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Enhanced Constraint Handling for
Reliability-Constrained Multi-objective Testing

Resource Allocation
Zhaopin Su, Guofu Zhang, Feng Yue, Dezhi Zhan, Miqing Li, Bin Li, Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—The multi-objective testing resource allocation prob-
lem (MOTRAP) is how to efficiently allocate the finite testing
time to various modules, with the aim of optimizing system
reliability, testing cost, and testing time simultaneously. To deal
with this problem, a common approach is to use multi-objective
evolutionary algorithms (MOEAs) to seek a set of trade-off
solutions between the three objectives. However, such a trade-
off set may contain a substantial proportion of solutions with
very low reliability level, which consume lots of computational
resources but may be valueless to the software project manager.
In this paper, an MOTRAP model with a pre-specified reliability
is first proposed. Then, new lower bounds on the testing time
invested in different modules are theoretically deduced from the
necessary condition for the achievement of the given reliability,
based on which an exact algorithm for determining the new
lower bounds is presented. Moreover, several enhanced constraint
handling techniques (ECHTs) derived from the new bounds are
successively developed to be combined with MOEAs to correct
and reduce the constraint violation. Finally, the proposed ECHTs
are evaluated in comparison with various state-of-the-art con-
straint solving approaches. The comparative results demonstrate
that the proposed ECHTs can work well with MOEAs, make the
search focus on the feasible region of the pre-specified reliability,
and provide the software project manager with better and more
diverse, satisfactory choices in test planning.

Index Terms—Multi-objective testing resource allocation, reli-
ability constraint, evolutionary algorithms, constraint handling.
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I. INTRODUCTION

SOFTWARE testing is an investigation conducted to detect
software failures so that defects may be discovered and

corrected and is of significant importance to the software
project development. However, for some time past it has
been widely accepted that almost half of the total amount
of software development resources are expended in software
testing [1]. In fact, the number of possible tests for even simple
software modules is practically infinite, but the available
testing time and resources are always tight, especially for
large-scale, complex software projects. In such situations, a
primary task for a software project manager is to develop a
testing resource allocation (TRA) plan to derive the maximal
system reliability from the available resources. Consequently,
to date, a lot of research effort has been spent to formulate
models and design algorithms to optimize the allocation of the
limited testing resources [2].

In early studies, TRA was modeled as a single-objective
optimisation problem, such as minimizing cost with the re-
liability or time constraint [1], or minimizing the consumed
time with a reliability requirement [3]. Some traditional math-
ematical programming methods, such as Lagrange multipliers
and dynamic programming, were used to solve the above
models. In the last decade, TRA has been formulated as
a multi-objective optimisation problem (MOP), called MO-
TRAP, which aims at maximizing reliability and minimizing
cost and time [4]. It is clear that reliability, cost, and time
are usually conflicting with each other. The traditional math-
ematical programming methods tend to be very susceptible
to the discontinuity and the shape of the Pareto front and
normally generate only a single non-dominated solution per
run [5]. On the other side, multi-objective evolutionary algo-
rithms (MOEAs) [6]–[8], such as NSGA-II [9] and MOEA/D
[10], are less susceptible to the shape or continuity of the
Pareto front and can manage a set of solutions and generate
several elements of the Pareto optimal set in a single run
[5]. Consequently, MOEAs have become very popular as
a multi-objective optimizer of the MOTRAP [4], [11]–[13].
These MOEAs can provide the software project manager
with a lot of additional choices that show different trade-offs
between reliability, cost, and time, and hence can facilitate
more informed planning of a testing period.

Although the above MOEAs can help the software project
manager to organize the testing time in a more efficient way,
in fact, the system reliability is always the primary driver of
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software testing [1]. In traditional single-objective optimisation
approaches, the reliability constraint has been widely used in
different TRA models to make the final solution meet a certain
reliability requirement. Unfortunately, the existing MOEAs
[4], [11]–[13] for solving the MOTRAP have typically focused
on the time constraint rather than the reliability constraint
and produced a great number of solutions with very low
reliability level, which may be valueless and unacceptable for
the software project manager. In other words, only a small
number of solutions in the trade-off set may be useful in
practice. This leads to a big waste of computational efforts and
a great deal of information redundancy, obviously deviating
from the original intention of the MOTRAP. It should be noted
that although we can consider cost and time, it is doubtless
that the key issue for software testing is still reliability. The
software project manager would be very interested in TRA
schemes that can achieve the desired reliability for customer
satisfaction. In such situations, the software project manager
is eager to see that each solution in the trade-off set of the
MOTRAP has the satisfactory reliability and is available for
reference use in practical testing. Consequently, it should be
natural for the reliability constraint to be further considered in
the MOTRAP. This raises two new, open questions: How to
make the solutions in the trade-off set meet the pre-specified
reliability requirement? And how to make the search focus on
the feasible region of the satisfactory reliability?

To answer the above questions, in this work, four aspects
are studied: 1) The mathematical model for the reliability-
constrained MOTRAP is constructed, considering the three
objectives of reliability, cost, and time, and a variety of
time and reliability constraints; 2) New lower bounds on the
time invested in different modules are theoretically deduced
from the necessary condition for the achievement of the pre-
specified reliability, based on which an exact algorithm for
determining the new lower bounds is developed; 3) Sev-
eral enhanced constraint handling techniques (ECHTs) are
developed on the basis of the new bounds to make up for
the defects of MOEAs and make MOEAs explore in the
acceptable solution region of the pre-specified reliability by
correcting and reducing the constraint violation; 4) Three state-
of-the-art constraint solving approaches designed specifically
for the MOTRAP, two general constrained MOEAs for solving
constrained MOPs (CMOPs), and 195 instances are used in our
experimental studies.

This paper is organized as follows. Section II presents
an overview of the related work. Section III constructs the
mathematical model of the reliability-constrained MOTRAP.
In Section IV, the derivation of new lower bounds and an
exact algorithm for determining the new bounds are developed.
Section V details the proposed ECHTs on the basis of the new
bounds. Experimental analyses are presented in Section VI.
Conclusions are drawn in Section VII.

II. LITERATURE REVIEW

This section focuses on most relevant work on evolutionary
algorithms (EAs) based solutions to TRA, especially constraint
handling techniques in MOEAs for solving the MOTRAP. Of
course, other classical methods can be found in [2], [14].

A. EAs Based TRA

In search-based software engineering, researchers and prac-
titioners use EAs to find near-optimal, feasible solutions [15].
An early effort was from Dai et al. [16] who modeled TRA
in terms of a weighted sum of reliability and cost and applied
genetic algorithm (GA) to search good enough solutions.
Kapur et al. [17] used GA to minimized cost under constrained
resources and reliability. Gao and Xiong [18] improved Kapur
et al.’s work with GA and local search strategy. Aggarwal et
al. [19] introduced GA to maximize the total fault removal or
minimize total testing resources. To deal with TRA under un-
certainties, Chaudhary et al. [20] adopted differential evolution
(DE) to maximize the number of detected faults in each testing
period with the re-estimated modular parameters. Although the
above EAs were empirically validated and technically feasible,
it should be pointed out that it is impossible for a single
solution of TRA to fully characterize the optimal balance
between reliability, cost, and time.

B. Constraint Handling Based MOEAs for MOTRAP

To our best knowledge, Wang et al. [4] made the first
attempt to formulate TRA as an MOP and use an MOEA
to solve it. Then, Yu et al. [13] embedded effective local
search into MOEA/D and considered both reliability and
cost. To reduce the impact of uncertainty in TRA models,
Pietrantuono et al. [21] embedded Monte Carlo simulations
into MOEAs and provided interval-solutions instead of point-
solutions under different possible values of model parameters.
However, there is no constraint solving approach in the above
mentioned studies, which may weaken the performance of
MOEAs.

In search-based software engineering, the individual-repair
based constraint handling techniques have become increas-
ingly important [22]. Wang et al. [4] and Yang et al. [12]
randomly migrated infeasible solution into the feasible region
of the search space by reducing each element value of the solu-
tion vector. This technique can ensure each repaired individual
to be feasible but might destroy useful genetic information
that should be inherited from parent individuals. To link up
the constraint handling with the nature of the used NSGA-II,
Zhang et al. [11] handled constraint violations on time within
the crossover and mutation operators. Particularly, they only
amend the gene values that are supposed to be changed, which
is beneficial to preserve the useful evolutionary information in
offspring.

It is clear that the MOTRAP belongs to CMOPs. To date,
a lot of general constrained MOEAs have sprung up like
mushrooms for solving CMOPs. Liu et al. [23] evaluated
the performance of different combinations between indicator-
based MOEAs and constraint-handling techniques. Liu and
Wang [24] transformed CMOPs into constrained single objec-
tive optimisation problems and used DE and the feasibility
rule to generate high-quality candidate solutions that are
utilized as the original population of MOEAs. Fan et al.
[25] proposed an integrated method, called MOEA/D-IEpsilon,
to combine MOEA/D with an improved epsilon constraint-
handling method that controls the relaxation of constraints by



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Input Output

11M

11nM

1jM

jkM⋯ ⋯

jjn
M

1mM

mmnM

1S

jS

mS

⋯
⋯

⋯ ⋯

Fig. 1. The classical structure of a parallel-series modular software system.

adjusting the epsilon level dynamically according to the ratio
of feasible to total solutions in the current population. Yang et
al. [26] adjusted the epsilon level in line with the maximum
and minimum constraint violation values of infeasible individ-
uals to prevent MOEAs being converged to feasible solutions
prematurely. To make good use of infeasible solutions, Tian et
al. [27] presented a coevolutionary constrained multi-objective
optimisation framework, called CCMO, to evolve two different
populations simultaneously to solve the original problem and
a helper problem derived from the original one, respectively,
sharing useful information between the two populations. Peng
et al. [28] also used one population to explore feasible regions
and the other population to explore the entire space on the
basis of a set of directed weight vectors to guide the search
to a wide range of promising regions. Although the above
constraint solving approaches have been validated to play a
valuable role in the exploration and exploitation of MOEAs
for solving CMOPs, few attempts have been made to link up
the problem’s knowledge with the corresponding constraint
handling techniques.

Different from the previous studies, in this work we theo-
retically deduce the new lower bounds on the time invested in
different modules on the basis of the pre-specified reliability
to reduce the solution space, and at the same time, we develop
an exact algorithm to determine the new lower bounds. Partic-
ularly, several ECHTs are proposed to utilize the theoretical
lower bounds to correct and reduce the constraint violation.

III. PROBLEM FORMULATION

Following the practice in [4], [11], in this work, we discuss
the MOTRAP on the basis of the parallel-series modular
software model, which is very simple, straightforward, and
widely-used in real-world software systems. The incorpora-
tion of the equally popular architecture-based model [3] is
proposed as future work.

The typical structure of a parallel-series modular software
system is shown in Fig. 1. As can be seen, the whole system
has m ∈ N serial subsystems, S1, . . . , Sm, each of which
contains nj ∈ N (j = 1, . . . ,m) modules, Mj1, . . . ,Mjnj .
In software testing, the available testing time T ∗ ∈ R+ refers
to the total working hours that can be calculated according
to the number of software testers and the working hours of
each tester [4], [12]. For further illustrations, we use tjk ∈ R+

0

(k = 1, . . . , nj) to denote the testing time invested in a module
Mjk. Obviously, the actual consumed testing time T ∈ R+ of
the whole system can be computed by [4].

T =
m∑
j=1

nj∑
k=1

tjk ≤ T ∗

The relationship between the reliability and the invested
testing time is often described by the software reliability
growth models (SRGMs) [1]. In SRGMs, the fault removing
is recognized as a nonhomogeneous Poisson process, based on
which the achieved reliability rjk ∈ [0, 1] of the module Mjk

can be evaluated as below [1].

rjk = exp [−λajkbjk exp (−bjktjk)] (1)

where λ ∈ R+ is a predefined constant and denotes the period
of workable time or the estimated system life; ajk ∈ R+

represents the mean value of the total errors in Mjk; bjk ∈ R+

is the rate of detected errors for Mjk. Notice that both ajk
and bjk depict the time-reliability relationship for different
Mjk and their values are usually determined on the basis of a
sequence of software failure times corresponding to Mjk and
maximum likelihood estimation [1].

A subsystem Sj may contain more than one module (i.e.,
nj ≥ 1). These parallel modules are used to improve the per-
formance of Sj due to the fact that Sj can work permanently
until all the parallel modules in Sj are no longer available.
Accordingly, the expected reliability Rj ∈ [0, 1] of Sj is [1]

Rj = 1−
nj∏
k=1

(1− rjk) (2)

Furthermore, according to the multiplication rule, the achieved
reliability R ∈ [0, 1] of the whole system is the total reliability
of the m serial subsystems [1], [4], namely,

R =

m∏
j=1

Rj ≥ R∗

where R∗ ∈ [0, 1] is the pre-specified reliability [1].
The testing cost refers to the amount being spent on testing

and measuring quality as well as the cost of corrections.
Usually, the potential cost Cjk ∈ R+ derived from the
achieved reliability rjk of Mjk is defined as follows [16]:

Cjk = cjk1 exp
(
cjk2 rjk − cjk3

)
where cjk1 , cjk2 , cjk3 ∈ R+ are cost increment rates correspond-
ing to Mjk. According to this, the total testing cost C ∈ R+

consumed by the whole system is [4], [16]

C =
m∑
j=1

nj∑
k=1

Cjk

Finally, the tri-objective optimisation model for the
reliability-constrained MOTRAP can be listed as below.

min
t

f(t) = (1−R,C, T )

s.t. t = (t11, . . . , tmnm) ∈ RD

R ≥ R∗
T ≤ T ∗
0 ≤ tjk ≤ T ∗, j ∈ {1, . . . ,m}, k ∈ {1, . . . , nj}

(3)

where t is a solution of the MOTRAP; D =
∑m

j=1 nj is the
number of decision variables;R∗ is the lower bound constraint
for R; T ∗ is the upper bound constraint for T and tjk. In (3),
it is expected that at least t is able to achieve the desired
reliability R∗ within the available testing time T ∗.
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IV. NEW LOWER BOUNDS ON TESTING TIME

In this section, we try to utilize the new constraints in (3)
to derive new bounds to reduce the solution space. It is highly
expected that, the derived new bounds can help MOEAs to
restrict solutions to a specific, acceptable range, and avoid
solutions wandering into infeasible or unacceptable regions.

First, from (3), we can obtain that
m∏
j=1

Rj ≥ R∗ (4)

Obviously, (4) is an m-dimensional continuous product in-
equality whose solutions are enclosed by an m-dimensional
space. When m is big, it is very difficult to accurately deter-
mine the hard range of each Rj . Accordingly, a compromise
approach is to find a soft, but reasonable region for Rj . Since
∀j ∈ {1, . . . ,m}, Rj ∈ [0, 1], at least we can obtain the
following necessary conditions, intuitively and immediately
from (4):

∀j ∈ {1, . . . ,m}, Rj ≥ R∗ (5)

That is, each subsystem’s reliability must reach to at least R∗.
This is because as long as ∃j ∈ {1, . . . ,m}, Rj < R∗, it is
impossible for (4) to hold, even if each of the other subsys-
tems’ reliability is equal to 1. To provide visual illustrations,
Fig. 2 shows the solution space of a 2-D product inequality
R1R2 ≥ 0.6 (i.e., m = 2 and R∗ = 0.6). It can be observed
that in the whole solution space, the feasible region is very tiny
and most areas are infeasible. Particularly, the yellow rectangle
enclosed by R1 ≥ 0.6 and R2 ≥ 0.6 can just cover the lower

bound and the feasible region, exclude most of the infeasible
solutions from the rectangle, and can be viewed as the best
soft region for solution exploration. Based on this observation,
we take into account (5) as a reasonable soft condition for
achieving R∗.

Putting (2) and (5) together, we can obtain that ∀j ∈
{1, . . . ,m},

∏nj

k=1 (1− rjk) ≤ 1 − R∗. Similarly, we can
achieve the following necessary condition for each Sj : ∃k ∈
{1, . . . , nj}, 1 − rjk ≤ nj

√
1−R∗. That is, for each Sj ,

there exists at least a module k ∈ {1, . . . , nj}, satisfying
rjk ≥ 1 − nj

√
1−R∗. Taking this and (1) together, we can

obtain that in Sj , at least ∃k ∈ {1, . . . , nj},

tjk ≥
ln

[
−λajkbjk

ln(1− nj
√
1−R∗)

]
bjk

Notice that different ajk and bjk will result in different tjk.
For instance, Fig. 3 depicts the time-reliability relationship
for modules with different ajk and bjk in terms of SRGMs.
It can be observed that, the module’s reliability increases
with the testing time, showing different growth rates. In other
words, to achieve the same reliability, the time consumed by
modules in Sj is completely different. Since the total available
time is always tight, the greatest strength of a wise choice is
that the module which consumes the least testing time in Sj

can be chosen to save the total available time as much as
possible. This is because saving the total testing time is of
great significance to shorten the testing cycle and save the
testing cost, especially human resource costs in practice [1].
For this purpose, we denote

τjk =

ln

[
−λajkbjk

ln(1− nj
√
1−R∗)

]
bjk

(6)

as the needed time for each module in Sj to achieve the
required reliability. Then, τ∗j = min

k
(τjk) represents the min-

imal time derived from the most time-efficient module in Sj .
Obviously, this special module should be prioritized in TRA
to save the limited testing time. Without loss of generality,
we denote the special module as Mjκ∗

j
(κ∗j ∈ {1, . . . , nj}),

namely, κ∗j = argmin
k

(τjk).

It should be noted that Mjκ∗
j

is not necessarily always the
right choice. See Fig. 3, under the required R∗ = 0.6, Mj2

consumes the least time, followed by Mj1 and Mj3. However,
the curves of Mj1 and Mj2 has an intersection, behind which
Mj1 can achieve higher reliability with lower testing time than
Mj2 and Mj3. In other words, Mj1 is easier to achieve a
higher reliability with lower time than Mj2 and is obviously
a better choice. Therefore, for each Mjκ∗

j
in Sj , we need to

further check whether the reliability curve of Mjκ∗
j

has an
intersection with each of the reliability curves of the other
modules in Sj . Assume that Mjκ∗

j
has an intersection with

Mjk (k ̸= κ∗j ), whose time value is denoted as τ⃗jk. On the
basis of (1), τ⃗jk can be calculated as below.

τ⃗jk =
ln(ajκ∗

j
bjκ∗

j
)− ln(ajkbjk)

bjκ∗
j
− bjk

(7)
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Algorithm 1 The exact algorithm for determining the new
lower bounds.
Input: R∗

Output: τL
jk (j ∈ {1, . . . ,m}, k ∈ {1, . . . , nj})

1: for j := 1 to m do
2: for k := 1 to nj do
3: compute τjk according to (6)
4: end for
5: end for
6: for j := 1 to m do
7: τ∗

j ← min
k

(τjk) , κ
∗
j ← argmin

k
(τjk)

8: end for
9: for j := 1 to m do

10: for k := 1 to nj do
11: if Mjk intersects with Mjκ∗

j
(k ̸= κ∗

j ) then
12: calculate τ⃗jk based on (7)
13: if τ⃗jk > τ∗

j then
14: κ∗

j ← k, τ∗
j ← τ⃗jk

15: end if
16: end if
17: end for
18: end for
19: for j := 1 to m do
20: for k := 1 to nj do
21: if k = κ∗

j then
22: τL

jk ← τ∗
j

23: else
24: τL

jk ← 0
25: end if
26: end for
27: end for

If τ⃗jk > τ∗j , execute κ∗j ← k and τ∗j ← τ⃗jk to update the most
time-efficient module.

Having κ∗j and τ∗j in hand, we redefine the lower bound
constraint for each tjk as τLjk to classify and prioritize different
modules. Then, for ∀j ∈ {1, . . . ,m} and ∀k ∈ {1, . . . , nj},
we have

τLjk =

{
τ∗j , k = κ∗j
0, k ̸= κ∗j

(8)

Importantly, these new bounds can tell us which modules are
time-efficient or time-consuming to achieve the pre-specified
reliability. Similarly, for the entire system, the lower bound
constraint for T can be defined as T L =

∑m
j=1

∑nj

k=1 τ
L
jk.

The basic idea for determining the new lower bounds is
shown in Algorithm 1. It can be easily seen that the worst-
case complexity of Algorithm 1 is O(D). Solvers can use
Algorithm 1 to prepare the new lower bounds automatically.
Now, it can be obtained that each tjk must satisfy

tjk ≥ τLjk (9)

and

T L ≤
m∑
j=1

nj∑
k=1

tjk ≤ T ∗ (10)

V. CONSTRAINT HANDLING TECHNIQUES USING THE
NEW BOUNDS

The goal of this work is to design ECHTs for the reliability-
constrained MOTRAP which can be combined with MOEAs
to make up for the defects of MOEAs and improve the search
effectiveness. Following the practice of existing studies [4],
[11], we consider individual initialization, simulated binary
crossover, and polynomial mutation as the basic evolutionary

operators in which infeasible individuals with very low re-
liability level may be produced. We embed ECHTs in the
process of the above evolutionary operators to correct and
reduce the constraint violation in MOEAs. More specifically,
the proposed ECHTs (i.e., Algorithms 1-4) are driven by both
time and reliability. Algorithm 1 is an important basic part of
the proposed ECHTs. In Algorithms 2-4, once an individual
is infeasible in timeline, it is repaired according to both τLjk
and T ∗, in which τLjk is determined by Equation (8) to ensure
that those most time-efficient modules can be chosen first. As
such, a high system reliability with low time consumption can
be achieved.

Note that these ECHTs are problem-specific and work only
for the reliability-constrained MOTRAP. Algorithms 1-4 are
closely connected with each other and are an organic whole
of four, without one of which the others will be ineffective.
The primary aim of Algorithms 2-4 is to utilize the new
lower bounds determined by Algorithm 1 to make the search
as close as possible to the feasible region, thereby a higher
chance to produce feasible solutions with acceptable reliability
level. In addition, the proposed ECHTs do not suggest any
novel selection strategy due to the fact that no new infeasible
individual will be created during selection. However, it should
be noted that these ECHTs cannot guarantee that the repaired
individual satisfies (4). This is because Constraint Set (5)
is only a necessary condition for achieving the desired R∗.
Hence, the constrained dominance relation is suggested in
mating selection or environmental selection. More specifically,
an individual is said to dominate the other individual if any
of the following conditions is true: this individual is feasible
and the other individual is not; both the two individuals are
infeasible but the constraint violation degree of this individual
is smaller than that of the other individual; both the two
individuals are feasible but this individual is no worse than
the other individual for all objectives and at the same time,
this individual is strictly better than the other individual in at
least one objective.

A. Individual Initialization

Each individual represents a solution t and each gene
denotes a decision variable tjk. The procedure of individual
initialization with ECHTs is shown in Algorithm 2, where
rand(τLjk, T ∗) represents a random number in [τLjk, T ∗] which
is generated from a normal distribution. As shown in Algorith-
m 2, each tjk is generated randomly between the new lower
bounds and the upper bounds: tjk ← rand(τLjk, T ∗). Once the
sum of all tjk is beyond T ∗, each tjk will be scaled down as
below.

t̂jk ← τLjk + (tjk − τLjk)
T ∗ − T L

m∑
j=1

nj∑
k=1

tjk − T L

in which T L is used to achieve a reasonable reduction propor-
tion, maintain the previous diversity, and ensure the required
reliability level. Notice that the new t̂jk can always obey
Constraint Sets (9) and (10). Moreover, it can be immediately
seen that the worst-case complexity of Algorithm 2 is O(D).
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Algorithm 2 The ECHTs for individual initialization.
Input: τL

jk (j ∈ {1, . . . ,m}, k ∈ {1, . . . , nj}) and T ∗

Output: a feasible individual
1: for j := 1 to m do
2: for k := 1 to nj do
3: tjk ← rand(τL

jk, T
∗)

4: end for
5: end for

6: if
m∑

j=1

nj∑
k=1

tjk > T ∗ then

7: for j := 1 to m do
8: for k := 1 to nj do
9: t̂jk ← τL

jk + (tjk − τL
jk)

T ∗−T L

m∑
j=1

nj∑
k=1

tjk−T L

10: end for
11: end for
12: end if

B. Simulated Binary Crossover

During the process of crossover, the infeasibility is caused
only by the revised genes rather than non-revision genes.
Accordingly, constraint handling must be operated only on the
updated genes to preserve the essential genetic information in
children.

The procedure of the ECHTs based simulated binary
crossover is illustrated in Algorithm 3, where sumo1 , sumo2

are the sums of all the gene values; sumo1
cs , sum

o2
cs are the

sums of all the crossover-gene values; T o1
cs , T o2

cs are the avail-
able testing time for the crossover genes; T L

cs denotes the least
testing time needed by all the crossover genes; CR ∈ [0, 1] is
the predefined crossover rate; rand(0, 1), rand(τLjk, y

l), and
rand(yh, T ∗) represent random numbers in [0, 1], [τLjk, y

l],
and [yh, T ∗], respectively, which are generated from a normal
distribution; β ∈ R+

0 is a uniformly sampled random number
[9].

In Algorithm 3, to1jk may be decreased and to2jk may be
enlarged after the crossover. Thus, it is possible that to1jk < τLjk
or to2jk > T ∗. In such cases, we choose the smaller of
yl − τLjk and T ∗ − yh to control the change range of gene
values and avoid potential constraint violations in the two
children. If yl − τLjk ≤ T ∗ − yh, to1jk ← rand(τLjk, y

l) and
to2jk ← yh + yl − to1jk. Otherwise, to2jk ← rand(yh, T ∗) and
to1jk ← yh + yl − to2jk. It can be found that the new to1jk and
to2jk obey (9). When the sum of gene values violates T ∗, all
the crossover-gene values will be reduced according to T L

cs to
maintain the previous evolutionary tendency and approach the
acceptable reliability level. More specifically, if sumo1 > T ∗
or sumo2 > T ∗, each crossover-gene should be amended as
follows: {

t̂o1jk ← τLjk + (to1jk − τLjk)
T o1
cs −T

L
cs

sum
o1
cs−T L

cs

t̂o2jk ← to1jk + to2jk − t̂o1jk

or {
t̂o2jk ← τLjk + (to2jk − τLjk)

T o2
cs −T

L
cs

sum
o2
cs−T L

cs

t̂o1jk ← to1jk + to2jk − t̂o2jk

It can be observed that the new t̂o1jk and t̂o2jk obey (9) and (10),
and moreover, the worst-case complexity of Algorithm 3 is
O(D).

Algorithm 3 The ECHTs for simulated binary crossover.
Input: two mating individuals p1 and p2

Output: two child individuals o1, o2
1: sumo1 ← 0, sumo2 ← 0, sumo1

cs ← 0, sumo2
cs ← 0

2: T o1
cs ← 0, T o2

cs ← 0,T L
cs ← 0

3: for j := 1 to m do
4: for k := 1 to nj do
5: if rand(0, 1) ≤ CR then
6: yh = max(t

p1
jk , t

p2
jk ), y

l = min(t
p1
jk , t

p2
jk )

7: t
o1
jk ←

1
2 [y

h + yl − β(yh − yl)], t
o2
jk ← yh + yl − t

o1
jk

8: if to1jk < τL
jk or to2jk > T ∗ then

9: if yl − τL
jk ≤ T

∗ − yh then
10: t

o1
jk ← rand(τL

jk, y
l), t

o2
jk ← yh + yl − t

o1
jk

11: else
12: t

o2
jk ← rand(yh, T ∗), t

o1
jk ← yh + yl − t

o2
jk

13: end if
14: end if
15: sumo1

cs ← sumo1
cs + t

o1
jk , sum

o2
cs ← sumo2

cs + t
o2
jk

16: T L
cs ← T

L
cs + τL

jk

17: else
18: t

o1
jk ← t

p1
jk , t

o2
jk ← t

p2
jk

19: end if
20: sumo1 ← sumo1 + t

o1
jk , sum

o2 ← sumo2 + t
o2
jk

21: end for
22: end for
23: if sumo1 > T ∗ then
24: T o1

cs ← T
∗ − (sumo1 − sumo1

cs )
25: for j := 1 to m do
26: for k := 1 to nj do
27: if to1jk is a crossover gene then

28: t̂
o1
jk ← τL

jk + (t
o1
jk − τL

jk)
T o1
cs −T L

cs

sum
o1
cs −T L

cs
29: t̂

o2
jk ← t

o1
jk + t

o2
jk − t̂

o1
jk

30: end if
31: end for
32: end for
33: end if
34: if sumo2 > T ∗ then
35: T o2

cs ← T
∗ − (sumo2 − sumo2

cs )
36: for j := 1 to m do
37: for k := 1 to nj do
38: if to2jk is a crossover gene then

39: t̂
o2
jk ← τL

jk + (t
o2
jk − τL

jk)
T o2
cs −T L

cs

sum
o2
cs −T L

cs
40: t̂

o1
jk ← t

o1
jk + t

o2
jk − t̂

o2
jk

41: end if
42: end for
43: end for
44: end if

C. Polynomial Mutation

The procedure of the ECHTs based polynomial mutation
is presented in Algorithm 4, where sumo denotes the sum
of all the gene values; sumo

mt represents the sum of all the
mutation-gene values; T o

mt is the available testing time for the
mutation genes; T L

mt represents the least testing time needed by
all the mutation genes; MR ∈ [0, 1] is the given mutation rate;
rand(τLjk, t

p
jk) and rand(tpjk, T ∗) represent random numbers

in [τLjk, t
p
jk] and [tpjk, T ∗], respectively, which are generated

from a normal distribution; δ ∈ (−1, 1) is a random number
generated from a polynomial distribution [9].

In Algorithm 4, it is possible that tojk violates the lower
or upper bound after the mutation. If it happens, tojk will be
repaired within the appropriate range to maintain the previous
evolutionary trend. Once tojk < τLjk, t̂ojk ← rand(τLjk, t

p
jk). On

the other side, if tojk > T ∗, t̂ojk ← rand(tpjk, T ∗). It is clear
that the new t̂ojk satisfies (9). In addition, if sumo is beyond
T ∗, each mutation-gene value will be scaled down on the basis
of T L

mt to preserve the genetic characteristics in offspring and
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Algorithm 4 The ECHTs for polynomial mutation.
Input: a selected individual p
Output: a produced offspring o
1: sumo ← 0, sumo

mt ← 0, T o
mt ← 0, T L

mt ← 0
2: for j := 1 to m do
3: for k := 1 to nj do
4: if rand(0, 1) ≤MR then
5: tojk ← tpjk + δ(T ∗ − τL

jk)

6: if tojk < τL
jk then

7: tojk ← rand(τL
jk, t

p
jk)

8: end if
9: if tojk > T ∗ then

10: tojk ← rand(tpjk, T
∗)

11: end if
12: sumo

mt ← sumo
mt + tojk, T

L
mt ← T

L
mt + τL

jk

13: else
14: tojk ← tpjk
15: end if
16: sumo ← sumo + tojk
17: end for
18: end for
19: if sumo > T ∗ then
20: T o

mt ← T
∗ − (sumo − sumo

mt)
21: for j := 1 to m do
22: for k := 1 to nj do
23: if tojk is a mutation gene then

24: t̂ojk ← τL
jk + (tojk − τL

jk)
T o
mt−T L

mt
sumo

mt−T L
mt

25: end if
26: end for
27: end for
28: end if

TABLE I
MODEL PARAMETERS FOR DIFFERENT SOFTWARE SYSTEMS

System λ T ∗ R∗ m nj

Complex 200 150,000 0.65 11 {1, 2, 3, 3, 4, 4, 4, 3, 3, 2, 1}
Large 200 230,000 0.65 16 {1, 2, 3, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 3, 2, 1}

Larger 200 560,000 0.65 30
{1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5,
5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1}

TABLE II
RANGE OF THE MODULAR PARAMETER VALUES

Module ajk bjk cjk1 cjk2 cjk3

Serial [30.0,35.0] [5.8E-3,6.2E-3] [3.4,3.55] [6.0,6.2] [4.0,4.1]

Parallel [200.0,350.0] [3.0E-4,9.0E-4] [3.4,3.55] [6.0,6.2] [4.9,5.1]

achieve the satisfactory reliability level:

t̂ojk ← τLjk + (tojk − τLjk)
T o
mt − T L

mt

sumo
mt − T L

mt

It can be easily found that the new t̂ojk obeys (9) and (10) and
the worst-case complexity of Algorithm 4 is O(D).

VI. PERFORMANCE EVALUATION

In this section, the proposed ECHTs were evaluated through
experiments, which addressed the following three research
questions.

• Research Question 1 (RQ1): Do the proposed ECHTs
outperform the state-of-the-art constraint solving methods
designed specifically for the MOTRAP?

• Research Question 2 (RQ2): Are the proposed ECHTs
superior to the general constrained MOEAs especially
under different reliability constraints?

• Research Question 3 (RQ3): Are the proposed ECHTs
robust against the change of values of modular parame-
ters?

Basic parameter settings and appropriate performance met-
rics were first introduced. Then, to address RQ1, in the initial
experiment the ECHTs were compared with the state-of-the-art
constraint solving methods. The second experiment addressed
RQ2 by further comparing different constrained MOEAs under
different reliability constraints. The final experiment conducted
sensitivity analysis with respect to the five modular parameters
to address RQ3.

A. Parameter Settings and Performance Metrics
All the experiments were done on the basis of the following

three parallel-series modular software systems: a complex
system with 11 sub-systems and 30 modules, a large system
with 16 sub-systems and 50 modules, and a larger system with
30 sub-systems and 100 modules. The model parameters for
different systems were illustrated in Table I. Different from
the previous studies, the employed three systems with gradual
complexities are significantly large in problem size, which can
help us to evaluate the efficiency of different constraint solving
methods more comprehensively and draw a more general
conclusion. Note that in this work we set λ = 200 for all the
three systems, implying that each system is expected to work
continuously for at least 200 hours. The pre-defined intervals
of modular parameter values were listed in Table II, in which
“Serial” means that the module belongs to a subsystem that
has only one module and “Parallel” indicates that the module
belongs to a subsystem with more than one module. These
intervals were determined by the collected parameter values
of realistic modular systems that were estimated according to
the software failure times and maximum likelihood estimation,
and have been widely used as the typical benchmark intervals
in the previous studies [4], [11], [12], [16], [17]. We generated
every instance randomly in the above settings, according to the
given model parameters and intervals of modular parameter
values.

To compare the overall performance of the tested algorithm-
s, the popular hypervolume (HV) metric [29] was used on
account of its good properties. HV calculates the volume of the
objective space between the obtained non-dominated solution
set and a reference point. The HV value can provide a compre-
hensive information about the convergence and diversity of the
whole solution set. Usually, a larger HV value means a better
quality of the solution set. Note that the choice of the reference
point is crucial for the calculation of HV. To determine the
reference point, for each instance, we combined the solution
sets of all the runs of all the compared algorithms, removed the
duplicate solutions, sorted the left solutions according to the
non-domination relationship, and removed all the dominated
solutions. Then, we set the reference point to 1.1 times the
worst value of each objective in the combined non-dominated
solution set. The above method has been found to be suitable
because of the good balance between the convergence and
diversity of the solution set [30].

The classical coverage (CV) metric [31], which provides
a direct comparison of how many solutions obtained by one
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TABLE III
HV (MEAN AND STANDARD DEVIATION) RESULTS OF NSGA-II UNDER R∗ = 0.65 AND DIFFERENT CONSTRAINT SOLVING METHODS, SYSTEMS, AND

INSTANCES. THE BETTER RESULTS REGARDING THE MEAN FOR EACH INSTANCE IS HIGHLIGHTED IN BOLDFACE. “†” AND “‡” INDICATE THAT THE
DIFFERENCE BETWEEN THE PEER METHOD AND OUR METHOD IS STATISTICALLY AND PRACTICAL SIGNIFICANT, RESPECTIVELY

Instance
Complex System Large System Larger System

Our Method Time Method Random Method Our Method Time Method Random Method Our Method Time Method Random Method

1 3.51E+6(1.049E+5) 3.16E+6(1.67E+5)†‡ 2.703E+6(2.911E+5)†‡ 4.673E+6(6.689E+4) 3.946E+6(3.748E+5)†‡ 3.65E+6(4.19E+5)†‡ 2.049E+7(6.669E+5) 1.632E+7(1.386E+6)†‡ 1.609E+7(1.357E+6)†‡

2 2.744E+6(9.28E+4) 2.416E+6(2.098E+5)†‡ 1.958E+6(2.293E+5)†‡ 4.604E+6(5.266E+4) 3.848E+6(3.872E+5)†‡ 3.593E+6(3.58E+5)†‡ 1.505E+7(4.981E+5) 6.88E+6(5.4E+6)†‡ 7.376E+6(5.392E+6)†‡

3 2.893E+6(4.973E+4) 2.6E+6(2.153E+5)†‡ 2.263E+6(2.139E+5)†‡ 4.191E+6(6.408E+4) 3.366E+6(3.862E+5)†‡ 3.105E+6(3.399E+5)†‡ 1.959E+7(4.675E+5) 1.43E+7(1.956E+6)†‡ 1.506E+7(1.591E+6)†‡

4 2.422E+6(4.523E+4) 2.113E+6(2.289E+5)†‡ 1.673E+6(2.146E+5)†‡ 3.611E+6(2.431E+4) 2.857E+6(3.308E+5)†‡ 2.564E+6(3.691E+5)†‡ 1.858E+7(5.051E+5) 1.22E+7(4.326E+6)†‡ 1.12E+7(5.243E+6)†‡

5 2.894E+6(4.892E+4) 2.489E+6(2.287E+5)†‡ 2.224E+6(2.504E+5)†‡ 4.547E+6(5.222E+4) 3.619E+6(5.035E+5)†‡ 3.484E+6(3.995E+5)†‡ 1.983E+7(5.354E+5) 1.551E+7(3.205E+6)†‡ 1.528E+7(3.107E+6)†‡

6 3.297E+6(7.359E+4) 3.008E+6(2.143E+5)†‡ 2.521E+6(3.274E+5)†‡ 5.321E+6(6.452E+4) 4.693E+6(3.526E+5)†‡ 4.303E+6(4.025E+5)†‡ 1.915E+7(5.328E+5) 1.241E+7(3.696E+6)†‡ 1.233E+7(4.376E+6)†‡

7 3.325E+6(7.792E+4) 3.048E+6(1.908E+5)†‡ 2.72E+6(2.354E+5)†‡ 4.643E+6(9.255E+4) 3.942E+6(3.746E+5)†‡ 3.683E+6(3.419E+5)†‡ 1.782E+7(3.786E+5) 1.264E+7(3.658E+6)†‡ 1.388E+7(8.81E+5)†‡

8 3.482E+6(1.191E+5) 3.095E+6(2.033E+5)†‡ 2.706E+6(2.175E+5)†‡ 4.356E+6(9.33E+4) 3.822E+6(2.138E+5)†‡ 3.391E+6(2.866E+5)†‡ 1.77E+7(5.093E+5) 1.316E+7(1.285E+6)†‡ 1.326E+7(1.402E+6)†‡

9 2.502E+6(6.164E+4) 2.206E+6(1.44E+5)†‡ 1.778E+6(2.525E+5)†‡ 4.982E+6(8.306E+4) 4.37E+6(3.162E+5)†‡ 3.988E+6(3.611E+5)†‡ 2.034E+7(4.236E+5) 1.515E+7(1.502E+6)†‡ 1.523E+7(3.115E+6)†‡

10 2.916E+6(6.649E+4) 2.697E+6(1.322E+5)†‡ 2.484E+6(1.472E+5)†‡ 4.74E+6(1.165E+5) 4.277E+6(3.582E+5)†‡ 3.848E+6(3.094E+5)†‡ 2.603E+7(6.656E+5) 2.043E+7(4.125E+6)†‡ 2.118E+7(1.417E+6)†‡

11 2.775E+6(5.284E+4) 2.444E+6(2.155E+5)†‡ 2.053E+6(2.331E+5)†‡ 4.959E+6(6.67E+4) 4.18E+6(3.649E+5)†‡ 3.723E+6(3.81E+5)†‡ 1.855E+7(5.036E+5) 1.279E+7(3.735E+6)†‡ 1.274E+7(4.511E+6)†‡

12 4.089E+6(1.217E+5) 3.767E+6(2.464E+5)†‡ 3.368E+6(2.289E+5)†‡ 4.895E+6(8.287E+4) 4.151E+6(3.578E+5)†‡ 3.727E+6(3.544E+5)†‡ 1.794E+7(3.712E+5) 1.343E+7(1.41E+6)†‡ 1.372E+7(2.857E+6)†‡

13 3.752E+6(9.243E+4) 3.509E+6(1.483E+5)†‡ 3.125E+6(2.364E+5)†‡ 4.537E+6(4.927E+4) 3.88E+6(3.564E+5)†‡ 3.417E+6(4.25E+5)†‡ 1.626E+7(4.22E+5) 7.827E+6(5.382E+6)†‡ 8.79E+6(4.792E+6)†‡

14 3.448E+6(7.398E+4) 3.203E+6(1.851E+5)†‡ 2.788E+6(2.44E+5)†‡ 3.648E+6(2.652E+4) 2.912E+6(2.68E+5)†‡ 2.711E+6(4.196E+5)†‡ 1.621E+7(4.464E+5) 1.012E+7(3.624E+6)†‡ 1.133E+7(2.504E+6)†‡

15 2.957E+6(7.776E+4) 2.707E+6(1.689E+5)†‡ 2.352E+6(2.445E+5)†‡ 4.162E+6(8.932E+4) 3.618E+6(3.045E+5)†‡ 3.222E+6(3.656E+5)†‡ 1.464E+7(3.626E+5) 8.907E+6(2.634E+6)†‡ 8.21E+6(3.86E+6)†‡

16 2.777E+6(4.51E+4) 2.467E+6(1.929E+5)†‡ 2.016E+6(2.349E+5)†‡ 5.265E+6(9.786E+4) 4.458E+6(3.252E+5)†‡ 4.077E+6(4.276E+5)†‡ 1.791E+7(3.522E+5) 8.652E+6(5.902E+6)†‡ 1.025E+7(5.353E+6)†‡

17 3.303E+6(7.914E+4) 3.002E+6(1.951E+5)†‡ 2.647E+6(1.955E+5)†‡ 4.359E+6(5.197E+4) 3.297E+6(4.399E+5)†‡ 2.967E+6(4.925E+5)†‡ 2.04E+7(3.353E+5) 1.518E+7(1.707E+6)†‡ 1.55E+7(1.572E+6)†‡

18 2.895E+6(5.186E+4) 2.597E+6(1.917E+5)†‡ 2.13E+6(2.625E+5)†‡ 4.143E+6(6.805E+4) 3.328E+6(4.034E+5)†‡ 3.088E+6(3.664E+5)†‡ 1.903E+7(4.362E+5) 1.483E+7(1.385E+6)†‡ 1.404E+7(3.973E+6)†‡

19 3.245E+6(1.151E+5) 2.982E+6(2.48E+5)†‡ 2.495E+6(3.432E+5)†‡ 4.412E+6(5.293E+4) 3.635E+6(3.991E+5)†‡ 3.501E+6(3.267E+5)†‡ 2.01E+7(4.918E+5) 1.49E+7(3.087E+6)†‡ 1.553E+7(1.234E+6)†‡

20 3.625E+6(8.149E+4) 3.447E+6(1.807E+5)†‡ 2.963E+6(2.552E+5)†‡ 4.052E+6(7.587E+4) 3.481E+6(3.539E+5)†‡ 3.061E+6(4.367E+5)†‡ 1.62E+7(3.337E+5) 1.008E+7(2.96E+6)†‡ 8.736E+6(4.556E+6)†‡

21 3.091E+6(8.58E+4) 2.84E+6(2.241E+5)†‡ 2.416E+6(2.249E+5)†‡ 5.352E+6(8.781E+4) 4.8E+6(3.753E+5)†‡ 4.343E+6(3.443E+5)†‡ 1.887E+7(5.301E+5) 1.412E+7(2.955E+6)†‡ 1.47E+7(1.268E+6)†‡

22 3.765E+6(1.152E+5) 3.431E+6(1.743E+5)†‡ 2.889E+6(3.397E+5)†‡ 4.886E+6(7.978E+4) 3.932E+6(3.429E+5)†‡ 3.652E+6(3.939E+5)†‡ 1.811E+7(4.289E+5) 1.255E+7(2.718E+6)†‡ 1.209E+7(3.42E+6)†‡

23 2.762E+6(6.143E+4) 2.504E+6(2.205E+5)†‡ 2.051E+6(2.662E+5)†‡ 5.292E+6(8.216E+4) 4.383E+6(3.344E+5)†‡ 3.877E+6(4.115E+5)†‡ 2.041E+7(4.622E+5) 1.654E+7(1.849E+6)†‡ 1.646E+7(1.478E+6)†‡

24 3.017E+6(6.519E+4) 2.803E+6(2.051E+5)†‡ 2.385E+6(3.425E+5)†‡ 4.876E+6(1.129E+5) 4.084E+6(3.793E+5)†‡ 3.632E+6(4.151E+5)†‡ 1.657E+7(5.379E+5) 7.563E+6(4.545E+6)†‡ 9.229E+6(4.819E+6)†‡

25 3.902E+6(1.18E+5) 3.503E+6(1.779E+5)†‡ 3.156E+6(2.197E+5)†‡ 4.861E+6(7.388E+4) 3.941E+6(3.066E+5)†‡ 3.803E+6(4.963E+5)†‡ 2.142E+7(3.758E+5) 1.221E+7(6.362E+6)†‡ 1.563E+7(3.296E+6)†‡

26 3.368E+6(9.574E+4) 3.143E+6(1.469E+5)†‡ 2.752E+6(2.734E+5)†‡ 5.802E+6(1.6E+5) 5.196E+6(3.674E+5)†‡ 4.847E+6(3.822E+5)†‡ 1.867E+7(5.404E+5) 1.398E+7(1.719E+6)†‡ 1.417E+7(2.934E+6)†‡

27 3.35E+6(9.777E+4) 2.966E+6(2.276E+5)†‡ 2.525E+6(2.515E+5)†‡ 4.651E+6(7.539E+4) 4.118E+6(3.097E+5)†‡ 3.886E+6(3.323E+5)†‡ 1.564E+7(3.204E+5) 1.074E+7(2.352E+6)†‡ 1.141E+7(1.253E+6)†‡

28 2.901E+6(5.882E+4) 2.64E+6(1.327E+5)†‡ 2.283E+6(1.843E+5)†‡ 4.342E+6(4.325E+4) 3.419E+6(3.864E+5)†‡ 3.227E+6(3.893E+5)†‡ 1.612E+7(4.121E+5) 1.008E+7(3.071E+6)†‡ 1.076E+7(2.306E+6)†‡

29 2.876E+6(5.751E+4) 2.72E+6(1.961E+5)†‡ 2.32E+6(2.022E+5)†‡ 4.896E+6(7.313E+4) 4.153E+6(3.371E+5)†‡ 3.905E+6(2.868E+5)†‡ 1.631E+7(4.129E+5) 1.058E+7(4.381E+6)†‡ 1.104E+7(3.909E+6)†‡

30 2.843E+6(7.653E+4) 2.605E+6(1.74E+5)†‡ 2.228E+6(2.128E+5)†‡ 4.885E+6(6.509E+4) 4.104E+6(4.052E+5)†‡ 3.822E+6(3.983E+5)†‡ 2.207E+7(6.177E+5) 1.748E+7(1.446E+6)†‡ 1.726E+7(1.251E+6)†‡

algorithm are dominated by those approximated by the peer
algorithm, is adopted as the convergence measure to compare
the quality of solutions obtained by different methods. Assume
A and B denote the solution sets obtained by the considered
algorithm and the competitor, respectively. One solution in A
is said to cover another solution in B if the former is not
worse than the latter on any objective. ε(A,B) represents the
percentage of B that is covered by solutions in A. ε(A,B) >
ε(B,A) indicates a win for the considered algorithm against
the peer algorithm. Then, a series of such wins demonstrate
that the considered algorithm is statistically significantly better
than the competitor [31]. Notice that for every instance, we
removed the duplicate solutions and computed CV on the basis
of each combined solution set according to the suggestions in
[30].

Apart from quality indicators for general MOPs such as HV
and CV, problem-specific indicators which can accommodate
the user’s explicit/implicit preferences have been highly rec-
ommended to evaluate solution sets [32]. Here, we considered
the capacity (CP) metric [33]. CP counts the number of
satisfactory non-dominated solutions whose reliability is not
lower than the given reliability constraint R∗. Similarly, for
each run, we removed the duplicate solutions from the solution
set before the calculation of CP. In this work, we used | · | to
denote the CP values of different solution sets obtained by the
compared methods.

Each instance was repeated for 30 independent runs with
different random seeds on a PC with Intel(R) Core(TM) i7-
3537U 3rd generation CPU @ 2.00GHz, 10 GB of DDR3L
RAM @ 1600MHz, and Windows 10 operating system.

B. Research Question 1: Comparing Different Constraint
Handling Techniques

In the first experiment, we will compare and evaluate
the state-of-the-art constraint handling techniques designed
specifically for the MOTRAP. To analyze the effectiveness and
understand the mechanism of the proposed ECHTs, we used
the constrained NSGA-II [9] as the “backplane” algorithm.
This is because we want to show whether the proposed ECHTs
works even working with the most basic optimizer. On the
other hand, we want to reduce the effect of MOEAs. That
is, we want to show that the outperformance is not from the
state-of-the-art MOEAs, but our constraint solving approaches.
We compared the proposed ECHTs (henceforth called Our
Method) with a random-reduction based constraint handling
technique (henceforth called Random Method) [4], [12] and a
time-satisfied constraint handling technique (henceforth called
Time Method) [11]. Note that Algorithms 1-4 in the proposed
ECHTs are an organic whole of four, without one of which
the others will lose their effects for the reason that each
individual satisfying T ∗ is a necessary condition for the repairs
in crossover and mutation to be effective. Accordingly, in
this experiment, we evaluated the whole ECHTs rather than
each single technique. Furthermore, the time complexity of
Our Method is mainly determined by the employed NSGA-
II. Assume that N is the population size and M is the
number of objectives. The worst case time complexity of
the individual initialization, simulated binary crossover, or
polynomial mutation of NSGA-II is O(ND), while the worst
case time complexity of environmental selection of NSGA-II
is O(MN2) [9]. Clearly, Our Method has the same worst
case time complexity as the employed MOEAs, but it is



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0.7
0.8

0.9
1

80

100

120

140

160
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

5

 

Reliability
Cost

 

T
im

e

Our Method
Time Method
Random Method

(a) Complex System

0.7
0.8

0.9
1

140

160

180

200

220
1.4

1.6

1.8

2

2.2

2.4
x 10

5

 

Reliability
Cost

 

T
im

e

Our Method
Time Method
Random Method

(b) Large System

0.7
0.8

0.9
1

280
300

320
340

360
380

3

3.5

4

4.5

5

5.5

6
x 10

5

 

Reliability
Cost

 

T
im

e

Our Method
Time Method
Random Method
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Fig. 4. Non-dominated solutions obtained by NSGA-II with different constraint solving methods on the three employed software systems (one case study).

TABLE IV
CP AND CV RESULTS OF NSGA-II UNDER R∗ = 0.65 AND DIFFERENT CONSTRAINT SOLVING METHODS, SYSTEMS, AND INSTANCES. A, B, AND C
DENOTE THE FINAL SOLUTION SETS OBTAINED BY OUR METHOD, TIME METHOD, AND RANDOM METHOD, RESPECTIVELY. THE BETTER RESULTS

FOR EACH INSTANCE IS HIGHLIGHTED IN BOLDFACE

Instance
Complex System Large System Larger System

|A| |B| |C| ε(A,B) ε(B,A) ε(A,C) ε(C,A) |A| |B| |C| ε(A,B) ε(B,A) ε(A,C) ε(C,A) |A| |B| |C| ε(A,B) ε(B,A) ε(A,C) ε(C,A)

1 7499 7498 7500 97.8% 26.02% 97.12% 8.32% 7500 7500 7500 99.75% 5.64% 97.03% 18.03% 7500 7500 7500 99.91% 7.28% 100% 8.29%

2 7498 7500 7496 97.37% 29.49% 96.52% 6.75% 7499 7500 7500 96.81% 20.31% 95.27% 9.52% 7500 4750 5000 100% 6.72% 100% 6.89%

3 7499 7499 7499 94.16% 40.83% 93.93% 15.35% 7500 7500 7500 99.93% 5.48% 99.48% 4.08% 7500 7500 7500 99.99% 0.68% 99.93% 5.23%

4 7499 7500 7498 88.24% 68.88% 94.44% 11.69% 7499 7500 7500 98.69% 5.24% 97.45% 1.83% 7500 6750 6250 100% 0.75% 100% 2.37%

5 7500 7500 7498 97.37% 23.08% 97.32% 5.47% 7500 7500 7500 99.89% 6.04% 97.69% 7.77% 7500 7250 7250 99.38% 18.63% 99.88% 14.47%

6 7500 7499 7498 90.84% 51.55% 97.32% 27.72% 7500 7500 7500 98.61% 22.07% 99.51% 10.2% 7499 7000 6750 100% 1.43% 100% 1.6%

7 7499 7500 7500 93.99% 43.18% 95.53% 26.75% 7500 7500 7500 97.35% 24.33% 93.61% 24.4% 7500 7000 7500 100% 1.59% 100% 3.53%

8 7499 7499 7500 97.53% 33% 97.69% 14.19% 7500 7500 7500 98.39% 16.01% 94.87% 17.4% 7500 7500 7500 100% 6.31% 100% 2.36%

9 7497 7500 7500 97.21% 20.89% 96.03% 12.27% 7499 7500 7500 99.57% 14.96% 95.63% 20.52% 7500 7500 7250 100% 2.33% 100% 1.45%

10 7499 7499 7497 94.99% 41.66% 95.82% 24.56% 7499 7499 7500 93.61% 61.34% 96.03% 22.42% 7500 7250 7500 99.61% 13% 99.88% 9.29%

11 7498 7499 7500 97.76% 23.63% 97.73% 9.44% 7500 7499 7500 98.65% 15.71% 97.72% 7.69% 7500 7000 6750 100% 2.91% 100% 8.2%

12 7499 7496 7500 86.46% 69.25% 94.29% 43.39% 7500 7499 7500 95.77% 22.35% 95.59% 5.91% 7500 7500 7250 100% 4.77% 99.96% 9.91%

13 7495 7499 7500 92.77% 45.07% 97.88% 20.67% 7500 7500 7500 97.8% 19.68% 97.27% 7.95% 7500 5250 6000 100% 0.67% 100% 1.07%

14 7497 7499 7499 89.92% 49.58% 94.83% 25.13% 7500 7500 7500 99.49% 1.76% 96.09% 8.44% 7500 6750 7250 100% 0.21% 100% 0.63%

15 7498 7499 7498 96.03% 28.01% 96.79% 14.04% 7500 7500 7499 94.05% 56.48% 95.72% 9.71% 7500 7000 6250 100% 0% 100% 0.89%

16 7499 7499 7498 93.67% 33.22% 94.73% 6.33% 7500 7500 7500 97.76% 24.51% 94.63% 20.65% 7500 5250 6000 100% 0.05% 100% 0.97%

17 7500 7497 7498 95.46% 30.53% 95.68% 24.24% 7500 7500 7499 99.75% 2.12% 99.72% 0.23% 7500 7500 7500 99.99% 2% 100% 1.95%

18 7499 7499 7495 96.29% 28.4% 99.2% 7.65% 7500 7498 7499 97.31% 13.63% 97.41% 6.37% 7500 7500 7000 100% 2.09% 100% 2.93%

19 7497 7497 7498 83.61% 78.87% 92.48% 51.49% 7500 7500 7500 98.65% 10.41% 95.32% 11.93% 7500 7250 7500 99.99% 2.39% 100% 2.71%

20 7499 7498 7498 83.74% 59.41% 97.27% 16.47% 7499 7500 7499 88.72% 54.19% 92.72% 15.58% 7500 7000 6000 100% 0.12% 100% 1.13%

21 7498 7497 7500 89.92% 48.52% 98.84% 13.47% 7500 7500 7500 89.56% 55.71% 92.8% 21.97% 7500 7250 7500 100% 4.19% 100% 5.04%

22 7499 7498 7499 96.91% 30.72% 98.83% 13.23% 7499 7500 7500 99.33% 8.75% 96.21% 16.24% 7500 7250 7000 99.99% 0.81% 100% 1.92%

23 7500 7500 7498 84.36% 57.83% 92.16% 13.21% 7500 7500 7500 98.65% 12.09% 97.96% 7.19% 7500 7500 7500 99.01% 22.35% 99.33% 15.33%

24 7497 7498 7500 91.72% 41.76% 93.64% 27.85% 7499 7500 7500 99.96% 12.45% 99.23% 6.8% 7500 5750 6000 100% 0.07% 100% 0.81%

25 7499 7499 7499 98.07% 28.35% 98.97% 11% 7500 7499 7500 99.17% 10.61% 97.33% 11.4% 7500 6000 7250 100% 0.36% 100% 2.96%

26 7499 7499 7499 91.95% 45.11% 95.87% 33.02% 7500 7500 7499 98.52% 39.45% 97.83% 24.4% 7500 7500 7250 99.83% 7.32% 100% 2.52%

27 7500 7499 7498 97.55% 34.67% 97.47% 11.67% 7500 7500 7500 94.77% 35.28% 94.32% 16.51% 7500 7250 7500 100% 0.47% 99.87% 10.04%

28 7497 7500 7499 95.69% 25.09% 95.69% 13.49% 7500 7500 7500 99.99% 1.52% 99.05% 3.96% 7500 7000 7250 100% 0.03% 100% 2.13%

29 7499 7499 7499 88.67% 45.81% 96.32% 12.48% 7500 7500 7499 97.32% 27.95% 94.64% 22.45% 7500 6500 6750 100% 2.11% 100% 3.4%

30 7498 7497 7499 92.37% 42.9% 94.77% 24.59% 7500 7500 7500 97.13% 20.81% 95.92% 10.43% 7500 7500 7500 99.67% 4.33% 100% 1.33%

slightly slower than the employed MOEAs since it corrects
constraint violations in individual initialization, simulated bi-
nary crossover, and polynomial mutation.

To make a fair comparison, we used the common algorith-
mic parameters for all the tests: the population size is 250; the
maximum iteration number is 500; the crossover rate is 0.9;
and the mutation rate is 1.0/D. Additionally, for each system
in Table I, we generated 30 different instances randomly from
a normal distribution on the basis of the pre-defined intervals
in Table II.

To measure the overall performance, Table III shows the
results of the three methods with R∗ = 0.65 regarding the
mean and standard deviation values of HV under different
systems and instances. To have statistically sound conclusions,
the Wilcoxon rank-sum test [34] at a 0.05 significance level
was adopted to test the significance of the differences between
the results obtained by the peer method and Our Method.

Additionally, to further check whether the differences have
practical significance, the popular Vargha and Delaneys’ Â12

effect size statistics were also computed [35]. The Â12 effect
size indicates the probability that the considered method yields
higher values of the measurement taken than running the
peer method. As can be seen from the table, Our Method
achieved a better HV value in all the 90 instances. Also,
the results have both statistical and practical significance
on each instance. Hence, we have evidence that different
methods achieve significantly different HV values. Moreover,
an interesting phenomenon in Table III is that Time Method
outperforms Random Method on the complex and large sys-
tems, but is inferior to Random Method on the larger system.
Obviously, Time Method is not stable. A possible reason for
this could be that Time Method pays too much attention to
the time constraint but ignores the reliability constraint. On
the other side, our method is able to keep good performance



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

with the increase of the complexity of software systems. The
above results indicate that under the reliability constraint,
Our Method significantly improves the HV metric and can
achieve a better balance between convergence and diversity
than Random Method and Time Method.

For a visual understanding of the distribution of solutions
as well as of what a higher HV value means, in Fig. 4 we plot
the final nondominated solutions of a particular run where the
obtained HV result is the closest to the mean value on the
basis of Instance 5 on the complex system, Instance 17 on
the large system, and Instance 2 on the larger system. These
particular instances are associated with the results which have
the maximal differences of HV values between the compared
three methods. As can be seen in the figure, the solutions ob-
tained by Our Method spread wider in the objective space and
provide more diversity than those obtained by Time Method
and Random Method. Additionally, Our Method appears to
have better convergence than its competitors, with a significant
number of solutions being superior to those obtained by Time
Method and Random Method, which can be easily observed
from the plots in Fig. 4.

To measure the convergence ability, Table IV illustrates
the results of the three methods with R∗ = 0.65 regarding
CP and CV under different systems and instances. As can
be seen from the table, Our Method is very robust and is
able to find a large amount of feasible solutions at each run
on all the 90 instances. Time Method and Random Method
are workable on both the complex and the large systems but
often cannot find any feasible solution on the larger system.
The above results imply that Our Method is more stable and
reliable than Time Method and Random Method. On the other
hand, the CV values of Our Method versus Time Method and
Our Method versus Random Method are greater than those
of Time Method versus Our Method and Random Method
versus Our Method on all the 90 instances. More precisely,
Our Method covers, on average, 93.08% and 96.17% of the
solutions obtained by Time Method and Random Method on
the complex system, respectively; on the large system, Our
Method covers, on average, 97.5% and 96.47% of the solutions
obtained by Time Method and Random Method, respectively;
on the larger system, Our Method covers, on average, 99.91%
and 99.96% of the solutions obtained by Time Method and
Random Method, respectively. On the contrary, Time Method
and Random Method cover only few solutions attained by Our
Method for every instance, especially on the larger system. The
above results suggest that under the given reliability constraint,
Our Method can obtain more and higher quality solutions
than Time Method and Random Method. This is because both
Random Method and Time Method only focus on time, all
the repairs are designed to handle the violation on T ∗, and
there is no repair corresponding to the lower bounds. That is,
Random Method and Time Method can only repair and make
infeasible individuals satisfy T ∗ rather than R∗. Differently,
Our Method not only utilizes the new lower bounds to allocate
the limited testing time to the most time-efficient modules,
but also maintains the evolutionary tendency of the amended
individuals using proportional reduction. In other words, Our
Method is driven by both reliability and time.

C. Research Question 2: Comparing Different Constrained
MOEAs

To verify whether a new algorithm needs to be developed
to solve the reliability-constrained MOTRAP, in this subsec-
tion we compared the proposed ECHTs with two general
constrained MOEAs for solving CMOPs with very small
feasible regions: MOEA/D-IEpsilon [25] and CCMO [27].
Particularly, as shown in Fig. 2, the greater value of the
reliability constraint R∗ is, the smaller the feasible solution
region of the MOTRAP is, and the higher exploration ability
of the MOEA is required. Consequently, we evaluate the
performance of Our Method, CCMO, and MOEA/D-IEpsilon
under different values of R∗. Specifically, Our Method is still
combined with NSGA-II. Following the practice in [27], CC-
MO is also embedded with NSGA-II; the truncation strategy
in the improved strength Pareto evolutionary algorithm [36]
is adopted in the environmental selection instead of crowding
distance; the helper problem is set to the MOTRAP with no
constraint. In MOEA/D-IEpsilon [25], an external archive is
iteratively updated on the basis of the non-dominated sorting
strategy in NSGA-II. It should be noted that both CCMO
and MOEA/D-IEpsilon can not find any feasible solution due
to the great difference between the value range of R∗ and
T ∗. Therefore, in this experiment, the normalized constraint
violation is used in CCMO and MOEA/D-IEpsilon.

The basic algorithmic parameters were recalled from [25],
[27] for fair comparisons. In common, the maximal number
of evaluations is 150,000, the crossover rate is 0.9, and
the mutation rate is 1.0/D. In Our Method, the population
size is 300. In CCMO, the sizes of the two coevolutionary
populations are both 300. In MOEA/D-IEpsilon, both the
population size and the archive size are 300; the neighbour
size is 30; the probability that parent solutions are selected
from neighbourhood is 0.9; the maximal number of solutions
replaced by each child solution is 2; the scaling factor in DE
crossover is 0.5; the Tchebycheff decomposition method and
the weight vectors defined in the file “W3D 300.dat” in the
jMetalCpp project [37] are used.

Table V depicts the results of the three constrained MOEAs
regarding the mean and standard deviation values of HV under
different systems and R∗. As can be seen from the table, for
each system, with the increase of R∗, the HV values obtained
by the three algorithms decrease gradually. An explanation
is that with the increase of R∗, the feasible solution region
of the MOTRAP becomes smaller, leading to less diversi-
ty of the solution set. Fortunately, in such situations, Our
Method always outperforms CCMO and MOEA/D-IEpsilon.
Our Method achieved a better HV value on each instance
with both statistical and practical significance. Additionally,
with the increase of the system size or R∗, the difference
of HV values among the three algorithms becomes larger. In
particular, CCMO found few feasible solutions on the large
system when R∗ = 0.95 and failed in finding a feasible
solution on the larger system. The possible reason is that in
such a harsh situation, a candidate solution is easily infeasible
for the sake of constraint violations and the role of infeasible
solutions derived from the helper problem is very weak. It
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TABLE V
HV (MEAN AND STANDARD DEVIATION) RESULTS OF THE THREE CONSTRAINED MOEAS UNDER DIFFERENT SYSTEMS AND R∗ . THE BETTER

RESULTS REGARDING THE MEAN FOR EACH INSTANCE IS HIGHLIGHTED IN BOLDFACE. “†” AND “‡” INDICATE THAT THE DIFFERENCE IS
STATISTICALLY AND PRACTICAL SIGNIFICANT, RESPECTIVELY

R∗ Complex System Large System Larger System

Our Method CCMO MOEA/D-IEpsilon Our Method CCMO MOEA/D-IEpsilon Our Method CCMO MOEA/D-IEpsilon

0.5 5.504E+6(1.309E+5) 3.639E+6(2.678E+5)†‡ 4.401E+6(2.608E+5)†‡ 7.319E+6(1.33E+5) 2.572E+6(5.591E+5)†‡ 5.29E+6(5.989E+5)†‡ 3.017E+7(6.576E+5) 0(0)†‡ 1.79E+7(1.362E+6)†‡

0.55 4.597E+6(6.905E+4) 2.966E+6(2.464E+5)†‡ 3.542E+6(2.266E+5)†‡ 6.215E+6(1.235E+5) 2.082E+6(4.205E+5)†‡ 4.294E+6(5.12E+5)†‡ 2.416E+7(3.946E+5) 0(0)†‡ 1.338E+7(1.15E+6)†‡

0.6 3.767E+6(7.539E+4) 2.283E+6(2.633E+5)†‡ 2.843E+6(2.495E+5)†‡ 5.395E+6(1.134E+5) 1.621E+6(4.456E+5)†‡ 3.673E+6(4.336E+5)†‡ 2.321E+7(6.515E+5) 0(0)†‡ 1.274E+7(1.217E+6)†‡

0.65 3.286E+6(9.53E+4) 1.95E+6(2.926E+5)†‡ 2.4E+6(2.379E+5)†‡ 4.545E+6(9.503E+4) 1.153E+6(3.718E+5)†‡ 3.004E+6(2.856E+5)†‡ 1.663E+7(3.839E+5) 0(0)†‡ 8.647E+6(9.634E+5)†‡

0.7 2.876E+6(1.029E+5) 1.7E+6(1.914E+5)†‡ 2.124E+6(2.014E+5)†‡ 4.075E+6(4.568E+4) 1.024E+6(2.624E+5)†‡ 2.443E+6(3.839E+5)†‡ 1.612E+7(3.94E+5) 0(0)†‡ 8.13E+6(1.173E+6)†‡

0.75 2.64E+6(6.664E+4) 1.444E+6(2.714E+5)†‡ 1.927E+6(2.089E+5)†‡ 3.303E+6(4.638E+4) 5.93E+5(2.478E+5)†‡ 2.017E+6(3.471E+5)†‡ 1.469E+7(3.538E+5) 0(0)†‡ 7.466E+6(9.604E+5)†‡

0.8 1.501E+6(3.215E+4) 7.919E+5(1.285E+5)†‡ 8.924E+5(1.516E+5)†‡ 2.278E+6(1.267E+4) 3.641E+5(1.696E+5)†‡ 1.216E+6(2.427E+5)†‡ 1.244E+7(3.837E+5) 0(0)†‡ 6.071E+6(7.211E+5)†‡

0.85 1.057E+6(1.273E+4) 4.801E+5(9.736E+4)†‡ 6.096E+5(1.513E+5)†‡ 1.767E+6(2.175E+4) 2.081E+5(1.275E+5)†‡ 8.628E+5(1.887E+5)†‡ 7.96E+6(2.621E+5) 0(0)†‡ 3.173E+6(6.211E+5)†‡

0.9 6.328E+5(3973) 2.549E+5(8.709E+4)†‡ 2.794E+5(1.042E+5)†‡ 7.641E+5(5756) 3.519E+4(4.126E+4)†‡ 2.2E+5(1.105E+5)†‡ 5.667E+6(2.236E+5) 0(0)†‡ 1.992E+6(5.256E+5)†‡

0.95 2.512E+5(1461) 5.281E+4(4.962E+4)†‡ 5.609E+4(5.064E+4)†‡ 2.861E+5(2051) 432.6(2369)†‡ 2.535E+4(3.957E+4)†‡ 2.876E+6(1.013E+5) 0(0)†‡ 5.526E+5(3.997E+5)†‡

TABLE VI
CP AND CV RESULTS OF THE THREE CONSTRAINED MOEAS UNDER DIFFERENT SYSTEMS AND R∗ . A, B, AND C DENOTE THE FINAL SOLUTION

SETS OBTAINED BY OUR METHOD, CCMO, AND MOEA/D-IEPSILON, RESPECTIVELY. THE BETTER RESULTS FOR EACH INSTANCE IS HIGHLIGHTED
IN BOLDFACE

R∗ Complex System Large System Larger System

|A| |B| |C| ε(A,B) ε(B,A) ε(A,C) ε(C,A) |A| |B| |C| ε(A,B) ε(B,A) ε(A,C) ε(C,A) |A| |B| |C| ε(A,B) ε(B,A) ε(A,C) ε(C,A)

0.5 8990 8512 8948 99.8% 0.22% 99.72% 0.18% 8983 8455 8627 100% 0% 99.34% 0.21% 8989 0 8779 100% 0% 100% 0%

0.55 8979 8208 8952 99.98% 0.68% 99.72% 0.19% 8988 8444 8629 100% 0% 99.37% 0.03% 8980 0 8457 100% 0% 100% 0%

0.6 8979 9000 8940 99.98% 0.82% 99.73% 0.12% 8985 8384 8896 100% 0% 99.94% 0% 8986 0 8671 100% 0% 100% 0%

0.65 8984 8815 8951 100% 0.96% 99.6% 0.22% 8982 8456 8628 100% 0% 100% 0% 8986 0 8482 100% 0% 100% 0%

0.7 8988 9000 8949 100% 0.08% 100% 0.16% 8992 8397 8934 100% 0% 100% 0% 8977 0 8338 100% 0% 100% 0%

0.75 8989 9000 8953 100% 0.1% 99.81% 0.12% 8986 8103 8925 100% 0% 99.81% 0% 8984 0 8356 100% 0% 100% 0%

0.8 8984 9000 8933 100% 0% 100% 0% 8989 7759 8915 100% 0% 99.44% 0.02% 8981 0 7997 100% 0% 100% 0%

0.85 8992 9000 8945 100% 0.08% 99.81% 0.04% 8986 6910 8840 100% 0% 99.93% 0% 8984 0 7798 100% 0% 100% 0%

0.9 8990 9000 8944 99.96% 0.1% 100% 0% 8986 6222 8887 100% 0% 100% 0% 8981 0 6716 100% 0% 100% 0%

0.95 8992 8770 8938 100% 0% 100% 0% 8994 26 8859 100% 0% 100% 0% 8985 0 5961 100% 0% 100% 0%

is difficult for those infeasible solutions to provide useful
information for population evolution. On the other side, Our
Method significantly improved the HV metric and achieved a
better balance between convergence and diversity than CCMO
and MOEA/D-IEpsilon, especially when the system size orR∗
is large.

Table VI shows the results of the three constrained MOEAs
regarding CP and CV under different systems and R∗. It
can be observed that Our Method and MOEA/D-IEpsilon are
stable and can find diverse feasible solutions at each run on
all the 30 instances. CCMO is workable on the complex and
the large systems but failed in finding a feasible solution on
the larger system, even if the value of R∗ is small. On the
other hand, the CV values of Our Method versus CCMO
and Our Method versus MOEA/D-IEpsilon are far greater
than those of CCMO versus Our Method and MOEA/D-
IEpsilon versus Our Method on each instance. Particularly,
Our Method can cover almost all the solutions obtained by
CCMO and MOEA/D-IEpsilon on each system, especially
under high reliability constraints. The above results imply
that Our Method is more effective on harsh constraints in the
MOTRAP than CCMO and MOEA/D-IEpsilon. The reason
is that both CCMO and MOEA/D-IEpsilon need to consider
the possible constraint violations on T ∗ and R∗, in which
the constraint T ∗ is very easily violated when the system
size and R∗ is large. On the contrary, Our Method only pays
attention to the constraint R∗ ∈ [0, 1] due to the fact that each
repaired solution obeys T ∗ and at the same time, is very close
to the required R∗. Consequently, under the same number of
evaluations, Our Method can find more and better feasible
solutions. The above results also suggest that leveraging the

derived problem’s knowledge can speed up the convergence
rate.

D. Research Question 3: Sensitivity Analysis

As shown in Table II, there are total five modular parameters
in the MOTRAP whose values are estimated by collected
software failure times and maximum likelihood estimation.
Since it is inevitable that estimation errors may be incurred
in practice, it is necessary to conduct sensitivity analysis
in terms of the five modular parameters to further evaluate
whether Our Method is robust with the modular parameters. As
mentioned earlier, the HV is a very good and popular metric
to evaluate the overall quality of the obtained solution set.
Consequently, we examine how much the HV values fluctuate
with the increase of the value of the modular parameters. Fig. 5
illustrates the results of sensitivity analysis for Our Method
combined with NSGA-II with respect to the increases of ajk,
bjk, cjk1 , cjk2 , and cjk3 , respectively, in which “Serial Module”
means that the associated subsystem has only one module and
“Parallel Module” indicates that the connected subsystem has
more than one module. Note that the parameter value range
is different between a serial module and a parallel module,
as shown in Table II. Consequently, two x-axes were used to
show the changes of the parameter values of the serial and the
parallel module, respectively.

In Fig. 5(a), as can be seen, with the increase of the
value of ajk, the best and worst value of the HV changes at
most by about -6.52%, which occurs on the complex system.
Additionally, the average HV value changes little and is in
a downward trend. The maximum value of relative change
of the average HV value is about -3.52% on the complex
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Fig. 5. Sensitivity analysis for Our Method in terms of the changes of the five modular parameters.
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system. The reason is that with the increase of the value of
ajk, reliability becomes increasingly lower. This implies that
the obtained solutions under bigger values of ajk can hardly
dominate the solutions under smaller values of ajk, meaning
that the convergence of the solution set decreases gradually.

In Fig. 5(b), with the increase of the value of bjk, the best,
mean, and worst value of the HV changes at most by about
438.89%, which occurs on the large system. The particular
fluctuations of the HV values seem high. However, when bjk
increases to a certain value, there is a rapid decline in the
range of fluctuations of the HV values. Besides, the average
HV value is in an upward trend. This is because with the
increase of the value of bjk, reliability increases faster than
cost. It means that the obtained solutions under bigger values
of bjk can easily dominate the solutions under smaller values
of bjk, which enhances the convergence of the solution set.
Hence, the fluctuations in Fig. 5(b) are very natural in terms
of the characteristic of parameter bjk.

In Fig. 5(c) and Fig. 5(d), with the increase of the value
of cjk1 or cjk2 , the best, mean, and worst value of the HV
changes at most by about -6.4% and -15.35%, respectively.
The former occurs on the complex system and the latter occurs
on the larger system. In addition, the average HV value is in
a downward trend for both cjk1 and cjk2 . The reason is that
with the increase of the value of cjk1 or cjk2 , cost becomes
increasingly higher under the same reliability and time. This
means that it is difficult for the obtained solutions under bigger
values of cjk1 or cjk2 to dominate the solutions under smaller
values of cjk1 or cjk2 . Hence, the convergence of the solution
set becomes increasingly worse.

In Fig. 5(e), with the increase of the value of cjk3 , the
best, mean, and worst value of the HV changes at most by
about 21.96%, which occurs on the larger system. Besides,
the average HV value is in an upward trend on the whole.
This is because with the increase of the value of cjk3 , cost
becomes increasingly lower under the same reliability and
time, and thus the obtained solutions under bigger values of
cjk3 can easily dominate the solutions under smaller values of
cjk3 . Accordingly, the convergence of the solution set becomes
increasingly better. However, the range of the relative change
of the average HV value in Fig. 5(e) is much lower than that
in Fig. 5(b). This suggests that the effect of bjk on the quality
of the solution set is greater than that of cjk3 , which is in line
with the natural characteristic of these two parameters.

In general, for ajk, cjk1 , cjk2 , and cjk3 , the curves for the
HV value fluctuate a little between some ranges. For bjk, the
overall fluctuation of the HV value is not great and the partic-
ular fluctuations are attributed to its natural characteristic. The
changes are foreseeable and the sensitivities are at acceptable
levels. Particularly, Our Method combined with MOEAs can
well perceive the influence of the change of the parameter
value on the solution quality. Accordingly, Our Method is
robust and adaptive on the five modular parameters.

VII. CONCLUSION

This paper investigated the problem of multi-objective test-
ing resource allocation, named MOTRAP, to achieve high

reliability, low cost and time at the same time. We noted
that reliability is important: the software project manager
is very interested in allocation schemes that can achieve
the desired reliability for user satisfaction. As a result, we
first presented an MOTRAP model with the pre-specified
reliability. Then, we theoretically deduced the new lower
bounds on the time invested in different modules on the
basis of the necessary condition for the achievement of the
desired reliability. Importantly, these new bounds can tell
us which modules are time-efficient or time-consuming to
achieve the pre-specified reliability. Moreover, to leverage the
derived problem’s knowledge, we developed several enhanced
constraint handling techniques (ECHTs) for individual ini-
tialization, simulated binary crossover, and polynomial mu-
tation, which can be directly combined with multi-objective
evolutionary algorithms (MOEAs). Finally, we evaluated the
proposed ECHTs through extensive experiments which were
carried out on 195 instances that are randomly generated from
a normal distribution for three software systems with large
sizes and gradual complexities. The experiments show several
positive results. 1) The proposed ECHTs outperform the state-
of-the-art constraint solving methods designed specifically
for the MOTRAP. 2) The proposed ECHTs (combined with
NSGA-II) are superior to the general constrained MOEAs
especially under different reliability constraints. 3) The pro-
posed ECHTs are robust with the modular parameters from
the perspective of sensitivity analysis.

This paper can be seen as the first step toward a reasonable
guide to solving the MOTRAP with the reliability constraint,
which should be helpful for the software project manager.
There are a number of directions that may be further pursued
in future work. First, the strengths and weaknesses of the
proposed ECHTs will be further studied on the basis of
alternative MOEAs. Second, the new lower bounds on time
deduced in this paper are soft, and can we obtain the exact
lower bounds by mathematical optimisation methods and use
these exact bounds as the reference point to guide the search
approximating the Pareto front? Third, the testing cost may be
concerned by the software project manager, so can we deduce
the new upper bounds on time according to the pre-defined
cost constraint? Finally, there is value in considering reliability
and cost constraints in the MOTRAP with the architecture-
based model [3], [12].
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