1.58E − 00 (4) 1.31E − 00 (2) 1.81E − 00 (6) 1.30E − 00 (1) 1.73E − 00 (5) 1.40E − 00 (3)
R2 3.44E − 01 (2) 3.26E − 01 (1) 3.58E − 01 (6) 3.49E − 01 (4) 3.47E − 01 (3) 3.52E − 01 (5)

DTLZ2−1 (3-obj)

KBI 1.05E − 02 (5) 7.38E − 03 (1) 4.99E − 02 (6) 8.45E − 03 (3) 1.04E − 02 (4) 7.63E − 03 (2)
IGD 6.17E − 02 (2) 8.00E − 02 (4) 2.00E − 01 (6) 8.01E − 02 (5) 6.76E − 02 (3) 5.31E − 02 (1)
HV 6.88E − 01 (5) 7.14E − 01 (2) 3.78E − 01 (6) 7.05E − 01 (3) 6.96E − 01 (4) 7.20E − 01 (1)

IGD+ 3.79E − 02 (5) 2.84E − 02 (2) 1.89E − 01 (6) 3.23E − 02 (3) 3.64E − 02 (4) 2.58E − 02 (1)
Iε+ 1.17E − 01 (5) 7.65E − 02 (2) 2.82E − 01 (6) 9.40E − 02 (4) 9.04E − 02 (3) 7.44E − 02 (1)
R2 1.26E − 01 (5) 1.24E − 01 (2) 1.65E − 01 (6) 1.25E − 01 (4) 1.25E − 01 (3) 1.23E − 01 (1)

DTLZ2−1 (5-obj)

KBI 2.64E − 02 (4) 1.58E − 02 (2) 8.33E − 02 (6) 1.38E − 02 (1) 2.64E − 02 (5) 1.77E − 02 (3)
IGD 2.46E − 01 (3) 2.79E − 01 (5) 5.69E − 01 (6) 2.11E − 01 (2) 2.50E − 01 (4) 2.02E − 01 (1)
HV 9.26E − 02 (4) 1.80E − 01 (2) 3.26E − 04 (6) 1.83E − 01 (1) 7.79E − 02 (5) 1.64E − 01 (3)

IGD+ 1.74E − 01 (4) 1.25E − 01 (3) 5.29E − 01 (6) 1.01E − 01 (1) 1.83E − 01 (5) 1.17E − 01 (2)
Iε+ 3.14E − 01 (4) 2.42E − 01 (3) 6.04E − 01 (6) 1.85E − 01 (1) 3.50E − 01 (5) 2.01E − 01 (2)
R2 1.50E − 01 (5) 1.49E − 01 (4) 2.06E − 01 (6) 1.38E − 01 (1) 1.46E − 01 (3) 1.40E − 01 (2)

DTLZ2−1 (10-obj)

KBI 2.38E − 02 (4) 1.45E − 02 (2) 9.04E − 02 (6) 1.28E − 02 (1) 1.93E − 02 (3) 2.59E − 02 (5)
IGD 4.84E − 01 (1) 5.29E − 01 (4) 1.14E + 00 (6) 5.87E − 01 (5) 5.06E − 01 (3) 4.88E − 01 (2)
HV 5.08E − 05 (4) 8.53E − 04 (2) 0.00E + 00 (6) 1.26E − 03 (1) 3.37E − 04 (3) 3.29E − 05 (5)

IGD+ 3.51E − 01 (4) 2.77E − 01 (1) 1.07E + 00 (6) 2.83E − 01 (2) 3.08E − 01 (3) 3.67E − 01 (5)
Iε+ 4.44E − 01 (2) 5.17E − 01 (4) 9.02E − 01 (6) 5.22E − 01 (5) 4.50E − 01 (3) 3.71E − 01 (1)
R2 1.61E − 01 (1) 1.73E − 01 (3) 2.38E − 01 (6) 1.86E − 01 (5) 1.74E − 01 (4) 1.66E − 01 (2)

(a) KBI=0.025633 (4),
NSGA-II

(b) KBI=0.006393 (1),
IBEA

(c) KBI=0.318480 (6),
PAES

(d) KBI=0.011279 (2),
GrEA

(e) KBI=0.024524 (3),
NSGA-III

(f) KBI=0.067828 (5),
MaOEA/D-2ADV

Fig. 9: The nondominated sets obtained by six algorithms and the corresponding ranks in terms of KBI values on tri-objective
DTLZ7.
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TABLE IV: KBI, IGD, IGD+, HV, Iε+ and R2 values/ranks of solution sets obtained by the six algorithms on DTLZ7 and
WFG2.

instances (m-obj) indicator NSGA-II IBEA PAES GrEA NSGA-III MaOEA/D-2ADV

DTLZ7 (3-obj)

KBI 2.56E − 02 (4) 6.39E − 03 (1) 3.18E − 01 (6) 1.13E − 02 (2) 2.45E − 02 (3) 6.78E − 02 (5)
IGD 1.13E − 01 (4) 1.11E − 01 (3) 1.15E − 00 (6) 7.50E − 02 (1) 1.06E − 01 (2) 3.19E − 01 (5)
HV 1.38E − 00 (4) 1.63E − 00 (1) 8.65E − 01 (6) 1.57E − 00 (2) 1.40E − 00 (3) 9.43E − 01 (5)

IGD+ 9.98E − 02 (4) 2.58E − 02 (1) 1.01E − 00 (6) 4.47E − 02 (2) 9.43E − 02 (3) 3.09E − 01 (5)
Iε+ 3.38E − 01 (4) 9.16E − 02 (1) 3.01E − 00 (6) 1.45E − 01 (2) 3.17E − 01 (3) 5.70E − 01 (5)
R2 9.88E − 01 (4) 9.23E − 01 (1) 1.87E − 00 (6) 9.46E − 01 (2) 9.68E − 01 (3) 1.08E − 00 (5)

DTLZ7 (5-obj)

KBI 1.05E − 01 (4) 2.07E − 01 (5) 3.74E − 01 (6) 1.79E − 02 (1) 2.64E − 02 (2) 8.27E − 02 (3)
IGD 7.82E − 01 (4) 1.48E − 00 (5) 2.21E − 00 (6) 2.78E − 01 (1) 3.23E − 01 (2) 6.57E − 01 (3)
HV 3.11E − 01 (6) 1.52E − 00 (3) 1.36E − 00 (4) 2.25E − 00 (1) 2.05E − 00 (2) 8.19E − 01 (5)

IGD+ 7.67E − 01 (4) 1.19E − 00 (5) 2.00E − 00 (6) 1.12E − 01 (1) 1.88E − 01 (2) 6.42E − 01 (3)
Iε+ 2.54E − 00 (4) 4.79E − 00 (5) 5.94E − 00 (6) 7.95E − 01 (1) 1.02E − 00 (2) 2.52E − 00 (3)
R2 1.16E − 00 (3) 1.60E − 00 (5) 1.84E − 00 (6) 8.15E − 01 (1) 8.60E − 01 (2) 1.59E − 00 (4)

DTLZ7 (10-obj)

KBI 1.16E − 00 (5) 5.32E − 01 (4) 3.63E − 01 (3) 3.62E − 02 (1) 7.92E − 02 (2) 1.18E − 00 (6)
IGD 1.57E + 01 (5) 5.93E − 00 (4) 4.05E − 00 (3) 8.55E − 01 (1) 1.29E − 00 (2) 1.62E + 01 (6)
HV 0.00E − 00 (5) 1.55E − 00 (3) 2.21E − 00 (2) 1.23E − 00 (4) 2.30E − 00 (1) 0.00E − 00 (6)

IGD+ 1.57E + 01 (5) 5.75E − 00 (4) 3.86E − 00 (3) 6.50E − 01 (1) 9.88E − 01 (2) 1.62E + 01 (5)
Iε+ 2.45E + 01 (5) 1.46E + 01 (4) 1.27E + 01 (3) 3.40E − 00 (1) 8.07E − 00 (2) 2.51E + 01 (6)
R2 2.95E − 00 (5) 1.94E − 00 (4) 1.75E − 00 (3) 8.24E − 01 (1) 1.28E − 00 (2) 2.99E − 00 (6)

WFG2 (3-obj)

KBI 3.15E − 02 (5) 2.34E − 02 (2) 5.10E − 02 (6) 2.16E − 02 (1) 2.54E − 02 (3) 2.62E − 02 (4)
IGD 2.04E − 01 (4) 2.75E − 01 (6) 2.59E − 01 (5) 1.95E − 01 (3) 1.55E − 01 (1) 1.58E − 01 (2)
HV 5.78E + 01 (3) 5.90E + 01 (1) 5.40E + 01 (6) 5.84E + 01 (2) 5.77E + 01 (4) 5.74E + 01 (5)

IGD+ 1.05E − 01 (5) 3.23E − 02 (1) 1.83E − 01 (6) 6.38E − 02 (2) 8.47E − 02 (3) 8.49E − 02 (4)
Iε+ 3.47E − 01 (6) 7.16E − 02 (1) 3.15E − 01 (5) 1.50E − 01 (2) 2.00E − 01 (4) 1.99E − 01 (3)
R2 1.60E − 01 (5) 1.48E − 01 (1) 1.82E − 01 (6) 1.55E − 01 (2) 1.59E − 01 (3) 1.59E − 01 (4)

WFG2 (5-obj)

KBI 8.04E − 02 (5) 3.36E − 02 (1) 9.64E − 02 (6) 3.71E − 02 (2) 4.39E − 02 (4) 4.19E − 02 (3)
IGD 7.91E − 01 (6) 4.91E − 01 (3) 7.44E − 01 (5) 5.26E − 01 (4) 4.70E − 01 (2) 4.45E − 01 (1)
HV 5.77E + 03 (2) 5.79E + 03 (1) 4.94E + 03 (6) 5.69E + 03 (3) 5.69E + 03 (4) 5.69E + 03 (5)

IGD+ 5.47E − 01 (6) 1.81E − 01 (1) 5.36E − 01 (5) 2.00E − 01 (2) 2.57E − 01 (4) 2.51E − 01 (3)
Iε+ 8.60E − 01 (6) 3.95E − 01 (2) 5.94E − 01 (5) 3.51E − 01 (1) 4.67E − 01 (4) 4.32E − 01 (3)
R2 5.41E − 02 (2) 5.57E − 02 (3) 1.03E − 01 (6) 6.00E − 02 (5) 5.19E − 02 (1) 5.62E − 02 (4)

WFG2 (10-obj)

KBI 7.91E − 02 (5) 3.38E − 02 (1) 1.32E − 01 (6) 5.23E − 02 (3) 4.92E − 02 (2) 6.08E − 02 (4)
IGD 1.50E − 00 (5) 1.05E − 00 (1) 1.80E − 00 (6) 1.22E − 00 (4) 1.16E − 00 (3) 1.13E − 00 (2)
HV 8.00E + 09 (3) 8.43E + 09 (1) 6.13E + 09 (6) 8.02E + 09 (2) 7.87E + 09 (4) 7.63E + 09 (5)

IGD+ 8.41E − 01 (5) 3.63E − 01 (1) 1.52E − 00 (6) 5.91E − 01 (3) 5.62E − 01 (2) 6.28E − 01 (4)
Iε+ 8.06E − 01 (5) 3.73E − 01 (1) 1.04E − 00 (6) 5.09E − 01 (3) 6.46E − 01 (4) 4.53E − 01 (2)
R2 3.37E − 02 (3) 2.49E − 02 (1) 1.07E − 01 (6) 3.25E − 02 (2) 3.69E − 02 (4) 5.35E − 02 (5)

(a) KBI=0.104890 (4),
NSGA-II

(b) KBI=0.206909 (5),
IBEA

(c) KBI=0.374074 (6),
PAES

(d) KBI=0.017905(1),
GrEA

(e) KBI=0.026395 (2),
NSGA-III

(f) KBI=0.082793 (3),
MaOEA/D-2ADV

Fig. 10: The nondominated sets obtained by six algorithms and the corresponding ranks in terms of KBI values on five-objective
DTLZ7.

value (0.006145). IBEA ranks the second in terms of KBI
value (0.008351) as the boundaries of its obtained approxima-
tion is well-spread but not as uniform as the one obtained by
NSGA-III. The KBI value of MaOEA/D-2ADV (0.008376) is
better than that of GrEA (0.009480). This is consistent with the
observations in Fig. 7d and 7f that the approximation obtained
by MaOEA/D-2ADV is more extensive than that of GrEA.
As shown in Figs. 7a and 7c, the approximation obtained by
NSGA-II is not uniformly distributed and the approximation
obtained by PAES has a worse distribution than that of NSGA-
II. Thus, the KBI value of NSGA-II (0.010376) is the second
largest and PAES (0.059429) is the largest.

For the five-objective DTLZ2 whose PF is in [0,1]5, it can
be observed from Fig. 8 that the approximation obtained by
the IBEA is closest to the real PF, thus it has the best KBI
value (0.009722). NSGA-III ranks the second in terms of KBI
value (0.011059) as its distribution is not as extensive as the
one obtained by IBEA. GrEA ranks the third in terms of KBI

value (0.012632) as its distribution is not as uniform as the
ones obtained by IBEA and NSGA-III. As show in Figs. 8f
and 8a, the approximation obtained by MaOEA/D-2ADV does
not converge well, and NSGA-II converges even worse. Thus,
the KBI value of MaOEA/D-2ADV (0.020862) is better than
that of NSGA-II (0.036642). In addition, it can be observed
from Fig. 8c that the approximation obtained by PAES is
different from the true PF, which leads to the worst KBI value
(0.082184).

D. KBI on solution sets for irregular PFs

The effectiveness of KBI on solution sets for irregular PFs
is further verified in this section. DTLZ7 [58] is a typical
irregular PF, consisting of 2m− 1 disconnected segments,
which can be either convex or concave. Similarly, WFG2
[59] also has a disconnected PF, which is scalable with the
number of objectives. KBI, IGD, IGD+, HV, Iε+ and R2
values/ranks of solution sets obtained by the six algorithms
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TABLE V: Values and ranks in terms of six indicators for their approximately optimal µ-distributions AI obtained by each
quality indicator I on DTLZ2.

indicator AHV AIGD AIGD+ AIε+ AR2 AKBI

HV 6.89E − 01 (1) 5.89E − 01 (6) 6.87E − 01 (2) 6.43E − 01 (5) 6.75E − 01 (3) 6.67E − 01 (4)
IGD 1.54E − 01 (4) 1.04E − 01 (1) 1.56E − 01 (5) 1.24E − 01 (2) 1.31E − 01 (3) 1.80E − 01 (6)

IGD+ 4.19E − 02 (2) 5.88E − 02 (6) 4.16E − 02 (1) 5.16E − 02 (5) 4.47E − 02 (3) 4.57E − 02 (4)
Iε+ 1.16E − 01 (2) 1.18E − 01 (4) 1.26E − 01 (5) 9.91E − 02 (1) 1.17E − 01 (3) 1.70E − 01 (6)
R2 9.08E − 02 (3) 1.05E − 01 (6) 9.10E − 02 (2) 9.64E − 02 (5) 9.07E − 02 (1) 9.43E − 02 (4)

KBI 1.46E − 02 (3) 1.54E − 02 (5) 1.40E − 02 (2) 1.60E − 02 (6) 1.52E − 02 (4) 1.04E − 02 (1)

TABLE VI: Kendall rank τ of the six indicators on DTLZ2.

HV IGD IGD+ Iε+ R2 KBI
HV 1.00 -0.47 0.87 -0.07 0.60 0.33
IGD -0.47 1.00 -0.60 0.47 -0.33 -0.87

IGD+ 0.87 -0.60 1.00 -0.07 0.73 0.47
Iε+ 0.07 0.47 -0.07 1.00 -0.07 -0.60
R2 0.60 -0.33 0.73 -0.07 1.00 0.20

KBI 0.33 -0.87 0.47 -0.60 0.20 1.00

on DTLZ7/WFG2 are presented in Table IV.
For tri-objective DTLZ7, it can be observed from Fig. 9

that the boundary of the approximation obtained by IBEA
is well-distributed on the whole PF, thus IBEA has the best
(lowest) KBI value (0.006393). GrEA ranks the second in
terms of its KBI value (0.011279) as its boundary is not as
uniform as the one obtained by IBEA. As shown in Fig. 9e
and Fig. 9a, the approximations obtained by NSGA-III and
NSGA-II are distributed extensively but non-uniformly. The
KBI values of NSGA-III (0.024524) and NSGA-II (0.025633)
really reflect such a phenomenon. As shown in Fig. 9f, the
boundary of the approximation obtained by MaOEA/D-2ADV
is not uniformly-distributed. Thus, it has the worse KBI value
(0.067828) than NSGA-II. PAES has the worst KBI value
(0.318480), as it only covers the top part of PF, as shown
in Fig. 9c.

For the five-objective DTLZ7, it can be observed from
Fig. 10 that the closest approximation to the true PF is obtained
by GrEA, thus it has the best KBI value (0.017905). NSGA-
III ranks the second in terms of the KBI value (0.026395)
as its approximation is not as well-distributed as the one
obtained by GrEA. MaOEA/D-2ADV ranks the third in terms
of KBI value (0.082793) as its approximation is not as
uniform as the one obtained by both GrEA and NSGA-III.
As shown in Fig. 10a, the approximation obtained by NSGA-
II is uniformly-distributed. The spread of the approximation
obtained by IBEA in Fig. 10b is even worse than that obtained
by NSGA-II. Thus, the KBI value of NSGA-II (0.104890) is
better than IBEA (0.206909). In addition, it can be observed
from Fig. 10c that the approximation obtained by the PAES
covers only a part of PF, which leads to the worst KBI value
(0.371074).

E. The optimal µ-distributions for KBI

The effectiveness of KBI on MaOPs with different types
of PFs has been verified in Section IV-B, IV-C and IV-D.
In this section, the optimal µ-distribution [62] is used to
further investigate the properties of KBI, compared with other
indicators. The optimal µ-distribution reflects the geometrical
distributions of µ solutions that maximize the correspond-

ing indicator. Similar to [62], the approximately optimal µ-
distribution for each indicator is obtained by running algorithm
L-SHADE [63]. In this section, the approximately optimal µ-
distribution for a quality indicator I is denoted as AI (e.g.
AKBI ).

The values and ranks in terms of the six indicators for
the approximately optimal µ-distributions AI obtained by
a quality indicator I on DTLZ2 have been summarized in
Table V. One obvious observation consistent with our intuition
is that the approximately optimal µ-distribution AI always
ranks the first in terms of the quality indicator I . However,
the ranks of AI in terms of other indicators are different from
each other. This observation suggests that the properties of
different indicators are different.

To further investigate the correlation of the six indicators,
the Kendall rank τ [64], which measures the correlation of
two indicators, have been evaluated for each indicator pair on
DTLZ2, as shown in Table VI. The value of τ ranges from
-1 to 1. A positive τ value means that the two indicators are
consistent with each other while a negative value represents
their results are conflicting with each other. It can be observed
from Table VI that the Kendall rank τ of KBI are quite
different from that of the other indicators. The τ values be-
tween KBI and IGD/Iε+ are −0.87/−0.60, indicating that KBI
and IGD/Iε+ are negatively correlated with each other. The
τ value between KBI and HV/IGD+/R2 are 0.33/0.47/0.20,
indicating that KBI and HV/IGD+/R2 are weakly correlated
with each other. However, none of the other indicators is
strongly correlated with KBI, which verifies its uniqueness.
Due to the page limit, the Kendall ranks of the six indicators on
other test problems are shown in the supplementary material.

F. Sensitivity test of parameter σ
In this section, we investigate the effects of the width pa-

rameter σ on KBI. Fig. 11 shows the values of KBI for various
σ values on the tri-, five- and ten-objective DTLZ2/DTLZ7. It
can be observed that the ranks of the six algorithms in terms
of KBI remain unchanged over a wide range of σ values.
This indicates that KBI is not sensitive to the parameter σ.
Another interesting observation from Fig. 11 is that KBI values
always firstly increase then decrease with the increase of the
σ value. The compared algorithms have the largest gaps in
term of their KBI values when σ value is around 1 for all
the problems except for ten-objective DTLZ7, which implies
that KBI has the best performance in terms of distinguishing
different approximations when the σ value is around 2 for ten-
objective DTLZ7 and 1 for all the other test problems. Based
on the above analysis, the σ value is suggested to be set to 1
for the users of KBI.
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(a) KBI of the approximations obtained by the six
algorithms on tri-objective DTLZ2 with different
σ values.

(b) KBI of the approximations obtained by the six
algorithms on five-objective DTLZ2 with different
σ values.

(c) KBI of the approximations obtained by the six
algorithms on ten-objective DTLZ2 with different
σ values.

(d) KBI of the approximations obtained by the six
algorithms on tri-objective DTLZ7 with different
σ values.

(e) KBI of the approximations obtained by the six
algorithms on five-objective DTLZ7 with different
σ values.

(f) KBI of the approximations obtained by the six
algorithms on ten-objective DTLZ7 with different
σ values.

Fig. 11: KBI values of the six approximations with different σ values.

V. CONCLUSION

In this paper, we proposed a new performance indicator
to evaluate PF approximations obtained by multiobjective
optimizers. In the proposed KBI, the kernel-based distance is
used for measuring the difference between two solution sets.
A shift-based nondominated set reconstruction (SNSR) was
also proposed for maintaining the weak Pareto compliance
property of KBI. Through computational experiments, it was
demonstrated that KBI can measure both the convergence and
the diversity of solution sets in a consistent manner with our
intuition. It is also shown that KBI does not have a large
similarity to any other indicators. One interesting research
direction is to use KBI for solution subset selection. It is also
interesting to use KBI in indicator-based algorithms.
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