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Mean-Field Game for Collective Decision-Making
in Honeybees via Switched Systems

Leonardo Stella, Dario Bauso and Patrizio Colaneri, Fellow, IEEE

Abstract—In this paper, we study the optimal control problem
arising from the mean-field game formulation of the collective
decision-making in honeybee swarms. A population of homoge-
neous players (the honeybees) has to reach consensus on one of
two options. We consider three states: the first two represent the
available options (or strategies), and the third one represents the
uncommitted state. We formulate the continuous-time discrete-
state mean-field game model. The contributions of this paper are
the following: i) we propose an optimal control model where
players have to control their transition rates to minimize a
running cost and a terminal cost, in the presence of an adversarial
disturbance; ii) we develop a formulation of the micro-macro
model in the form of an initial-terminal value problem (ITVP)
with switched dynamics; iii) we study the existence of stationary
solutions and the mean-field Nash equilibrium for the resulting
switched system; iv) we show that under certain assumptions on
the parameters, the game may admit periodic solutions; and v)
we analyze the resulting microscopic dynamics in a structured
environment where a finite number of players interact through
a network topology.

Index Terms—Mean-Field Game Theory, Social Networks,
Multi-Agent Systems, Switched Systems.

I. INTRODUCTION

We study a collective decision-making problem where a
large population of individuals has to reach consensus on one
of two options. In recent years, the study of the principles
underpinning collective decision-making has seen a growing
interest in cross-disciplinary research on behavioral ecology,
psychology and neurosciences because of the similarities
between the neural correlations of brains in vertebrates and
the group cognition of social animals such as honeybees
[1]. Motivated by the collective decision-making in honeybee
swarms, we study the problem where the cognitive task
of nest-site selection is investigated, see [2], [3], [4]. Two
main behavioral traits were found to stir the decision-making
process toward one of the options: the so-called waggle dance,
performed by scout bees to share information about the nest
sites and to recruit other bees; and the cross-inhibitory stop
signal, which is used to prevent other bees to advertize the
competing options and prevent deadlocks [5]. In [5], a critical
value of the stop signal is found via bifurcation theory, and
it is shown that, when the value of the stop signal is above
this critical threshold, the swarm adaptively breaks a deadlock
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when faced with two near-equal value options. Through a
different approach, namely Lyapunov theory for nonlinear
systems, the same threshold was found in [6] and the sym-
metric and asymmetric cases where studied. The symmetric
case describes the situation where the options have near-equal
value, while the asymmetric case captures the case where one
of the options is better than the other one. The symmetric case
has been the testbed to study the impact of the cross-inhibitory
signalling in preventing a deadlock during the decision-making
process. The work by Pais et al., i.e. [7], extended the previous
research by investigating the value-sensitivity of the dynamics
on the cross-inhibitory parameter. In [8], we studied the case
where the interactions in the population are modeled using the
Barabási-Albert complex network.

While a seminal study on the decision-making in house-
hunting honeybees with more than two options was conducted
in 1997 and 1998 and reported in [9], recent research, e.g.
see [10], has extended the previous model to the best-of-N
case, analysing the symmetric and asymmetric models. For
an insight on consensus and swarm dynamics, the reader is
referred to [11] and [12]. For a better understanding of the
impact of noise on the decision-making process in networks
we refer the reader to [13]. Recent applications of the decision-
making in honeybee swarms include multi-agent decision-
making and network design, e.g. see [14] and [15].

Mean-field game theory studies the strategic decision-
making where the number of the individuals in the population
is large. The origin of the theory of mean-field games can be
found in [16], [17], [18] by M. Y. Huang, P. E. Caines and
R. P. Malhamé and independently in [19], [20], [21] by J. M.
Lasry and P. L. Lions. Huang, Caines and Malhamé developed
the theory by extending stochastic dynamic games to a large
population of players and by approximating their behavior via
the average of the players’ strategies. At the same time, Lasry
and Lions introduced mean-field game theory as an extension
to mean-field theory in physics and statistical mechanics: their
intuition was to approximate the complexity of the behavior
in high-dimensional models by averaging over all the compo-
nents in the system. For a survey on mean-field games we refer
the reader to [22]. Robust mean-field games are introduced in
[23] and studied further in [24]. Robustness is also discussed
in [25]. Mean-field games apply to a variety of domains,
including economics, engineering, physics and biology; for
details we refer the reader to [18], [26], [27], [28], [29], [30].
Mean-field games have predecessors in anonymous games
and aggregative games, which are nonatomic games where
each individual cannot influence the evolution of the game
and the interaction occurs through a mass function. Discrete-
time finite-state mean-field games were first introduced in [31]
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while the continuous-time counterpart was introduced in [32].
In [33], the authors use mean-field game theory to study

the mean-field trajectories of all players in the game. The
resulting game takes inspiration from the collective decision-
making in honeybee swarms [33]. When the population is
sufficiently large, the best response strategies become epsilon-
Nash equilibria and can be calculated solely via the joint
probability of the initial conditions in the form of random
variables. For a linear quadratic structure, the author in [34]
provides explicit solutions in terms of mean-field equilibria.

A recent line of research, originated in the work by Weitz et
al. [35], proposes a bidirectional game-environment feedback,
where the environment plays a role in the game and in the
strategy selection process. Within the framework of evolution-
ary game theory, replicator dynamics are the ones that have
extensively been used to model these interactions between
the state and the environment in a variety of contexts, from
micro-economics to animal behavior [36]. The environmental
feedback is motivated by the observed behavior of real systems
and their complexity [36]. Other lines of research have used
replicator-mutator dynamics to model social dynamics and
decision-making [37]. Most of these studies report oscillations
and limit cycles in the dynamics, either via bifurcation theory
[37] or via the time-scale difference between game and envi-
ronment dynamics [36].

Highlights of contributions. We propose an optimal control
approach to model the collective decision-making inspired by
honeybees and we formulate the corresponding mean-field
game. A novel element of this approach is the modeling
of the cross-inhibitory stop signal through an adversarial
disturbance in the game dynamics. When we assume that the
parameters take specific values, the mean-field game turns
into the collective decision-making model used to describe
the behavior in honeybee swarms. Additionally, by using the
theory for discrete-state mean-field games, the addition of
an adversarial disturbance is an element of novelty as well
as the use of switched systems to prove the uniqueness of
the mean-field Nash equilibrium for the corresponding initial-
terminal value problem (ITVP). The ITVP brings together the
macroscopic dynamics, namely how the population evolves as
a whole, and the microscopic dynamics, namely how a single
player responds to the population behavior.

Driven by the need to understand the conditions for pe-
riodic solutions to arise, we extend our model to include
a form of game-environment feedback and a dependence of
the parameters on the state itself through the value function.
By doing so, we find that the system exhibits an oscillatory
behavior that approximates the one found in the literature
on environmental feedback. Finally, we propose a networked
model where a finite number of players interact by means of
a complete fully-connected network. In this model, a finite
number of players interact through a network topology and
a stability analysis is carried out on this system to prove
that the whole population converges to the same equilibrium
obtained without interaction topology. We also provide a link
between the initial mean-field game and the networked model
with finite population. This paper has extensively reworked the
topic firstly presented in the conference version, see [38], and

the overlaps are now minimal, mostly related to the calculation
of the optimal control and disturbance in Theorem 1.

This paper is organized as follows. In Section II, we provide
a general mean-field model for the collective decision-making
inspired by honeybees. In Section III, we study the stationary
solutions and the stability of the mean-field Nash equilibrium
corresponding to the initial-terminal value problem in the
form of a switched system. In Section IV, we present the
link between our model and the collective decision-making
in honeybee swarms that motivated our study. In Section V,
we study the periodic solutions under the assumption that the
parameters act as an environmental feedback through the value
function and prove conditions for oscillations to occur and we
calculate the corresponding basin of attraction for this system.
In Section VI, we investigate the networked model for a finite
population where each player can be in any of the three states
in probability. In Section VII, we draw conclusions and discuss
future directions of research. Except for Theorem 6, all the
proofs are given in the Appendix.

NOTATION

We use the following notations throughout this paper. The
set I3 is the set of three possible states, state 1, state 2
and state 3. The set S3 is the probability simplex in R3

and t > 0 is the time index. The notation R+
0 indicates the

set of all positive real numbers including zero, and (R+
0 )3

denotes the set of 3-dimensional vectors with non-negative
entries. By iτ , we mean the continuous-time Markov chain
that describes the state of a player at time τ . We denote by
diag(a) the diagonal matrix with diagonal a, for any generic
vector a. ∆i : R3 → R3 is the difference operator on
i ∈ I3 given by ∆iv = (v1 − vi, v2 − vi, v3 − vi)T . For a
generic function f(x), the notation [f(x)]− = max(−f(x), 0)
and [f(x)]+ = max(f(x), 0) denote the negative part and
the positive part of f(x), respectively. The notation [0, 1]N
denotes the N -Cartesian product of [0, 1]. We denote by 1N
the N -dimensional vector whose entries are all 1 and by IN
the N -dimensional identity matrix. For a square matrix X
of dimension N the 1-Lozinski measure µ1(X) is given by
maxi(Xii +

∑N
j=1,j 6=i |Xji|). The symbol ‘�’ in X � 0

means that X is element-wise positive and ‘�’ in X � 0
means that X is element-wise negative. Finally, the symbol ⊗
denotes the Kronecker product.

II. MEAN-FIELD MODEL

In this section, we study the mean-field model for a col-
lective decision-making problem with three possible states.
First, a general formulation of the problem is given for the
macroscopic dynamics. Then, the perspective of a reference
player is studied: the optimal control problem is analysed
and finally the mean-field response for the reference player
is presented.

We start by looking at the macroscopic dynamics, and
consider a large population of players that can be in any
of three possible states in a continuous-time dynamic game
framework. These players control their state, according to
some optimality criteria. Furthermore, we assume that, in the
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same circumstances, all the players behave in the same way,
i.e. they are homogeneous. The game is symmetric with respect
to any permutation of players, i.e. the decision of each player
does not take into account the other players individually but
rather the population distribution. The players’ controls depend
on the knowledge of their own state and of the distribution of
the population across the three states. The players in state 1
are committed to option 1 and those in state 2 are committed
to option 2; finally, the players in state state 3 are simply
uncommitted. For consistency with the terminology used for
the microscopic dynamics, we use the term commit to indicate
the action of a single player that chooses one of the options.

We model the distribution of the population with the prob-
ability vector x(t) = [x1, x2, x3]T ∈ S3. Players change state
according to a continuous time Markov process with transition
rate matrix β(t) ∈ R3×3, which depends on the state x(t).
The elements of matrix β are indicated by βij , each of which
represents the transition rate from node i to node j for any
generic pair of states i, j ∈ I3. The transition rates can be split
in two components: ρij and wij . Analogously, each column
of the matrix β has two components, i.e. βi = ρi +wi, where
ρi ∈ (R+

0 )3 is controlled by the players and wi ∈ (R+
0 )3

is controlled by an adversarial disturbance. In the mean-field
limit when the number of players tends to infinity, the model
is described by the following Kolmogorov equations:

ẋ1 = x3β31 − x1β13,
ẋ2 = x3β32 − x2β23,
ẋ3 = x1β13 + x2β23 − x3β31 − x3β32.

(1)

The above system has an initial condition for the population
distribution x(0) = x0.

We tackle the problem from the perspective of a single player,
hereafter referred to as the reference player [32]. Here, the
reference player is used to describe a general player that
plays against the rest of the population, and his/her identity is
anonymous, as the game is symmetric. The only information
available to the reference player is the distribution of the other
players across the three states, which follows from the mean-
field hypothesis. This assumption on the available information
is common to all the players. To study the mean-field response,
let us consider the reference player and model the microscopic
dynamics under the assumption that the population distribution
over the time horizon is given. The state of the player takes
value in a finite discrete set with cardinality 3, which describes
the three possible states. The evolution of the state is described
using a continuous-time Markov chain. The transition rates are
chosen to minimize a total cost that consists of a running cost
and a terminal penalty. The running cost depends on the state
of the player, on the distribution of the population and on the
transition rate, i.e. g(i, x, ρi) : I3 × S3 × (R+

0 )3 → R, and it
is defined as:

g(i, x, ρi) =
1

2

∑
j 6=i

ρ2
ijRij + fi(x), (2)

where ρi = [ρi1, ρi2, ρi3]T ∈ (R+
0 )3 is the control of the

reference player, ρij are the transition rates from state i to
state j and depend on the population distribution, and Rij > 0.

The functions fi(x) : S3 → R depend on the state and
we assume it is continuous wrt x ∈ S3 (and therefore it
is bounded). The first part of the cost function takes the
usual form of a standard linear quadratic optimal control
problem, but instead of a quadratic form for the state, we
use a more general nonlinear function. Since this function is a
cost term, our model accommodates crowd-seeking dynamics
when this term is a monotonically decreasing function, but
it can also accommodate crowd-averse dynamics when the
same term is a monotonically increasing function. The model
can accommodate other application domains, such as opinion
dynamics [6].

Let us consider a finite horizon formulation of the game and
use [0, T ] to indicate the horizon window. The reference player
incurs also in a terminal cost which depends on the objective
they seek to minimize. Let the terminal cost be ψ(i, x) : I3×
S3 → R, and assume it is Lipschitz continuous in x ∈ S3.

Each player minimizes the cost functional

J ix(ρ, w, t)

= Eρ,wit=i

[ ∫ T
t

[
g(iτ , x(τ), ρiτ )− 1

2

∑
j 6=iτ w

2
iτ j

Γiτ j

]
dτ

+ψ(iT , x(T ))

]
,

(3)
where Eρ,wit=i is the expectation for the event it = i and Γij >
0. The positive term on the control vector ρi and the negative
term on the disturbance vector wi = [wi1, wi2, wi3]T ∈ (R+

0 )3

give to the cost functional the structure of a robust mean-field
game in spirit with H∞-optimal control, see [23].

Problem 1: Consider the population dynamics in (1) where
x(t) : [0, T ] → S3 and βijτ = ρijτ + wijτ , i 6= jτ ; ρij(·) :
R+

0 → R+
0 and wij(·) : R+

0 → R+
0 are measurable functions

that return a transition rate and a penalty of the disturbance at
any given time t, respectively. Find the optimal control of the
reference player which minimizes the cost functional:

vi(x, t) = inf
ρi

sup
wi

J ix(ρi, wi, t), (4)

where vi(x, t) is the value function, in the rest denoted also
vi(t) or vi for brevity and the minimization is performed
over the Markovian controls for the reference player’s control
problem βijτ .

For an interpretation of the controls as infinitesimal transi-
tion rates, we provide the definition of the Markov chain for
the single player:

P[iτ+h = j|iτ = i] = [ρijτ (τ) + wijτ (τ)]h+ o(h). (5)

We define the Legendre transform of a convex function G(p)
as

G∗(q) = sup−qT p−G(p),

and when G is strictly convex and the previous supremum
is achieved, then the following holds: q = −∇G(p), or
equivalently p = −∇G∗(q) [32]. In line with [32], the
generalized Legendre transform of the cost g(i, x, ρi) for the
difference operator on a general function z is

h(x, z, i) = min
ρi∈(R+

0 )3
g(i, x, ρi) + νTi ·∆iz. (6)
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When z is the value function, we have that the Hamiltonian
function H(·) is given by:

H(x, v, i, ρi, wi) = g(·)− 1

2

∑
j 6=i

w2
ijΓij + (ρi + wi)

T∆iv,

and when it is supremized over the disturbance and infimized
over the control, we obtain:

H̄(x, v, i) = inf
ρi∈(R+

0 )3
sup
wi

g(·)− 1

2

∑
j 6=i

w2
ijΓij+(ρi+wi)

T∆iv.

(7)

Notice that in the cost the terms ρii and wii are not present.
In accordance with the structure of a transition probability
matrix we let

ρ∗ii(x, v, i) = −
∑
j 6=i

ρ∗ij(x, v, i), (8)

w∗ii(x, v, i) = −
∑
j 6=i

w∗ij(x, v, i). (9)

We can now introduce the Hamilton-Jacobi equation as in
the following: {

−v̇i = H̄(x, v, i),
vi(T ) = ψ(i, x(T )).

(10)

A system of coupled ODEs with a terminal condition like
the one in (10) is referred to as terminal value problem.
Because of the closed-loop structure of the game, our game
is in feedback form. In preparation to the next result, we
highlight that w∗i is an adversarial but not an arbitrary signal.
It is the worst-case deterministic time-varying signal which
depends on the aggregate behavior of the players that choose
symmetrically opposite options, namely state 1 and state 2.
We are now ready to present the next result, which establishes
that the solution of (10) is the value function. This is in
accordance with [32], with the major difference that our
dynamics include an adversarial disturbance, when assuming
the given characterization. To prove the theorem, we recall
that the running cost is concave in the disturbance w, which
is in accordance with the coercivity condition, see [23].

Theorem 1: Let v(t) : S3 × [0, T ] → R be a solution to
the Hamilton-Jacobi-Bellman terminal value problem in (10).
Then

ρ∗i = −R−1
i

[
∆iv

]−
= −

[
R−1
i1 (v1 − vi)−

R−1
i2 (v2 − vi)−

R−1
i3 (v3 − vi)−

]
(11)

is the minimizer and

w∗i = Γ−1
i

[
∆iv

]+
=

[
Γ−1
i1 (v1 − vi)+

Γ−1
i2 (v2 − vi)+

Γ−1
i3 (v3 − vi)+

]
(12)

is the maximizer over the control and disturbance, respectively.
In the above, Ri = diag(Rij) and Γi = diag(Γij), for j =
1, 2, 3, and the values of ρ∗ii, w

∗
ii are obtained from (8)-(9),

respectively, whereas only the values of ρ∗ij , w
∗
ij with i 6= j

are obtained from the above formulae. �

We now tackle the problem of a reference player whose
strategy profile takes into account other players’ controls.
Again, we assume that players are homogeneous and that a
single player does not affect the evolution of the game and
the interaction occurs through a mass function. In order to
investigate this scenario, it is enough to replace the weighting
coefficients of the diagonal matrices Ri and Γi, i.e. Rij , Γij ,
i 6= j, as follows :

Rij → Rij(∆i(z)), Γij → Γij(∆i(z)), i 6= j. (13)

The difference of function zi(x, t) at two nodes can be
interpreted as the resistance of transitions from one node
to another. Now, we consider the cost functional (3), in
the following denoted as J ix(ρi, wi, t,∆zi), with weighting
coefficients given by (13). The following problem can be
stated.

Problem 2: Consider Problem 1 and let ∆iz be the differ-
ence operator on the function that captures the resistance of
transitions from a state to another zi(xi, i) : S3 × R+

0 → R.
Find the optimal control for the reference player which mini-
mizes the cost functional (3) that depends on the distribution
and on the control of the other players:

vi(x, t) = inf
ρi

sup
wi

J ixi(ρi, wi, t,∆iz), (14)

where vi(xi, t) is the value function and the minimization is
performed over the Markovian controls for the single player
control problem βijτ .

Writing the corresponding Hamiltonian function H(·) and
the corresponding Hamilton-Jacobi-Bellman ODEs, the solu-
tion of the problem is given by (11)-(12), where Ri and Γi
are substituted by Ri(∆iz) = diag(Rij(∆iz)) and Γi(∆iz) =
diag(Γij(∆iz)), for j = 1, 2, 3, respectively, and the depen-
dence is on the difference operator on z, namely ∆iz. As
before, for the values of ρ∗ii and w∗ii we use (8) and (9),
respectively.

Remark. The main difference of this formulation of the
problem is the role of the difference operator in the strategy
profile of the reference player. The adversarial disturbance is
treated again as a worst-case deterministic time-varying signal.

III. STATIONARY MEAN-FIELD EQUILIBRIUM

In this section, we use the general result found in Theorem 1
to obtain a fully worked-out characterization of the stationary
solutions of our game. First, we find the equilibrium for the
Kolmogorov equations in terms of the population distribution.
Second, we find the solution of the optimal stochastic control
problem corresponding to the reference player playing against
a stationary population distribution. Finally, when the solution
of the mass distribution is obtained by the optimal control and
the solution of the optimal control is obtained against the same
distribution, we obtain a fixed point solution that is, by the
consistency condition, the mean-field game Nash equilibrium.
This solution exists and is unique as proved in Theorem 5.

We start by showing that the equilibrium obtained by
maximizing over the disturbance and minimizing over the
control exists and it is unique. Because of the superlinearity
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and uniform convexity of the cost function g(·), the following
function

η∗i (x, v, i) = argmin
ρi

max
wi

g(·)−1

2

∑
j 6=i

w2
ijΓij+(ρi+wi)

T∆iv

(15)
is well defined, as the saddle point exists and is unique. When
background players use strategy ρ and the best response for
the reference player is also ρ, we say that the current solution
is a mean-field game Nash equilibrium. The corresponding
mean-field game Nash equilibrium is given by the following
system which combines the Kolmogorov equations and the
Hamilton-Jacobi-Bellman equations:

ẋi(t) = (1− x1(t)− x2(t))β3i − xiβi3, ∀i ∈ I2

ẋ3(t) = −ẋ1(t)− ẋ2(t),
−v̇i(t) = H̄(x(t),∆iv(t), it), ∀i ∈ I3

x(0) = x0,
viT (T ) = ψ(iT , x(T )),

(16)
where β is obtained from (11)-(12), and the above system is
obtained from bringing together (1) and (15). Equation (15)
models the way in which players respond to the evolution
of the population defined by (1), and (1) describes the way in
which the population evolves as a whole under the assumption
that all the players behave according to (15). The macroscopic
dynamics are modeled by (1), while the microscopic best
response of each player is given by (15). This problem is
called initial-terminal value problem (ITVP) for the mean-field
game, see [32]. We expand the Hamiltonian according to (7)
and use the optimal control and disturbance from (11)-(12).
The calculation of the value function is the following:

−v̇i = 1
2

∑
j 6=i ρ

2
ijRij − 1

2

∑
j 6=i w

2
ijΓij + (ρi + wi)

T∆iv

+fi(x)

= − 1
2 (∆iv)−

T

R−1
i (∆iv)− + 1

2 (∆iv)+T Γ−1
i (∆iv)+

+fi(x).
(17)

For consistency between the macroscopic and microscopic
dynamics, we assume that the parameters R12, R21,Γ12,Γ21

are such that asymptotically the following holds:
R−1

12 , R
−1
21 ,Γ

−1
12 ,Γ

−1
21 → 0. Therefore, the transition rates

between state 1 and state 2 are negligible. In order to
investigate the transitions from the two committed states to
the uncommitted state and vice versa, we subtract the third
equation to both the first and the second equations in the
above system and replace the closed-loop expressions with
the transition rate parameters in (11) and (12). Letting

y1 = v3 − v1, y2 = v3 − v2, ξ1 = x1, ξ2 = x2, (18)

we obtain the following switched system:

ξ̇ = diag(y) (Aσξ + gσ) , (19)

ẏ = −1

2
ATσdiag(y)y + b(ξ), (20)

ξ(0) =

[
1 0 0
0 1 0

]
x0, (21)

y(T ) =

[
−1 0 1
0 −1 1

]
Ψ(x(T )), (22)

where σ = {1, 2, 3, 4} corresponds to the four quadrants (y1 >
0, y2 > 0), (y1 < 0, y2 > 0), (y1 < 0, y2 < 0), (y1 > 0, y2 <
0), respectively and

A1 =

[
−R−1

31 − Γ−1
13 −R−1

31

−R−1
32 −R−1

32 − Γ−1
23

]
, g1 =

[
R−1

31

R−1
32

]
,

A2 =

[
R−1

13 + Γ−1
31 Γ−1

31

−R−1
32 −R−1

32 − Γ−1
23

]
, g2 =

[
−Γ−1

31

R−1
32

]
,

A3 =

[
R−1

13 + Γ−1
31 Γ−1

31

Γ−1
32 R−1

23 + Γ−1
32

]
, g3 =

[
−Γ−1

31

−Γ−1
32

]
,

A4 =

[
−R−1

31 − Γ−1
13 −R−1

31

Γ−1
32 R−1

23 + Γ−1
32

]
, g4 =

[
R−1

31

−Γ−1
32

]
,

b(ξ) =

[
f1(x)− f3(x)
f2(x)− f3(x)

]
,

where ξ = [x1, x2]T is the reduced state vector.
For the sake of conciseness we denote the quadrants Qk,

k = 1, 2, 3, 4 and say that y ∈ Qk if Jky � 0, where Jk are
defined as the quaternion matrices

J1 = −I2, J2 =

[
1 0
0 −1

]
, J3 = I2, J4 =

[
−1 0
0 1

]
.

The switched system in (19)-(20) is used to establish the
existence of a stationary solution. For the game under consid-
eration, stationary solutions, also called stationary mean-field
equilibrium points, are defined as:{ ∑

k xkβ
∗
ki −

∑
j xiβ

∗
ij = 0, ∀i ∈ I3,

H̄(x,∆iv, i) = κ,
(23)

where κ is a constant and β∗ij is the optimal Markovian control
obtained from (11)-(12). It is worth noting that functions fi(x)
are fixed and constant in a stationary mean-field equilibrium.
This is due to the fact that the population distribution x is at
an equilibrium of (1) and thus constant. For the existence and
stability property of the first equation of (23), namely station-
ary distributions x(t), we studied existence and stability in [6].
With regards to this, notice that for a fixed y, the equilibrium
point of (19) depends only on quadrant k = 1, 2, 3, 4 in which
y is settled. Indeed, let ȳ[k] be the fixed value of y in the k-th
quadrant, then the associated equilibrium point for ξ is

ξ̄[k] = −A−1
k gk, (24)

that depends only on σ = k. Moreover, it is easy to recognize
that

ẋ =

[
diag(y)(Aσ + gσ1

T
2 ) diag(y)gσ

−yT (Aσ + gσ1
T
2 ) −yT gσ

]
x (25)

is a switched forward Kolmogov equation so that diag(y)Ak
is Hurwitz for any k and for constant y. We have:

lim
t→∞

x(t) = x̄[k] =

[
−A−1

k gk
1 + 1T2 A

−1
k gk

]
.

It is worth noting that even if y(t) is (bounded) time-varying,
but remains within a certain quadrant k, then x(t) converges
to the constant distribution x̄[k].

Theorem 2: Consider the Kolmogorov system (25) and
assume that y(t) is bounded and y(t) ∈ Qk, t ≥ 0. Then

lim
t→∞

x(t) = x̄[k] =

[
−A−1

k gk
1 + 1T2 A

−1
k gk

]
.
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�

The aim of the rest of this section is to investigate the
solutions of the second equation of (23). We now seek to study
the asymptotic stability of our system under a deterministic
adversarial disturbance. By fixing the equilibrium point for
the population distribution we study the evolution of the value
function under that specification. Therefore, the next result
establishes the existence of stationary value functions, namely
value functions that satisfy the second equation of (23).

Theorem 3: Let a stationary distribution ξ̄ be given. Then
there exists k such that

Jkb(ξ̄)� 0, (26)

and a stationary value function exists, which is given by

ȳ[k] = −Jk
√

2A−1T

k b(ξ̄) ∈ Qk. (27)

Moreover, ȳ[k] is backward stable. �
Remark. Equation (26) can be justified by (20) where the

equations are positive from diag(y)y. The equilibrium points
can be found at the intersections of two ellipses centered at
the origin obtained from setting (20) equal to zero. Different
values of σ change the parameters b(ξ) of the switched
system and therefore change the shape of the ellipses. If we
view the difference of value functions between two nodes
as a difference of potentials, this difference is constant, i.e.
the potential at the nodes is the same. It is easier for the
disturbance to make the player go back to the node where
their gain is lower. Additionally, we can say that b(ξ) affect the
distance of the ellipses from the center of axis, the equivalent
of the radius in the circle.

We now prove that the backward solution of the equation
of the value function in (20) is bounded for any solution ξ(t)
of (19).

Theorem 4: Let T > 0 and y(T ) = yT . Consider the
backward solution y(t), t ≤ T of (20). This solution is
bounded for T →∞. �

We are now ready to prove the existence of a mean-field
equilibrium for the coupled initial-terminal value problem,
under the following assumption for the cost function g(ξ).

Assumption 1: There exists one and only one k ∈ {1, 2, 3, 4}
such that

Jkb(ξ
[k])� 0. (28)

Theorem 5: Under Assumption 1, the unique stationary
solution of mean-field game is given by

ξ̄ = −A−1
k gk, ȳ = −Jk

√
2A−1T

k b(−A−1
k gk).

Moreover, the constant κ of the mean-field stationary solution
in (23) is given by:

κ = −0.5R−1
13 [(ȳ1)−]2 + 0.5Γ−1

13 [(ȳ1)+]2 + f1(ξ̄)

= −0.5R−1
23 [(ȳ2)−]2 + 0.5Γ−1

23 [(ȳ2)+]2 + f2(ξ̄)

= −0.5R−1
31 [(ȳ1)+]2 − 0.5R−1

32 [(ȳ2)+]2

+0.5Γ−1
31 [(ȳ1)−]2 + 0.5Γ−1

32 [(ȳ2)−]2 + f3(ξ̄).

�

Remark. Assumption 1 is enforced by the more stringent
assumption that g(ξ) belongs to the same quadrant for any ξ,
i.e.

g(ξ) ∈ Qi, ∀ξ ∈ [0, 1]2.

In such a case, the mean-field equilibrium is given by

ξ̄ = −A−1
k gk, ȳ = −Jk

√
2A−1T

k b(−A−1
k gk) ∈ Qk,

where k = 4− i if i = 1, 2, 3 or k = 2 if i = 4, which means
that Qk is the quadrant opposite to Qi.

We are ready to prove convergence to a stationary distribu-
tion of the mean-field response.

Theorem 6: Assume that g(ξ) is continuous and bounded
and satisfying assumption (28). Consider system (19), (20).
Given a probability vector x0 and let a terminal condition
ψ, let (ξ(t), y(t)) be the solution of (19), (20), with initial-
terminal conditions ξ(−T ) = ξ0 and y(T ) = g(ξ(T )). Then,
for T →∞,

ξ(0) = ξ̄, y(0) = ȳ,

where ξ̄ and ȳ are the unique stationary solution of Theorem 3.
�
Proof. From the given assumptions, a unique stationary solu-
tion exists and the solutions ξ(t), t ≥ −T , y(t), t ≤ T , are
continuous and bounded. The result follows from Theorem 2,
3, 4, 5. �

Remark. The stationary solution can be found by standard
shooting technique. Let

ξ[i](t) = ϕξ(t, ξ0,−T, y[i](·))

be the flow of (20) with initial condition ξ(−T ) = ξ0, given
y(t) = y[i](·) and

y[i+1](t) = ϕy(t, yT , ξ
[i](·))

be the flow of (19) with final condition yT at time T . Then
the composition

ξ[i+1](t) = ϕξ(t, ξ0,−T, ϕy(., yT , ξ
[i](·)))

gives a sequence of uniformly bounded continuous functions
in [−T, T ] for which a fixed point exists thanks to the Schauder
fixed point theorem, see [42], since the set of continuous
functions in [−T, T ] is a relatively compact, bounded and
convex set, and all functions are uniformly bounded. We
know that a unique stationary solution exists, so the sequence
converges to ξ̄ (and then y → ȳ) for T →∞.

Example 1: Let

R−1
13 = 0.4868, R−1

31 = 0.4359, R−1
23 = 0.4468,

R−1
32 = 0.3063,Γ−1

13 = 0.5085, Γ−1
31 = 0.5108,

Γ−1
23 = 0.8176, Γ−1

32 = 0.7948, ξ0 = [0.2 0.3]T ,

b(ξ) =

[
8
6

]
+

[
−1 −4
5 −1

]
ξ ∈ Q1, yT =

[
6
−8

]
,

the mean-field equilibrium is given by

ξ̄ =

[
0.2741
0.4647

]
, ȳ =

[
−2.461
−2.881

]
,
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Fig. 1: Forward solution: evolution of the population distribu-
tion, with initial condition ξ0 = [0.2, 0.3]T .
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Fig. 2: Backward solution: evolution of the difference in value
function y1 = v3 − v1 and y2 = v3 − v2.

and the costant κ of the mean-field equilibrium point in (23)
is κ = 0.5150. The simulations for the initial transients of ξ
(for t ≥ 0) and y (for t < T = 2000) are reported in Figg. 1
and 2, respectively. In particular, Figure 1 shows the forward
solution, namely the evolution of the population distribution
over time, given an initial condition; Figure 2 shows the
backward solution, i.e. the difference in value function over
time, given a terminal condition. When 0 is replaced by −T
and T → ∞, both ξ and y converge to the stationary values
ξ̄ and ȳ ∈ Q3.

In this example, we analyse the mean-field equilibrium and
its uniqueness for the system of equations in (19)-(20). Specif-
ically, it can be observed that, after setting the parameters to
random values between 0 and 1, and giving an initial condition
on the population distribution, namely ξ = [0.2, 0.3]T , and a
final condition on the value function yT = [6,−8]T , we can
calculate the constant κ of the mean-field equilibrium. Indeed,
the stationary solution is bounded, as stated in Theorem 4, and
it is unique in accordance to Theorem 5.

3

1 2
γ1 + r1x1

α1 + σ2x2

γ2 + r2x2

α2 + σ1x1

Fig. 3: Markov chain corresponding to system (29).

IV. DECISION-MAKING IN HONEYBEES

In this section, we provide a link between the optimal
control approach discussed previously and the cognitive task
of nest-site selection in the context of honeybee swarms.
First, let us introduce the model corresponding to system (1)
in [7] where we consider only the deterministic part as in the
following: ẋ1 = x3(x1r1 + γ1)− x1(x2σ2 + α1),

ẋ2 = x3(x2r2 + γ2)− x2(x1σ1 + α2),
ẋ3 = −ẋ1 − ẋ2,

(29)

where xi represents state i, and r, γ, σ and α are positive
definite. We have replaced ρ with r to avoid confusion with
the control ρ in our game model. In (29), the waggle dance is
captured by parameter r, and the cross-inhibitory stop signal
is captured by σ. Bees can spontaneously choose to commit
to one option or to abandon their commitment through param-
eters γ and α, respectively. The Markov chain corresponding
to the above model is depicted in Fig. 3.

In the following we show that, by an appropriate choice of
the values of the control and disturbance, system (19) takes the
form in (29), given the equilibrium point calculated in (27).
Let us first rewrite system (19) as in the following:

ξ̇ = diag(y)(Âσξ + gσx3), (30)

where Âσ is defined as:

Âσ =

[
â11,σ 0

0 â22,σ

]
,

and gσ = [g1,σ, g2,σ]T consists of the elements as in sys-
tem (19). In the above, â11,σ and â22,σ are the element a11,σ

and a22,σ in the original Aσ without the parameter in the off-
diagonal for any quadrant σ, respectively. Therefore, e.g. for
σ = 1 we have â11,1 = −Γ−1

13 and â22,1 = −Γ−1
23 . As for

gσ , in the same quadrant σ = 1 we have g1,1 = R−1
31 and

g2,1 = R−1
32 . We are now ready to show the next result, which

brings together the optimal control approach developed so far
with the collective decision-making in honeybees. As usual,
the vector ξ corresponds to [x1, x2]T .

Lemma 1: Assume that the parameters in gσ depend on the
population distribution as in the following:

g1,σ = − x1r1 + γ1

x2σ2 + α1
â11,σ,

g2,σ = − x2r2 + γ2

x1σ1 + α2
â22,σ,

and let the cost functions fi(x) be such that[
f1(x)− f3(x)
f2(x)− f3(x)

]
= b(ξ) =

ATk
2

 (x2σ2+α1)2

â211,k
(x1σ1+α2)2

â222,k

 ,
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where k is a fixed integer in {1, 2, 3, 4}. Then, under the
difference of potential feedback

y1 = −x2σ2 + α1

â11,σ
, y2 = −x1σ1 + α2

â22,σ
,

the population dynamics in (30) coincides with (29) and the
equilibrium is given by ξ̄ = −Â−1

k gk/(1 − 1T Â−1
k gk) as in

Theorem 3. �
Proof. The proof follows from substituting the values of gσ in
system (30), from which we obtain:

ẋ1 = −(x2σ2 + α1)x1 + (r1x1 + γ1)x3,

ẋ2 = −(x1σ1 + α2)x2 + (r2x2 + γ2)x3,

which corresponds to system (29). Let us now consider sys-
tem (19) as ξ̇ = diag(y)(Aσξ + gσ) and let us investigate
the behavior at the equilibrium in quadrant k. By substituting
Ak = Âk − gk1

T in (23) and from the sum of matrices
inversion lemma, we have

ξ̄ = −
Â−1
k gk

1− 1T Â−1
k gk

.

Then, the equilibrium in (20) coincides with (27), since

ȳ[k] = −Jk
√

2A−1T

k b(ξ̄)

= −Jk

[
x̄2σ2+α1

|â11,k|
x̄1σ1+α2

|â22,k|

]
=

[
x̄2σ2+α1

â11,k
x̄1σ1+α2

â22,k

]
.

This concludes the proof. �

In light of the above, we find that the mean-field game
model studied in Section II yields the evolutionary model for
the collective decision-making in honeybee swarms.

V. PERIODIC SOLUTIONS

Motivated by the literature on environmental feedback, we
now investigate the case where the parameters depend on the
state through the value function. The authors in [36] propose
intrinsic and extrinsic dynamics for the evolution of the
environment, where the strategy profile of the population has
an impact on the environmental variable and the environment
also evolves intrinsically on its own. We propose to model
the environmental feedback through the value function and
its direct dependence on the state. The intuition is that the
decision-making in honeybees strongly depends on the waggle
dance and cross-inhibitory signalling, which take the form of
a control and disturbance in the value function. Therefore,
we include these two behavioral traits in the optimal control
problem as environmental feedback through the value function.
As a consequence of this feedback, the system dynamics yield
oscillatory behaviors that result in limit cycles and bifurcations
as it is shown in the following.

We introduce a form of environmental feedback by assum-
ing that the penalty coefficients R13, R31, Γ13, Γ31, R23, R32,
Γ23, Γ32 are functions of variables y1 and y2. More formally,
we let

R−1
13 = R−1

32 = Γ−1
32 = Γ−1

13 = |y1|, (31)
R−1

31 = R−1
23 = Γ−1

23 = Γ−1
31 = |y2|. (32)

Moreover, we also assume that functions fi(x) (and hence
b(ξ)) depend only on y. With a slight abuse of notation we
have

b(y) = My, M =

[
µ 1
−1 µ

]
, (33)

where M is parametrized in µ, which satisfies the left-hand
equation above to accommodate the change of sign and the
corresponding parametric study across the four quadrants. By
so doing, the Hamiltonian switched system is still given by
(19), (20) where

A1 = A3 =

[
−y1 − y2 −y2

−y1 −y1 − y2

]
, (34)

A2 = A4 =

[
−y1 + y2 y2

y1 −y2 + y1

]
, (35)

g1 = g3 =

[
y2

y1

]
, (36)

g2 = g4 =

[
−y2

−y1

]
. (37)

We now study the existence and property of mean-field equi-
libria as a function of the parameter µ. To this end, let

µ∗ = −1.5674.

The details are given in the proof of the following theorem in
the Appendix.

Theorem 7: Consider the switched Hamiltonian system with
the structure given by equations (31)-(37). Given T > 0, an
initial condition ξ0 = ξ(−T ) for (19), a terminal condition
y(T ) = ψ for (20), the switching equilibrium points are
characterized as a function of the real parameter µ as follows:
• Case 1. If µ > 0, the equilibrium is given by the stable

zero equilibrium

ξ̄ = 0, ȳ = 0.

• Case 2. When µ ≤ 0, the equilibrium point in 0 is
no longer stable and depending on the value of µ, the
following holds true:

– Case 2.1. If µ∗ < µ ≤ 0, the equilibrium is
characterized by a supercritical Hopf bifurcation at
µ = 0, and a stable periodic limit cycle exists for
ỹ(t) and ξ̃(t).

– Case 2.2. If µ ≤ µ∗, the system is characterized
by a homoclinic bifurcation to nonhyperbolic saddle,
for which the periodic limit cycle is no longer stable
and four equilibrium points exist, two stable and two
saddle points. �

Example 2: With reference to Theorem 7, let us consider
each case in the order they appear in the theorem, and therefore
let µ > 0 as in Case 1, first. A unique mean-field equilibrium
exists ξ̄ = 0, ȳ = 0, and is stable, in accordance with
Theorem 7. Figure 4 depicts the phase portrait of y(t) for
µ = 0.2.

Now, we set µ = −1 as in Case 2.1. As proved in
the Appendix, this case corresponds to the existence of a
stable limit cycle. The limit cycle is inscribed in the annulus
described by the circles whose radiuses are defined from the
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Fig. 4: Phase portrait of y, µ = 0.2.

center to the closest point and the furthest point of the gray
area, respectively. The gray area is defined by the candidate
Lyapunov function V = y2

1 + y2
2 specialized in each of

the four quadrants. The phase portrait in the plane y1-y2 is
illustrated in Fig. 5: regardless of the terminal condition on y,
all trajectories converge to the stable limit cycle depicted in
purple. The rotation is counterclockwise, as indicated by the
black arrow. Letting y(T ) = [−5, 6]T and ξ(0) = [0.2, 0.3]T ,
the forward solution of ξ(t) and the backward solution of y(t)
are represented in Figures 6 and 7, respectively.

Fig. 5: Phase portrait of y, µ = −1. The gray area is the
one defined by the candidate Lyapunov function V = y2

1 + y2
2

specialized in each of the four quadrants. The limit cycle is
found inside the annulus described by the dotted circles.

Finally, we consider µ < µ∗ as in Case 2.2. In this case, two
stable equilibria exist, one in the second and one in the fourth
quadrant. The phase portrait for µ = −2 corresponding to this
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Fig. 6: Forward solution: oscillations of ξ(t), µ = −1.
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Fig. 7: Backward solution: oscillations of y(t), µ = −1.

case is depicted in Fig. 8. Here, y tends to one of the two
stable equilibria, namely ȳ[2] = −ȳ[4] = [−2.1415, 1.5787]T

in accordance with Theorem 7. The corresponding equilibrium
for the population distribution is ξ̄ = [0.1818, 0.7734]T , which
shows that a lower value of µ prevents deadlocks and allows
the population to obtain a large consensus on option 2.

VI. NETWORKED MICROSCOPIC SYSTEM

In the following, we derive a microscopic model where
we consider a finite number of players interacting by means
of a network topology. This model approximates system (1),
of which system (29) represents the evolutionary dynamics
corresponding to the collective decision-making in honeybee
swarms. The state of player i is represented by the probability
across the three states ri, si, zi. We now introduce the
microscopic dynamics in the form of a networked model
for collective decision-making. More specifically, we study a
population of N players, each corresponding to a node of a
network. An edge between two nodes indicates that the cor-
responding players interact with one another. The interaction
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Fig. 8: Phase portrait of y, µ = −2.

topology is described by a fully connected, undirected and
complete communication graph G = {V, E}, with adjacency
matrix A, i.e. A = 1

N−1 (1N1′N − IN ). In the following, let
us denote ri, si and zi the probability that player i is in state
1, 2 and 3, respectively. Due to the dependence of matrix β
on the state, we split the linear and constant components as
follows: we indicate by β′ij the linear transition rates and have
the state explicitly indicated in the equations; we indicate by
β′′ij the constant transition rates. The model describing the time
evolution of the players’ state is given by the following system
of equations:

ṙi(t) = −β′13ri(t)
∑N
j=1 aijsj(t) + β′31zi(t)

∑N
j=1 aijrj(t)

−β′′13ri(t) + β′′31zi(t),

ṡi(t) = −β′23si(t)
∑N
j=1 aijrj(t) + β′32zi(t)

∑N
j=1 aijsj(t)

−β′′23si(t) + β′′32zi(t),

żi(t) = β′13ri(t)
∑N
j=1 aijsj(t)− β′31zi(t)

∑N
j=1 aijrj(t)

+β′23si(t)
∑N
j=1 aijrj(t)− β′32zi(t)

∑N
j=1 aijsj(t)

+β′′13ri(t)− β′′31zi(t) + β′′23si(t)− β′′32zi(t).
(38)

We can rewrite system (38) in vector form as

ṙ(t) = −β′13diag(r(t))As(t) + β′31diag(z(t))Ar(t)
−β′′13r(t) + β′′31z(t),

ṡ(t) = −β′23diag(s(t))Ar(t) + β′32diag(z(t))As(t)
−β′′23s(t) + β′′32z(t),

ż(t) = +β′13diag(r(t))As(t)− β′31diag(z(t))Ar(t)
+β′23diag(s(t))Ar(t)− β′32diag(z(t))As(t)
+β′′13r(t)− β′′31z(t) + β′′23s(t)− β′′32z(t).

(39)
In the following, we assume that the linear and constant

coefficients are coupled through a parameter k as in the
following:

β′31 = kβ′13, β
′′
31 = kβ′′13, β

′
32 = kβ′23, β

′′
32 = kβ′′23, (40)

where k is a parameter that corresponds to a measure of
the coupling strength between each pair of parameters. It is
possible to formalize a problem for a differential game similar
to the one in Section III for system (39). The differential game

converges to the stationary solutions studied in Section III
with the main difference that the control parameters are now
coupled through parameter k.

In order to prove convergence of system (39), let us first
consider the three dimensional system for a single agent (the
time dependence has been omitted for conciseness):

˙̂r = −β′13ŝ+ kβ′13ẑr̂ − β′′13r̂ + kβ′′13ẑ, (41)
˙̂s = −β′23ŝr̂ + kβ′23ẑŝ− β′′23ŝ+ kβ′′23ẑ, (42)
˙̂z = − ˙̂r − ˙̂s. (43)

We are now ready to establish the following result.
Theorem 8: Consider system (41), (42), (43) under assump-

tion (40). If

ν =
β′′13β

′′
23

β′13β
′
23

>
k

4(k + 1)
,

there is an unique equilibrium point

¯̂r =
k

2k + 1
, ¯̂s =

k

2k + 1
, ¯̂z =

1

2k + 1
,

and this equilibrium point is asymptotically stable. �
We can now use the result in Theorem 8 to prove con-

vergence for system (39): more specifically, because of the
homogeneity of the population we multiply the system for
the single player by 1N and subtract this to the networked
system (39). We can now prove that this difference goes to 0
and therefore the equilibrium point is asymptotically stable.

Theorem 9: Consider the networked model (39) under
assumption (40). The following statements hold:

1) If r(0), s(0), z(0) ∈ [0 1]N , then r(t), s(t), z(t) ∈ [0 1]N
for all t > 0.

2) If

ν =
β′′13β

′′
23

β′13β
′
23

>
k

4(k + 1)
,

then the equilibrium point

r̄ =
k

2k + 1
1N , s̄ =

k

2k + 1
1N , z̄ =

1

2k + 1
1N

is asymptotically stable. �
Remark. The novelty of the above result is that a lower

value of the parameter k determines higher value of z at
the equilibrium. Thus, the larger the parameter k, the smaller
the probability of a generic agent to be in the uncommitted
state. To provide a physical interpretation in the context of
the decision-making, this means that if the strength of the
disruptive signals is k times larger than the force to convince
other agents – in the context of honeybees the two are given by
the cross-inhibitory signal and the waggle dance, respectively
– the probability that an agent is in the uncommitted state is
proportionally lower.

Example 3: In this example, we present a set of simulations
to corroborate our theoretical results on the microscopic net-
worked model (39). We consider N = 20 agents, each with a
random initial condition such that ri(0) + si(0) + zi(0) = 1.
We set the parameters as:

β′13 = 2.5, β′′13 = 1.1, β′23 = 2.2,

β′′23 = 1.2, β′31 = 0.625, β′′31 = 0.275,

β′32 = 0.55, β′′32 = 0.3, k = 0.25.
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In accordance with Theorem 9, the condition ν > k/4(k+1)
holds true and the swarm, regardless of the initial conditions,
converges to the following stable equilibrium point:

r̄ = 0.16671N , s̄ = 0.16671N , z̄ = 0.66641N .

This scenario is depicted in Fig. 9. Each agent i is repre-
sented by the same color: the dashed line for state r, the dotted
line for state s and the solid line for state z. As it can be seen
from the figure, regardless of the random initial conditions, all
agents converge to the same equilibrium point.
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Fig. 9: Evolution of population distribution, k = 0.25.

VII. CONCLUSION

In this paper, we have proposed an optimal control frame-
work to study the mean-field game model for the collec-
tive decision-making originating in the context of honeybee
swarms. We have reframed this problem in a continuous-time
dynamic game framework via switched systems in the form
of an initial-terminal value problem. We have investigated the
corresponding stationary solutions and proved the existence
and uniqueness of a mean-field Nash equilibrium. We have
then considered the case where parameters depend on the
difference between the value function calculated in two states
in a form of game-environment feedback and have studied
the periodic solutions associated to this case. Furthermore, we
have studied the corresponding networked model for a finite
number of players where the state of each player represents
the probability to choose one of the options. We have modeled
the interactions through a network topology and studied how
the equilibrium points are affected by a coupling parameter
k that links the linear transition rates together, as well as the
constant ones. We have also shown the connection between
this problem and the initial mean-field model by highlighting
the difference that consists in the parameters being linked
through k. The plan for future works includes: i) the study of
the corresponding master model, in the case of more than two
options, and ii) the extension of the results to sliding modes
in the form of sliding mean-field equilibrium points.

APPENDIX

Proof of Theorem 1. Suppose that ρi is any control. Suppose
also that w∗i is the optimal disturbance obtained from the
robust Hamiltonian in (7), for given ρi, and that given the
nature of w∗i , it can be regarded as a constant value for which
we can establish the following:

J ixi(ρi, wi, t)

= Eρi,w
∗
i

it=i

[
ψ(iT , xiT ) +

∫ T
t
g(·)−

∑
j 6=iτ w

2
iτ j

Γiτ j

]
dτ

]

= vi(t) + Eρi,w
∗
i

it=i

[ ∫ T
t

[
dviτ
dt (τ) + (Aρv)iτ (τ)

+g(iτ , xiτ (τ), ρiτ (τ))−
∑
j 6=iτ w

2
iτ j

Γiτ j

]
dτ

]
.

(44)
The second equality above is obtained from the Dynkin

formula

Eρi,w
∗
i

it=i

[
viT (T )− vi(t)

]
= Eρi,w

∗
i

it=i

[ ∫ T
t

[
dviτ
dt (τ)

+(Aρv)iτ (τ)dτ

]
,

(45)

where the terminal condition is viT (T ) = ψ(iT , xiT ) and
(Aρv)iτ (τ) =

∑
j ρij(τ)[vj(τ) − viτ (τ)] is the infinitesimal

generator of process iτ . Then we have that

J ixi(ρi, wi, t) ≥ vi(t) + Eρi,w
∗
i

it=i

[ ∫ T
t

[
dviτ
dt (τ)

+ minµ(·)∈(R+
0 )3
∑
j µj

[
vj(τ)− viτ (τ)

]
+g(iτ , xiτ (τ), ρiτ (τ))−

∑
j 6=iτ w

2
iτ j

Γiτ j

]
dτ

]
.

(46)

The above inequality follows from the fact that we minimize
over any control µ(·) ∈ (R+

0 )3. Given the assumption that
the running cost is concave in the disturbance and that the
coefficients are bounded, the RHS of the previous equation
can be rewritten as:

J ixi(ρi, wi, t) ≥ vi(t) + Eρi,wiit=i

[ ∫ T
t

[
dviτ
dt (τ)

+ minµ(·)∈(R+
0 )3 maxw(·)∈(R+

0 )3
∑
j µj

[
vj(τ)− viτ (τ)

]
+g(iτ , xiτ (τ), ρiτ (τ))−

∑
j 6=iτ w

2
iτ j

Γiτ j

]
dτ

]
.

(47)
The above equation is obtained from the definition of w∗i , by
maximising over any possible disturbance.

Replacing the minimax term by the robust Hamiltonian as
in (7), we obtain:

J ixi(ρi, wi, t) = vi(t) + Eρi,w
∗
i

it=i

[ ∫ T
t

[
dviτ
dt (τ)

+H(xiτ (τ),∆iτ v(τ), iτ )
]
dτ

]
= vi(t).

(48)
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To conclude the proof, the mean-field response as in (10)
exists and it is the value function of the optimal control
problem. By differentiating (7) with respect to ρi and taking
the gradient equal to zero, we have

Riρi + ∆iv = 0, (49)

from which we obtain the optimal control in (11), in the
general case for any Rij . Similarly, by differentiating (7) with
respect to wi and taking the gradient equal to zero, we have:

−Γiwi + ∆iv = 0, (50)

which yields the optimal adversarial disturbance as in (12), in
the general case for Γij . This concludes the proof. �

Proof of Theorem 2. Let

B(k, y) =

[
diag(y)(Ak + gk1

T
2 ) diag(y)gk

−yT (Ak + gk1
T
2 ) −yT gk

]
.

We already know that, since σ(t) = k, then

B(k, y)x̄[k] = 0,

with B(k, y) Metzler with 1T3 B(k, y) = 0. Denote by
Bij(k, y) the entries of B(k, y) and take as Lyapunov function
the relative entropy

V (x) =

3∑
i=1

xi

x̄
[k]
i

log(xi) + xi − x̄[k]
i .

The derivative is

v̇(x) = −
3∑
i=1

∑
j 6=i

Bij(k, y)Φ

(
xj x̄

[k]
i

x̄
[k]
j xi

)
xi
x̄

[k]
j

x̄
[k]
i

+

3∑
i=1

3∑
j=1

Bij(k, y)
xi

x̄
[k]
i

x̄
[k]
j ,

where Φ(s) = 1 − s + s log(s) ≥ 0. Since B(k, y)x̄[k] = 0
the last term vanishes and since Bij(k, y) ≥ 0 for i 6= j we
have V̇ (x) ≤ 0. Finally notice that, thanks to the irreducibility
of B(k, y), the only possible perturbed trajectory yielding
V̇ (x) = 0 is such that Φ(s) = 0 that means s = 1, i.e.
x = x̄[k]. Asymptotic stability then follows from La Salle,
and the proof is concluded. �

Proof of Theorem 3. It is easy to see that there exists a unique
k ∈ {1, 2, 3, 4} such that Jkg(ξ̄) � 0. Indeed, if g(ξ) ∈ Qi
then k is the index of the quadrant oppositive to the i − th
quadrant. Moreover, thanks to the structure of matrix Ak, it
also follows that A−1T

k b(ξ̄) � 0, so ensuring the existence
of a positive equilibrium for diag(y)y. Hence, the equilibrium
in the k-th quadrant is recovered by taking the square root
and multiplying by −Jk. As for the stability, compute the
Jacobian of system (20), i.e.

H = −ATk diag(ȳ[k]).

Matrix −H is element-wise negative with positive determi-
nant. This proves backward stability of ȳ[k]. This concludes
the proof. �

Proof of Theorem 4. Let z(t) = |y(T − t)|, γ(t) = σ(T − t),
r(t) = ξ(T − t), qγ(t) = Jγb(r(t)), Qγ = −1/2JγA

′
γ , M =

supξ∈[0 1]2 ‖b(ξ)‖. Then,

ż(t) = Qγ(t)diag(z(t))z(t) + qγ(t)(t), z(0) = |yT |.

Now notice that the 1-Lozinski measure µ1 for each γ is
strictly negative, i.e. there exists α > 0 such that

µ1(Qk) ≤ −α, k = 1, 2, 3, 4.

Therefore
1T2 ż ≤ −β(z)1T2 z + 1T2 qγ ,

with β(z) = αmini,2 zi. Notice that the positive variable
zi(t) cannot be zero in a nonzero length interval, and this
means that for any interval [τ t] there exists β̄ > 0 such that∫ t
τ
β(z(τ))dτ ≥ (t− τ)β̄. Therefore

1T2 z(t) ≤ e−β̄t|yT |+
M

β̄
(1− e−β̄t).

This concludes the proof. �

Proof of Theorem 5. By taking the derivatives equal to zero,
the equilibrium points ξ̄, ȳ of (19), (20) must satisfy:

0 = diag(ȳ)
(
Aσ(ȳ)ξ̄ + gσ(ȳ)

)
, (51)

0 = −1

2
ATσ(ȳ)diag(ȳ)ȳ + b(ξ̄). (52)

Assumption 1 is equivalent to 2A−1T
σ(ȳ)b(−A

−1
σ(ȳ)gσ(ȳ)) �

0 so that, σ(ȳ) = k, ξ̄ = −A−1
k gk and ȳ =

−Jk
√

2A−1T
k b(−A−1

k gk). The formula for κ derives directly
from (49), letting v̇i = 0. This concludes the proof. �

Proof of Theorem 7. Notice that the equation in y is
independent of ξ and can be written as

ẏ = 0.5

[
(y1 + y2)y2

1 + y1y
2
2

y2y
2
1 + (y1 + y2)y2

2

]
+My,

if y1y2 > 0 (quadrants I, III) and

ẏ = 0.5

[
(y1 − y2)y2

1 − y1y
2
2

−y2y
2
1 + (y2 − y1)y2

2

]
+My,

if y1y2 < 0 (quadrants II, IV).
• Case 1: µ > 0. It is clear that ȳ = 0 is an equilibrium

point and that (through a simple computation) there are
no other equilibria for µ > 0. The reverse Jacobian is

J =

[
−µ −1
1 −µ

]
,

that is Hurwitz for µ > 0. Moreover, let a candidate
Lyapunov function be V = y2

1 + y2
2 . We have

V̇ = −V 2 − (y1y2 + 2µ)V,

in quadrants I and III and

V̇ = (y1y2 − 2µ)V − (y2
1 − y2

2)2,

in quadrants II and IV. Therefore, for µ > 0 the
Lyapunov function V is a common Lyapunov function
in all quadrants so that the equilibrium point ȳ = 0
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is globally asymptotically stable. Correspondingly, the
mean-field equilibrium is

ξ̄ = 0, ȳ = 0.

• Case 2: µ ≤ 0. The zero equilibrium point is unstable.
The point µ = 0 is a supercritical Hopf bifurcation as
it can be seen by looking at the Jacobian matrix above
for Case 1: when µ > 0, we have two negative real
eigenvalues, but at µ = 0, we have two purely imaginary
eigenvalues. It is a matter of simple computations to show
that all other possible equilibrium points are in quadrants
II and IV, characterized by ȳ2 = αȳ1 with α ∈ (−1, 0)
and

ȳ2
1 =

α2 + 1

α(α2 − 1)
,

where α is related to the given µ as follows:

µ =
−α4 + α3 + 2α2 + α− 1

2α(α2 − 1)
.

The reverse Jacobian in quadrants II, IV is

J =
[

(α+ α2/2− 3/2)ȳ21 − µ (1/2 + α)ȳ21 − 1
(α+ α2/2)ȳ21 + 1 (1/2− 3α2/2 + α)ȳ21 − µ

]
,

that is Hurwitz for α ∈ (−1, −0.544). By substituting the
value α = −0.544 in the above formula for µ, we obtain
the critical value µ∗ = −1.5674. At this value we have a
homoclinic bifurcation to nonhyperbolic saddle for which
two foci and two saddles are present and the trajectories
converge to one focus depending on the terminal condi-
tion, see Fig. 19 in [39]. In the following, we investigate
two values of α: the first case is for α1 ∈ (−0.544, 0),
corresponding to µ∗ = −1.5674 < µ ≤ 0, and then the
second case is for α2 ∈ (−1, −0.544), corresponding to
µ ≤ µ∗.

– Case 2.1: µ∗ = −1.5674 < µ ≤ 0. As stated in
the general Case 2, the only equilibrium point is
ȳ = 0 and it is unstable as the Jacobian matrix at
this point has eigenvalues with positive real parts.
To prove the existence of a limit cycle, we need to
find a closed bounded subset M of the plane such
that every trajectory starting in M stays in M for
all time. To this end, let us consider the candidate
Lyapunov function V = y2

1 + y2
2 as before and let

M = V ≤ c, with c > 0. For quadrants I-III, at the
boundary V = c we have:

y∇V =
y4

1 + 2y2
1y

2
2 + y4

2 + y1y2(y2
1 + y2

2) + 2µ(y2
1 + y2

2)
= (y2

1 + y2
2)2 + y1y2(y2

1 + y2
2) + 2µ(y2

1 + y2
2)

≤ (y2
1 + y2

2)2 + (y2
1 + y2

2)2 + 2µ(y2
1 + y2

2)
= 2c2 + 2µc,

where we used the fact that ‖y1y2‖ ≤ y2
1 + y2

2 . A
similar calculation for quadrants II-IV yields:

y∇V = y4
1 + y4

2 − y1y2(y2
1 + y2

2) + 2µ(y2
1 + y2

2)
≤ (y2

1 + y2
2)2 + (y2

1 + y2
2)2 + 2µ(y2

1 + y2
2)

= 2c2 + 2µc,

where we used the fact that y4
1 +y4

2 ≤ (y2
1 +y2

2)4 and
‖y1y2‖ ≤ y2

1 + y2
2 . Therefore, by choosing c ≤ −µ,

we can ensure that all trajectories are trapped inside
M . Therefore, by the Poincaré-Bendixon Theorem
there exists a globally stable periodic motion y(t)
(with period τ depending on µ) in the positively
invariant region M , see [40]. The time-varying equi-
librium is given by y(t) and by the unique τ -
periodic solution of (19). Trajectories converge to
the limit cycle in counterclockwise direction. For
α1 ∈ (−0.544, 0), two unstable equilibrium points
(saddles) exist in the second and fourth quadrants,
namely ȳ1, ȳ2 = α1ȳ1.

– Case 2.2: µ ≤ µ∗. The equilibrium point y = 0
is unstable. For α2 ∈ (−1, −0.544), two stable
equilibrium points and two saddle points exist in the
second and fourth quadrants, namely ȳ1, ȳ2 = α2ȳ1,
for the different values of α solving the equation
for µ. In conclusion, for µ ≤ µ∗ there are two
locally stable equilibrium points, denoted by ȳ[2] in
the second quadrant and ȳ[4] in the fourth quadrant
(depending on y(T )). Depending on the values of α,
both foci and saddle points are given by

ȳ[2] = −ȳ[4] = −
[

1
α2

]√
α2

2 + 1

α2(α2
2 − 1)

,

and the associated mean-field equilibrium is given
by either (ξ̄, y[2]) or (ξ̄, y[4]) with

ξ̄ = −A−1
2 g2 = −A−1

4 g4 =
1

α2
2 + 1

[
α2

2 − α2 − 1
−α2

2 + 1− α2

]
.

Letting β = y2/y1 it follows that

β̇ = β2 + 1,

in the first and third quadrants and

β̇ = β2 + 1 + β(1− β2)y2
1 ,

in the second and third quadrants. This means that
y(t) crosses the y2 axis in anticlockwise direction
towards ȳ[2] (second quadrant) or ȳ[4] (fourth quad-
rant) corresponding to β̄ = 1/α2.

This concludes the proof. �

Proof of Theorem 8. The equilibriun points of the system
satisfy: [

−β′′13 β′13
¯̂r

β′23
¯̂s −β′′23

] [
¯̂r − k ¯̂z
¯̂s− k ¯̂z

]
= 0.

Hence one equilibrium is ¯̂r = ¯̂s = k ¯̂z = k
2k+1 . Other equilibria

arise if ν =
β′′13β

′′
23

β′13β
′
23

= ¯̂r ¯̂z. In such a case a simple computation
shows that

¯̂r3 + ¯̂r2(
k + 1

k
α− 1) + ¯̂r(

k + 1

k
ν − α) + να = 0,

i.e.

¯̂r(¯̂r2 − ¯̂r +
k + 1

k
ν) + α(¯̂r2 k + 1

k
− ¯̂r + ν) = 0,

where α =
β′′13
β′13

. Standard root locus arguments show that there
are no real and positive equilibria if the zeros of ¯̂r2− ¯̂r+ k+1

k ν

are not real, and this happens if ν > β′′13β
′′
23

β′13β
′
23

.
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Finally, take the linearized system along the above equilibrium
point and compute the Jacobian J (reduced to the variations
of r̂ and ŝ). It follows

J = −

[
(1 + k)β′′13 + k2

1+2kβ
′
13 kβ′′13 + k k+1

1+2kβ
′
13

kβ23 + k k+1
1+2kβ

′′
23 (1 + k)β′′13 + k2

1+2kβ
′
13

]
.

The stability result follows by noticing that J has negative
trace and that its determinant (2k+1)(β′′23β

′′
13− k2

(1+2k)2 β
′
13β
′
23)

is positive iff ν > k2

(1+2k)2 . This condition is enforced by

the assumption ν > k
4(k+1) since k2

(1+2k)2 ≤
k

4(k+1) . This
concludes the proof. �

Proof of Theorem 9. First of all recall from [41] that
a nonlinear system ẋ = f(x) is positive if and only if
xi = 0 −→ fi(x) ≥ 0 for any x in the boundary of the positive
orthant. This property is satisfied by system (38). Moreover,
as apparent from (38), 1T3 ṗi(t) = 0, where pi = [ri si zi]

T .
This concludes the proof of point (1).

As for point (2), notice first that A1N = 1N , and this easily
implies that

r̄ =
k

2k + 1
1N , s̄ =

k

2k + 1
1N , z̄ =

1

2k + 1
1N

is an equilibrium point. A cumbersone computation, relying
on the fact that A = 1

N−1 (1N1′N − IN ), shows that the
linearized system can be written as

δṙ
δṡ

1′Nδṙ
1′Nδṡ

 =

[
(B − C

N−1 )⊗ IN C
N−1 ⊗ 1N

0 B + C

]
δr
δs

1′Nδr
1′Nδs

 ,
where δr = r − r̄ and similarly for δs, and

B =

[
−(1 + k)(β′13

¯̂r + β′′13) −k(β13
¯̂r + β′′13)

−k(β′23
¯̂r + β′′23) −(k + 1)(β′23

¯̂r + β′′23)

]
,

C =

[
β′13

¯̂r −β′13
¯̂r

−β′23
¯̂r β23′

¯̂r

]
.

Matrix B + C coincides with the Jacobian J in the proof of
Theorem 8, and it is Hurwitz. Moreover, B − C/(N − 1) is
also Hurwitz, for any k > 0 and any N > 1. This concludes
the proof. �
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controle optimal”. Comptes Rendus Mathematique, vol. 343, no. 10, pp.
679–684, 2006.

[21] J. M. Lasry and P. L. Lions. “Mean-field games”, Japanese Journal of
Mathematics, vol. 2, pp. 229–260, 2007.
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[33] R. Salhab, R. P. Malhamé and J. Le Ny, “A Dynamic Game Model
of Collective Choice in Multiagent Systems”, IEEE Transactions on
Automatic Control, vol. 63, no. 3, pp. 768-782, 2018. Available:
10.1109/tac.2017.2723956.

[34] M. Bardi. “Explicit solutions of some Linear-Quadratic mean-field
Games”, Network and Heterogeneous Media, vol. 7, pp. 243–261, 2012.

[35] J. Weitz, C. Eksin, K. Paarporn, S. Brown and W. Ratcliff, “An
Oscillating Tragedy of the Commons in Replicator Dynamics with
Game-Environment Feedback”, Proceedings of the National Academy
of Sciences, vol. 113, no. 47, pp. E7518-E7525, 2016. Available:
10.1073/pnas.1604096113.

[36] A. Tilman, J. Plotkin and E. Akçay, “Evolutionary games with envi-
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