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New effective precession spin for modeling multimodal gravitational
waveforms in the strong-field regime

Lucy M. Thomas ,* Patricia Schmidt ,† and Geraint Pratten ‡
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University of Birmingham, Edgbaston, Birmingham B15 9TT, United Kingdom

(Received 3 December 2020; accepted 9 March 2021; published 26 April 2021)

Accurately modeling the complete gravitational-wave signal from precessing binary black holes through
the late inspiral, merger, and ringdown remains a challenging problem. The lack of analytic solutions for
the precession dynamics of generic double-spin systems, and the high dimensionality of the problem,
obfuscate the incorporation of strong-field spin-precession information into semianalytic waveform models
used in gravitational-wave data analysis. Previously, an effective precession spin χp was introduced to
reduce the number of spin degrees of freedom. Here, we show that χp alone does not accurately reproduce
higher-order multipolar modes, in particular the ones that carry strong imprints due to precession such as
the (2,1)-mode. To improve the higher-mode content, and in particular to facilitate an accurate
incorporation of precession effects in the strong-field regime into waveform models, we introduce a
new dimensional reduction through an effective precession spin vector, χ⃗⊥, which takes into account
precessing spin information from both black holes. We show that this adapted effective precession spin
(i) mimics the precession dynamics of the fully precessing configuration remarkably well, (ii) captures the
signature features of precession in higher-order modes, and (iii) reproduces the final state of the remnant
black hole with high accuracy for the overwhelming majority of configurations. We demonstrate the
efficacy of this two-dimensional precession spin in the strong-field regime, paving the path for meaningful
calibration of the precessing sector of semianalytic waveform models with a faithful representation of
higher-order modes through merger and the remnant black hole spin.

DOI: 10.1103/PhysRevD.103.083022

I. INTRODUCTION

Since the first detection of gravitational waves (GWs)
from a binary black hole (BBH) merger in 2015 [1], the
GW observatories Advanced LIGO [2,3] and Virgo [4,5]
have reported detections of GWs from tens of compact
binary mergers [6,7], including the first multimessenger
observation of a binary neutron star inspiral, GW170817
[8,9], the first intermediate mass black hole GW190521
[10,11], the first unequal-mass BBH GW190412 [12], and
the first neutron star—black hole candidates GW190814
[13] and GW190426 [7]. Additional GW candidates have
been reported from analyses of the publicly available data
in Refs. [14,15]. In order to fully exploit the scientific
potential of these observations and infer the source proper-
ties, highly accurate and computationally efficient models
of the emitted GW signal are required.
Recent years have seen significant improvements in

the modeling of the complete inspiral-merger-ringdown
(IMR) signal of compact binaries with the inclusion of

spin-induced precession effects [16,17] as well as higher-
order harmonics [18–20]. While the state-of-the-art
waveform models are sufficiently accurate for current
observations, where the uncertainty in the measurement
of the BH properties is dominated by the statistical
uncertainty due to detector noise, future upgrades to the
current interferometer network [21] and third-generation
ground-based detectors such as the Einstein Telescope [22]
and Cosmic Explorer [23] will operate at unprecedented
sensitivities, shifting focus onto systematic modeling errors
as the dominant source of error [24]. The development of
evermore accurate models by increasing their physics
content is of paramount importance.
The current generation of waveform models can broadly

be split into three families: effective-one-body (EOB)
models [25], phenomenological (Phenom) models [26,27],
and numerical relativity (NR) surrogate models [28,29].
While the EOB and Phenom models describe the complete
GW signal throughout the inspiral, merger and ringdown,
NR surrogates are mainly restricted to the strong-field
regime. Phenom models are currently the most widely used
due to their considerable computational efficiency relative to
other models, which is particularly crucial for parameter
estimation due to the large number of required model
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evaluations, and their wide parameter space validity.
Computational efficiency, however, often comes at the cost
of simplified physics content, which can severely impact the
accuracy of parameter measurements [30]. In this paper, we
focus on one particularly urgent open problem in waveform
modeling: devising a feasible strategy to accurately incor-
porate precession effects into BBH waveform models in the
strong-field regime.
Spin-induced orbital precession occurs when the spins of

one or both compact objects are misaligned with the orbital
angular momentum [31,32]. This introduces phase and
amplitude modulations into the GW signal, and a richer
mode structure amplifying higher-order modes (HMs)
relative to the (2,2)-mode. Due to their complexity, pre-
cessing waveforms encode vast amounts of information
which can be used to break parameter degeneracies
[33–39]. This facilitates better measurements and more
stringent tests of general relativity, but this also makes them
difficult to model across the binary parameter space.
Current precessing IMR waveform models are built in an

approximate way by applying a time-dependent rotation
encoding the orbital precession dynamics to waveform
modes obtained in a frame that coprecesses with the orbit
[40,41]. The four spin components instantaneously orthogo-
nal to the orbital angular momentum, i.e., within the
instantaneous orbit plane, source the orbital precession
[31]. This relatively large number of spin degrees of free-
doms complicates the inclusion of precession into semi-
analytic waveform models. Therefore, developing an
efficient dimensional reduction strategy is crucial for mod-
eling strong-field precession across the parameter space.
Previously, the effective precession spin parameter χp

[42] was introduced to reduce the four orthogonal spin
components to one while capturing the dominant preces-
sion effects in the waveforms. However, a simple
χp-parametrization fails to accurately reproduce the phe-
nomenology of HMs, including precession-induced mode
mixing and the asymmetry between positive and negative
m-modes [30]. In precessing systems where the relative
power in HMs can be comparable to the dominant quad-
rupolar mode, this can lead to significant systematic errors
[19,20], as recent observations are starting to indicate [11].
Here, we introduce a new two-dimensional effective

precession spin vector, χ⃗⊥, which incorporates two-spin
effects. Focusing on the strong-field regime, we show that a
χ⃗⊥-parametrization (i) matches the opening angle of the
precession cone at a given reference time, (ii) significantly
better reproduces HMs than a χp-parametrization, (iii) more
accurately mimics the precession dynamics, and (iv) matches
the final state. This vectorial effective spin mapping could
facilitate more accurate waveform modeling of precession in
the strong-field regime.
The paper is organized as follows: In Sec. II Awe briefly

summarize the phenomenology of precessing binaries and
current waveform modeling efforts, before introducing

the new effective precession spin vector χ⃗⊥ in Sec. II B.
We describe the methodology used in this work in Sec. III.
In Sec. IV we present our results and subsequently discuss
the accuracy and caveats of this spin mapping in Sec. V.
Throughout this paper, we use G ¼ c ¼ 1.

II. PRECESSING BINARIES

A. Modeling precession

Binary black holes on quasispherical orbits are intrinsi-
cally characterized by seven parameters: the mass ratio
q ¼ m1=m2 ≥ 1, where mi with i ∈ ½1; 2� denotes the
component mass, and the spin angular momentum S⃗i of
each black hole, or its dimensionless counterpart χ⃗i ¼
S⃗i=m2

i . If the black holes’ spins are misaligned with the
direction of the orbital angular momentum L̂1 of the binary
motion, spin-induced precession of the orbital plane
occurs [31,32]. This introduces characteristic amplitude
and phase modulations in the GW signal, excites HMs,
and modifies the final state of the merger remnant. The
precession of the orbital plane is driven by the spin
components S⃗1⊥ and S⃗2⊥ instantaneously perpendicular
to L̂, defined as S⃗i⊥ ¼ S⃗i × L̂. In a precessing binary, L̂ and
the orientation of the two spins Ŝi become time dependent.
In the case of simple precession, throughout the inspiral,
L̂ðtÞ traces a cone centered around the direction of the
total angular momentum Ĵ, which remains approximately
spatially fixed [31,32], i.e., ĴðtÞ ≃ Ĵt→−∞ ∀t, where
J⃗ ¼ L⃗þ S⃗1 þ S⃗2. The opening angle of this precession
cone λLðtÞ is defined as [31]

cosðλLðtÞÞ≡ L̂ðtÞ · ĴðtÞ ¼ LðtÞ þ SkðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLðtÞ þ SkðtÞÞ2 þ S2⊥ðtÞ

q ;

ð1Þ

where S⃗ðtÞ ¼ S⃗1ðtÞ þ S⃗2ðtÞ is the total spin of the binary
with S⊥ðtÞ ¼ jjS⃗ðtÞ × L̂ðtÞjj and SkðtÞ ¼ S⃗ðtÞ · L̂ðtÞ. The
precession cone opening angle grows on the precession
timescale, which lies between the shorter orbital timescale
and the longer radiation reaction timescale, i.e., the time it
takes for the binary to merge. This separation of timescales
allows us to define approximate closed-form solutions
of the post-Newtonian (PN) precession equations in the
inspiral [38,43,44]. Due to the high dimensionality of the
problem, however, precessing waveforms that include
inspiral, merger, and ringdown are commonly modeled
by applying a time-dependent rotation RðtÞ to the wave-
form modes obtained in a coprecessing frame that tracks
the precession of the orbital plane [40,41], i.e.,

1We note the difference between the orbital angular momen-
tum L̂ and its Newtonian approximation L̂N; however, in this
work we will not distinguish between them.

THOMAS, SCHMIDT, and PRATTEN PHYS. REV. D 103, 083022 (2021)

083022-2



hPlmðtÞ ≃
Xl
m0¼−l

Rlmm0 ðtÞhco‐preclm0 ðtÞ: ð2Þ

Such a decomposition is possible due to the approximate
decoupling between the precession and inspiral dynamics
[41]. In addition, to simplify the problem, the coprecessing
frame modes may be identified with aligned-spin modes
[41,45] as is done for the current generation of phenom-
enological waveform models [16,18,19]. We note, how-
ever, that this approximation introduces significant
systematic errors due to the neglect of spin-induced mode
asymmetries in precessing systems [30]. Additionally, no
semianalytic precessing IMR waveform model currently
incorporates NR information in modeling the precession
dynamics through merger, again due to the high dimen-
sionality of the problem. Efficient dimensional reduction
strategies such as the use of effective parametrizations to
reduce the number of spin degrees of freedom may be a
way forward to calibrate the precession dynamics in the
strong-field regime. Insights from PN theory have previ-
ously led to the construction of an effective precession spin
χp defined as [42]

Sp ≔ maxðA1S1⊥; A2S2⊥Þ; ð3Þ

χp ≔
Sp

A1m2
1

; ð4Þ

where A1 ¼ 2þ 3=2q, A2 ¼ 2þ 3q=2, and Si⊥ ¼ jjS⃗i⊥jj
such that the Kerr limit χi ≤ 1 is obeyed. It is constructed
such that it captures the average amount of precession
exhibited by a generically precessing system over many
precession cycles defined at some reference time tref during
the inspiral. We note that χp will assume a (slightly)
different value depending on tref but this time (frequency)
dependence can be mitigated through the inclusion of
additional precession-averaged spin effects [46]. An alter-
native effective parametrization based on the total spin can
be found in [47].
The effective precession spin χp is regularly used to

make statements about the measurement of precession at a
certain reference frequency (time) in GW inference, see
e.g., [6,39,48], and may also present a natural way for
calibrating precession effects in the strong-field through a
single scalar parameter via the following effective mapping
at some reference time tref :

χ⃗1ðtrefÞ ¼ ðχ1x; χ1y; χ1zÞ ↦ χ⃗01 ¼ ðχp; 0; χ1zÞ; ð5Þ

χ⃗2ðtrefÞ ¼ ðχ2x; χ2y; χ2zÞ ↦ χ⃗02 ¼ ð0; 0; χ2zÞ; ð6Þ

where the spin components are defined in a Cartesian
binary source frame with L̂ðtrefÞ ¼ ẑ. Such an identification
reduces the four in-plane spin components to a single scalar
quantity, making the problem of incorporating precession

effects more tractable. This approach has successfully been
implemented in the widely used phenomenological wave-
form approximant IMRPhenomPv2 [16].
The efficacy of such a χp-parametrization, however, has

only been demonstrated in the inspiral [42] focusing on the
(2,2)-mode. HMs, however, are particularly important in
binaries with large mass and spin asymmetries, for which
also precession effects are more pronounced. While the
radiation from a nonprecessing binary is dominated by the
quadrupolar (2,2)-mode, which is predominantly emitted
along L̂, in a precessing system power is transferred
from the (2,2)-mode to HMs. These HMs can become
comparable in strength to the quadrupolar mode in the
later inspiral and merger, and some modes, especially the
ð2;�1Þ-modes, can be particularly strong [40]. Therefore,
the accurate modeling of HMs is particularly important in
precessing systems. We will show in Sec. IVA that the
simple χp-parametrization of Eq. (6) fails to accurately
reproduce the behavior of precessing HMs, motivating the
introduction of a new effective precession spin vector χ⃗⊥ to
address this issue.

B. A new effective precession spin

To aid the calibration of the precessing sector of
semianalytic IMR waveform models, we seek to capture
the dominant behavior through dimensional reduction
by reducing the number of in-plane spin components
through an effective map. To this end, we introduce a
new dimensionless effective precession spin vector,
χ⃗⊥ðtÞ ∈ R2.
Our starting point for the construction of χ⃗⊥ is the

opening angle of the precession cone at a reference time
t ¼ tref , λLðtrefÞ given by Eq. (1), which captures the
amount of precession in the system. We recall that the
opening angle depends explicitly on the in-plane spin
components through S⊥ðtÞ; we therefore seek a mapping
such that this quantity is approximately preserved at the
reference time at which the mapping is applied. To do so,
we first place the in-plane spin projection of the total spin of
the system onto the larger black hole, such that

χ⃗1⊥ðtrefÞ ↦ S⃗⊥ðtrefÞ=m2
1; χ⃗2⊥ðtrefÞ ↦ 0⃗; ð7Þ

where

S⃗⊥ðtrefÞ ¼ m2
1χ⃗1⊥ðtrefÞ þm2

2χ⃗2⊥ðtrefÞ: ð8Þ

We find, however, that this mapping can be further
improved by assigning it conditionally to either the primary
or secondary BH, depending on which BH has the largest
in-plane spin magnitude Si⊥ðtrefÞ at the reference time. This
conditional placement ensures that a binary with an in-
plane spin on only one BH is correctly reproduced.
Furthermore, we impose the Kerr limit on the BH spin

NEW EFFECTIVE PRECESSION SPIN FOR MODELING … PHYS. REV. D 103, 083022 (2021)

083022-3



by including appropriate normalization factors into the
definition of χ⃗⊥. With these constraints, we obtain the
following effective precession spin vector χ⃗⊥ðtrefÞ:

χ⃗⊥ðtrefÞ≡
8<
:

S⃗⊥
m2

1
þS2⊥

; if S1⊥ ≥ S2⊥;

S⃗⊥
m2

2
þS1⊥

; if S1⊥ < S2⊥;
ð9Þ

where the quantities S1⊥, S2⊥, S⃗⊥ are all evaluated at tref .
We stress that the mass ratio q and the spin components
along L̂ðtrefÞ remain unaltered in this particular mapping.
Explicitly, in a Cartesian binary source frame with
L̂ðtrefÞ≡ ẑ, we have

χ⃗1 ¼ ðχ1x; χ1y; χ2zÞ ↦ χ⃗01 ¼ ðχ⊥x; χ⊥y; χ1zÞ; ð10Þ

χ⃗2 ¼ ðχ2x; χ2y; χ2zÞ ↦ χ⃗02 ¼ ð0; 0; χ2zÞ; ð11Þ

for S1⊥ðtrefÞ ≥ S2⊥ðtrefÞ and 1 ↔ 2 else. We note that
instead of Cartesian coordinates, polar coordinates may be
chosen. Then, jjχ⃗⊥jj represents the magnitude of the mapped
dimensionless spin vector and the azimuthal orientation ϕ⊥
is its angular position within the orbital plane at the reference
time. We demonstrate the efficacy of this vectorial para-
metrization, in particular for HMs, in Sec. IV.

III. METHODOLOGY

A. Waveforms

To assess the efficacy of the new effective parametriza-
tion Eq. (9), we compare the waveforms obtained from
the seven-dimensional system characterized by ðq; χ⃗1; χ⃗2Þ
to the five-dimensional effective system described by
ðq; χ1k; χ2k; χ⃗⊥Þ as well as to the four-dimensional system
given by ðq; χ1k; χ2k; χpÞ. As we are particularly interested
in testing the efficacy of such mappings in the strong-field
regime, we use the NR surrogate model NRSur7dq4 [49] as
provided through the public gwsurrogate PYTHON package
[50] to generate late inspiral-merger-ringdown waveforms
for all our analyses. The computational efficiency of this
model allows us to assess the mappings over a dense
sampling of the intrinsic parameter space. However, due to
the limited parameter ranges of the NR simulations it is
built upon, the surrogate is limited to dimensionless spin
magnitudes jjχijj ≤ 0.8 and mass ratios q ≤ 4. While
precession effects are even more pronounced for higher
mass ratios, the importance of the in-plane spin on the
smaller BH decreases and therefore we expect any dimen-
sional reduction that is built to capture the dominant
precession spin to perform even better in this limit.
The surrogate model represents an interpolant across a

discrete set of NR simulations [28,51,52]. The precessing
waveform modes up to l ≤ 4 are obtained by following the
strategy outlined in Sec. II, where the coprecessing modes

are further decomposed into co-orbital modes to further
simplify their structure,

hco‐preclm ðtÞ ¼ eimΩðtÞhcoorblm ðtÞ; ð12Þ

where ΩðtÞ is the relative angular velocity relating the two
frames [29].
Unlike most other waveform models, the surrogate

makes use of four unit quaternion components fq̂0ðtÞ;
q̂1ðtÞ; q̂2ðtÞ; q̂3ðtÞg instead of three Euler angles to des-
cribe the precession dynamics of the orbital plane [53].
Importantly, the precessing modes are obtained in an
inertial frame corresponding to L̂ðt0Þ≡ ẑ at the initial time
t0, as opposed to the more commonly used Ĵ-aligned frame.
In this coordinate frame, the xy-plane coincides with the
initial orbital plane of the binary with the x-axis parallel to
the separation vector pointing from the smaller black hole
to the larger one. Due to this binary source frame choice,
caution must be taken when interpreting the physical
meaning of the quaternions.
The resulting waveforms are of a fixed length, from

t0 ¼ −4300M, the negative sign indicating premerger, up
to t ¼ þ100M after the merger. This relatively short length
makes them unsuitable for describing the waveforms of low
mass binariesM ≲ 70 M⊙ assuming a starting frequency of
20 Hz. The surrogate determines the coalescence time tc as
the peak of the quadrature sum of the mode amplitudes,

tc ¼ max
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
lm

jhlmðtÞj2
r

; ð13Þ

and shifts the time arrays such that the peak amplitude
occurs at tc ¼ 0.

B. Faithfulness for precessing waveforms

For our quantitative comparisons, we define h to
represent the fully precessing waveform with all 6 spin
degrees of freedom, and hσ the corresponding waveform
produced by an effective mapping, where σ ∈ ½χp; χ⃗⊥�.
Hereafter, we refer to h as the signal waveform, and to hσ as
the template waveform. The effective mappings are applied
at the surrogate initial time t0, such that the full and mapped
spins are used as initial data to produce the signal and
template waveforms respectively. To quantify how well
either mapping reproduces the full waveform, we compute
the match (faithfulness) between h and hσ , which is defined
as the noise-weighted inner product between the two
waveforms maximized over a time and phase shift of the
template waveform:

Mðh; hσÞ ¼ max
tcσ ;ϕ0σ

hh; hσiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh; hihhσ; hσi
p ; ð14Þ

where the inner product is defined as
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hh; hσi ¼ 4ℜ
Z

fmax

fmin

h̃ðfÞh̃�σðfÞ
SnðfÞ

; ð15Þ

with SnðfÞ the one-sided power spectral density (PSD) of
the detector noise, h̃ indicates the Fourier transform of h,
and “*” complex conjugation. In what follows, h and hσ
either denote individual waveform modes hlm, or the
complex strain defined as

hðt; θ;ϕÞ ¼
X
l

Xm¼l

m¼−l
hlmðtÞ−2Ylmðθ;ϕÞ; ð16Þ

where −2Ylmðθ;ϕÞ are the spin-weighted spherical har-
monics of spin weight s ¼ −2 and ðθ;ϕÞ are the polar
and azimuthal angles on the unit sphere in the binary
source frame.
To assess how accurately individual modes, in particular

HMs, are reproduced under the effective mapping, we
compute individual mode-by-mode matches between each
spin mapping and the full-spin waveform; i.e., for each pair
ðl; mÞ, h, hσ in Eq. (14) are replaced by individual modes
h → hlm and hσ → hσ;lm.
As the odd m-modes are sourced by mass and spin

asymmetries, they are often contaminated by numerical
noise for systems with small asymmetries. We therefore
employ an additional cut on the energy Elm contained in
the inertial-frame ð2;�1Þ- and ð3;�3Þ-modes of the fully
spinning mode prior to calculating the match, where the
mode energy is given by

Elm ¼ 1

16π

Z
tf

t0

j _hlmðτÞjdτ; ð17Þ

where tf is the final time of the surrogate waveforms. Based
on calculations of the energy contained in those modes for
binaries without mass or spin asymmetries, we find the
energy thresholds for these modes given by the values listed
in Table I. Modes with Elm less than these values are
discarded in the mode-by-mode match calculations per-
formed in Sec. IVA.
We perform mode-by-mode match calculations using

both white noise, i.e., SnðfÞ ¼ 1 and the projected aLIGO
PSD for the fourth observing run [54] denoted Mwhite and
MO4 respectively. The white noise matches are to assess
the systematic errors induced by the mappings in the

absence of detector-specific frequency sensitivities, while
the PSD-weighted matches demonstrate the effect for a
given detector. For the detector PSD matches we choose a
starting frequency of fmin ¼ 20 Hz, and truncate the wave-
forms at t ¼ 50M after the peak as determined by Eq. (13)
to remove postmerger numerical noise.
While the individual mode matches allow us to assess

how well HMs in particular are captured by the lower-
dimensional spin parametrization, GW detectors measure
the strain, which also depends on extrinsic parameters of
the source such as the luminosity distance, the effective
polarization angle κ [55], and the binary inclination ι
relative to the line of sight of an observer.
Following Refs. [20,39,56], we compute the strain match

by analytically optimizing over the template polarization
angle κσ and numerically optimizing over the template
reference phase ϕ0σ and template coalescence time tcσ ,

MstrainðM; ι;ϕ0; κÞ ¼ max
tcσ ;ϕ0σ ;κσ

hh; hσiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh; hihhσ; hσi
p

����
ι¼ισ

: ð18Þ

We do not optimize over any intrinsic parameters. We note
that Eq. (18) still depends on the signal polarization κ and
reference phase ϕ0. By averaging over these two angles, we
obtain the sky-and-polarization-averaged strain match,

MstrainðM; ιÞ ¼ 1

8π2

Z
2π

0

dκ
Z

2π

0

dϕ0MstrainðM; ι;ϕ0; κÞ:

ð19Þ

Additionally, to account for the correlation between
low matches and low signal-to-noise ratio (SNR), we also
compute the SNR-weighted strain match [20,39] given by

MSNRðM; ιÞ ¼
�P

iðMðh; hσÞÞ3hhi; hii3=2P
ihhi; hii3=2

�
1=3

; ð20Þ

where the sum is over a discrete range of source polar-
izations κ and initial phases ϕ0 as detailed in Sec. III C.
We note that we do not apply the postmerger truncation

at t ¼ 50M, nor do we impose the mode energy thresholds
of Table I when computing the sky-and-polarization-
averaged and the SNR-weighted strain matches. For strain
matches we take into account all modes up to l ¼ 4 as
provided by the NR surrogate.
Lastly, rather than showing the agreement between two

waveforms, it can be advantageous to quantify the disagree-
ment through the mismatch MM instead:

MMstrain ¼ 1 −Mstrain; ð21Þ

MMSNR ¼ 1 −MSNR: ð22Þ

TABLE I. Mode energy thresholds for odd m-modes. If the
energy of a particular mode is below its threshold, the mode is
considered to be numerical noise and excluded from the mode-
by-mode match calculation.

(l;m)-mode Elm threshold

ð2;�1Þ 1.0 × 10−6

ð3;�3Þ 5.5 × 10−7
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C. Binary configurations

The mode-by-mode matches are computed for a large
number of mass ratios and spins that systematically sample
the validity range of the surrogate model with the details
provided in the second column of Table II. We choose the
initial time as the reference time, i.e., tref ≡ t0, and sample
the initial spins in a spherical coordinate system using
the spin magnitudes jjχ⃗ijj, the azimuthal orientations
ϕi ¼ arccosðŜi · x̂Þ, and the cosine of the tilt angles
cosðθiÞ ¼ Ŝi · L̂. Specifically, we keep the initial azimuthal
orientation of the spin of the larger BHϕ1 of χ⃗1⊥ fixed, while
rotating χ⃗2⊥ to achieve a range of angular azimuthal
separations, and vary the initial tilt angles θi systematically.
Further, we only choose configurations with at least one
spinning BH, demanding that at least one BH has a nonzero
in-plane spin, thereby excluding aligned-spin or nonspin-
ning binaries. This amounts to a total of 47,136 unique
binary configurations in terms of their intrinsic parameters
fq; χ⃗1; χ⃗2g. When considering a detector PSD, we addition-
ally consider three values of the total mass, 75, 150,
and 250M⊙.
For the strain matches as given in Eqs. (19) and (20),

additional extrinsic parameters, namely binary inclination ι,
initial phase ϕ0, and polarization κ, need to be taken
into account. In such high dimensions, systematic sampling
becomes unfeasible. Therefore, for the sky-and-polarization-

averaged matches we draw the intrinsic and extrinsic binary
parameters from random uniform distributions as detailed in
the third column of Table II, considering a total of 20,833
unique binary configurations.
For the SNR-weighted strain matches, we first draw

100 binary configurations randomly from the 20,833
used to compute the sky-and-polarization-averaged strain
matches, only considering their intrinsic parameters,
fq; jχ⃗1j; jχ⃗2j; cosðθ1Þ; cosðθ2Þ;ϕ1;ϕ2g. We fix the source
inclination at a moderate inclination of ι ¼ π=3. As detailed
in the last column of Table II, for each binary configuration
we choose eight initial phase and four polarization values
and compute 32 matches Mðh; hσÞ, one for each pair
fϕ0; κg, which are then summed into a single SNR-weighted
match for each binary configuration as per Eq. (20). We
repeat this calculation for each of the total masses detailed in
Table II, noting that we use the same 100 intrinsic binary
configurations for each M. This yields 800 SNR-weighted
strain matches for each mapping σ ∈ fχp; χ⃗⊥g.

IV. RESULTS

A. Mode analysis

We first assess how well the vectorial effective spin
parameter χ⃗⊥ reproduces individual modes, in particular
HMs, for different mass ratios. In Fig. 1, we show the
ð2;�1Þ-modes for a fiducial precessing binary with

TABLE II. Binary configurations used in the different match calculations. Binaries for mode-by-mode match calculations are sampled
systematically across the intrinsic parameter space, and three total mass scales are used for the O4 PSD matches. Since it is the relative
azimuthal separation of spins which is important, we choose to keep ϕ1 ¼ π=3 fixed while changing ϕ2. Additionally, we place
constraints on the spin magnitudes and tilt angles such that none of our binary configurations have both BHs with aligned spins or
nonspinning. For the strain matches, the intrinsic parameters are drawn from random uniform distributions (shown by U½a; b� in the
table); the SNR-weighted matches use fixed extrinsic parameter values while they are drawn randomly for the sky-and-polarization-
averaged matches.

Mode-by-mode
matches

Sky-and-polarization-averaged
strain matches

SNR-weighted
strain matches

Spin magnitudes jjχ⃗1jj, jjχ⃗2jj ∈ ½0; 0.1; 0.2; 0.3; 0.4; 0.5;
0.6; 0.7; 0.8�, if jjχ⃗1jj ¼ 0, jjχ⃗2jj ≠ 0

jjχ⃗1jj, jjχ⃗2jj ∈ U½0; 0.8� jjχ⃗1jj, jjχ⃗2jj ∈ U½0; 0.8�

Tilt angles (rad) θ1; θ2 ∈ ½0; π=3; 2π=3; π�,
if θ1 ∈ ½0; π�, θ2 ∉ ½0; π�

cosðθ1Þ; cosðθ2Þ ∈ U½−1; 1� cosðθ1Þ; cosðθ2Þ ∈ U½−1; 1�

Azimuthal
angles (rad)

ϕ1 ¼ π=3,
ϕ2 ∈ ½0; π=3; 2π=3; π; 4π=3; 5π=3�

ϕ1;ϕ2 ∈ U½0; 2π� ϕ1;ϕ2 ∈ U½0; 2π�

Mass ratio q ∈ ½1; 1.5; 2; 3; 4� q ∈ U½1; 4� q ∈ U½1; 4�
Total mass [M⊙] M ∈ ½75; 150; 250�

(PSD matches only)
M ∈ U½70; 250� M ∈ ½75; 100; 125; 150;

175; 200; 225; 250�
Inclination – cosðιÞ ∈ U½−1; 1� ι ¼ π=3

Initial phase – ϕ0 ∈ U½0; 2π� ϕ0 ∈ ½0; π=4; π=2; 3π=4, π;
5π=4; 3π=2; 7π=4� (included in

weighted sum)

Polarization – κ ∈ U½0; π=4� κ ∈ ½0; π=12; π=6; π=4�
(included in weighted sum)

Total binaries
sampled

White noise matches: 47,
136 PSD matches: 141,408

20,833 � � �
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q ¼ 1.4 and initial spins χ⃗1 ¼ ð0.075; 0.043; 0.05Þ,
χ⃗2 ¼ ð−0.346; 0.6;−0.4Þ. We find that χ⃗⊥ (orange) cap-
tures the fully precessing modes (blue) significantly better
than a simple χp-parametrization (purple). In particular, we
see that unlike χp, χ⃗⊥ reproduces the amplitude and
phasing of the mode oscillations on the orbital timescale
and the amplitude modulations on the precession timescale
much more faithfully. Additionally, amplitude modulations
in the ringdown signal, which are completely missed in the
χp-parametrization, are much better captured. We note that
the precession of this fiducial binary is dominated by the
secondary BH spin—a region in the spin parameter space
where χp knowingly performs poorly. Additional examples
are presented in Figs. 14–16 in Appendix B, including a
mass ratio q ¼ 3 binary with the precession dominated by
the primary BH spin in Fig. 15, where we still observe
noticeable improvements with χ⃗⊥ over χp.
To quantify the efficacy of χ⃗⊥ across the parameter

space, we compute white noise mode-by-mode matches for
the ð2;�2Þ-modes and a selection of HMs for all binaries
listed in the second column of Table II. Figure 2 shows the
cumulative match results for the (2,2)- and (2,1)-modes for
mass ratio q ¼ 1 and q ¼ 3. Results for additional modes
and mass ratios are shown in Fig. 13 in Appendix A.
We expect the χp-parametrization to perform well at

replicating the dominant ð2;�2Þ-mode behavior, and
indeed we see similar results in this mode for both para-
metrizations, if slightly improved with the new effective
spin, except for the equal-mass case, where we find a more
marked improvement. We attribute this to the fact that χp is
designed to replicate the average precession rate, but in
equal-mass configurations the in-plane spin vectors precess
at the same rate and become orientationally locked, which
is not captured correctly by χp [42,46]. Additionally, χ⃗⊥
takes into account the in-plane spins on both black holes,
while χp selects only the larger spin component leading to a
systematic underestimation of the total in-plane spin for
equal-mass cases.

We observe the most dramatic improvements in the
ð2;�1Þ-modes. For example, for q ¼ 3 shown in Fig. 2, the
percentage of matches below 0.99 decreases dramatically
from 94.73% with χp to 8.2% with χ⃗⊥. Note that the long
tails toward very low matches for the χp-parametrization,
and the comparatively short ones of χ⃗⊥, are a generic
feature across all HMs we analyzed, suggesting that χ⃗⊥
better replicates the higher mode behavior even when it
performs at its worst.
Intriguingly, for the ð2;�1Þ- and ð4;�4Þ-modes, both

parametrizations perform worst at q ∼ 1.5, after which
their performance improves with increasing mass ratio. To
further investigate this intermediate region between the
equal-mass regime and higher mass ratios where the
secondary spin becomes less important, we performed
additional white noise matches at mass ratios
q ∈ ½1.2; 1.4; 1.6; 1.8�. We find that the performance of
both spin mappings improves with increasing mass ratio
for the ð2;�2Þ- and ð3;�3Þ-modes, with χ⃗⊥ consistently
outperforming χp. We also find that χ⃗⊥ performs worst
around q ∼ 1.4 for the ð2;�1Þ- and ð4;�4Þ-modes, but
that the distributions for both mappings are fairly flat
between q ¼ 1.2 and q ¼ 2, and even at its worst χ⃗⊥ still
vastly outperforms χp. For example, in the (2,1)-mode, at
q ¼ 1.4, the percentage of matches below 0.99 is 100%
with χp, and only 26.35% with χ⃗⊥. We also note that we
find only minor differences between the positive and
negative m-modes for both mappings, and neither per-
forms consistently worse at replicating either positive or
negative m-modes.
Additionally, our new mapping shows moderate

improvements for the ð3;�3Þ-modes and striking improve-
ments for the ð4;�4Þ-modes, with the improvements
particularly marked at equal mass and at our highest
mass ratio q ¼ 4. In summary, we find that the χ⃗⊥-
parametrization performs consistently better than χp for
every mass ratio and across all modes, and in particular for
odd m-modes.

FIG. 1. Amplitude of the (2,1)-mode (left) and the ð2;−1Þ-mode (right) for a fiducial precessing binary with q ¼ 1.4,
χ⃗1ðt0Þ ¼ ð0.075; 0.043; 0.05Þ, and χ⃗2ðt0Þ ¼ ð−0.346; 0.6;−0.4Þ. The fully precessing signal waveform is shown in blue, and the
template waveforms parametrized by χp and χ⃗⊥ are shown in purple and orange, respectively. The χ⃗⊥ reproduces the phenomenology of
this mode markedly better than the χp-mapping, especially in the merger-ringdown portion of the waveform.

NEW EFFECTIVE PRECESSION SPIN FOR MODELING … PHYS. REV. D 103, 083022 (2021)

083022-7



In addition to the white noise matches, we repeat the
analysis using the projected O4 aLIGO PSD [54] with
fmin ¼ 20 Hz for three total massesM ∈ ½75; 150; 250�M⊙
compatible with the fixed length of the NR surrogate. For
the PSD mode-by-mode matches, we obtain qualitatively
similar results to the white noise matches as shown in
Fig. 13 in Appendix A. All of the matches improve slightly
compared to the white noise matches across both mappings
due to the frequency weighting of the PSD, but the features
of our results and conclusions remain the same: The χ⃗⊥-
mapping significantly improves upon χp for the ð2;�1Þ-
and ð4;�4Þ-modes, with moderate improvements for the
ð3;�3Þ-modes, and comparable if slightly better perfor-
mance for the ð2;�2Þ-modes.

B. Strain analysis

In the previous section we have demonstrated the
improvement of χ⃗⊥ over χp at the level of individual
hlm-modes. We now assess the degree to which the
improvement in the HMs impacts the strain. Figure 3
shows the strain for the fiducial binary at an inclination of

FIG. 2. Cumulative histograms of white noise matches for the (2,2)-mode (top row) and the (2,1)-mode (bottom row) for 9,120
binaries with mass ratios q ¼ 1 (left column) and 9,504 binaries with q ¼ 3 (right column). Details of how these binaries are
systematically sampled can be found in Table II. Orange histograms show the results using the χ⃗⊥-parametrization, purple ones χp. The
dashed horizontal lines indicate the percentage of matches below 0.99. Using χ⃗⊥, we see a clear improvement over the χp-mapping for
the (2,1)-mode, and comparable if slightly better performance for the (2,2)-mode. Results for additional modes and mass ratios are
presented in Fig. 12 in Appendix A.

FIG. 3. Amplitude of the waveform strain hðtÞ for the same
fiducial binary as in Fig. 1 at an inclination of ι ¼ π=3. The figure
shows the fully precessing waveform (blue) along with both the
χp- (purple) and χ⃗⊥-parametrizations (orange). The χ⃗⊥-mapping
reproduces the strain amplitude much more faithfully than χp,
especially in the late inspiral portion of the waveform. Note that
in the late inspiral, where the blue line cannot be seen, it is
indistinguishable from the orange line.
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ι ¼ π=3. The excellent agreement between the fully pre-
cessing waveform (blue) and the one parametrized by χ⃗⊥
(orange) throughout the late inspiral as well as the merger
ringdown is clearly visible. To quantify this agreement, we
first compute the sky-and-polarization-averaged strain mis-
matches for 20,833 binary configurations as detailed in
Table II using the O4 PSD and fmin ¼ 20 Hz. Our results
for both effective parametrizations are shown in Fig. 4.
Using χ⃗⊥ rather than χp, we find a median improvement of
more than 1 order of magnitude from 4 × 10−3 to 2 × 10−4.
Furthermore, we note the non-negligible tail of extremely
low mismatches below 10−6 for χ⃗⊥.
As low matches are often correlated with low SNRs

and, therefore, with a lower detection probability, we also

compute the SNR-weighted mismatch Eq. (22) for 100
randomly drawn intrinsic binary configurations as given in
the fourth column of Table II for a moderate inclination of
ι ¼ π=3 at t0. Similar to the sky-and-polarization-averaged
strain mismatches, we see an improvement of around 1
order of magnitude when using the χ⃗⊥-parametrization
instead of χp, as shown in Fig. 5. The worst two cases for
each parametrization are highlighted in both panels. We see
that the worst cases for χ⃗⊥ (red and orange) perform
similarly under both mappings, if slightly better with the
new χ⃗⊥-mapping. These cases both have a mass ratio of
q ∼ 1.5, which as noted previously in Sec. IVA, is a mass
ratio where both parametrizations perform worst. The worst
cases for χp (purple and blue) on the other hand, show
significant improvements of around 2 and 4 orders of
magnitude respectively across the entire mass range when
the χ⃗⊥-mapping is used.
To better understand these marked improvements we

employ several diagnostics. First, we investigate whether
there exists a correlation between the initial opening angle
of the precession cone λLðt0Þ [Eq. (1)] and the sky-and-
polarization-averaged strain mismatch. We define the
difference in the initial precession cone opening angle
between the mapped and unmapped system, ΔλLðt0Þ, as

ΔλLðt0Þ≡ λLðt0Þ − λσLðt0Þ; ð23Þ

where λL is given by Eq. (1). The definition of λσL is the
same as for λL, but replaces S⊥ with Sσ⊥, where S⊥ is the
initial total in-plane spin magnitude before the mapping and
Sσ⊥ is the total in-plane spin magnitude after the mapping.
All quantities are evaluated at the initial time t0, and we
approximate L by its Newtonian value L ¼ μ

ffiffiffiffiffiffiffi
Mr

p
, where

μ ¼ m1m2=M is the reduced mass and r ¼ M1=3ω−2=3
orb with

ωorb the orbital angular frequency.

FIG. 4. Histograms of the sky-and-polarization-averaged strain
mismatches MMstrain between the fully precessing waveform
and each of the two-spin mappings using the O4 PSD. The
parameters for each of the 20,833 binaries tested were drawn
from random uniform distributions as outlined in Table II. The
dashed vertical lines show the median mismatch for each
mapping. We see an improvement in the median mismatch of
more than 1 order of magnitude when using χ⃗⊥.

FIG. 5. SNR-weighted strain mismatches MMSNR as a function of binary total mass M for 100 binaries for the χ⃗⊥- (left) and
χp- (right) mappings. The red and orange lines correspond to the cases q ¼ 1.3, χ⃗1ðt0Þ ¼ ð0.37;−0.36; 0.46Þ, χ⃗2ðt0Þ ¼
ð−0.32; 0.02; 0.13Þ and q ¼ 1.6, χ⃗1ðt0Þ ¼ ð−0.21; 0.23; 0.58Þ, χ⃗2ðt0Þ ¼ ð−0.26;−0.56; 0.34Þ respectively, which show the worst
results for the χ⃗⊥-mapping. The purple and navy lines show the two cases q ¼ 3.2, χ⃗1ðt0Þ ¼ ð−0.66; 0.12; 0.01Þ, χ⃗2ðt0Þ ¼
ð0.23;−0.25;−0.03Þ and q ¼ 3.2, χ⃗1ðt0Þ ¼ ð−0.55; 0.09; 0.07Þ, χ⃗2ðt0Þ ¼ ð0.03; 0.04; 0.03Þ where χp shows the worst performance.
We see an average improvement of around 1 order of magnitude using the χ⃗⊥-mapping.
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Figure 6 shows ΔλLðt0Þ against the strain mismatch for
each of the 20,833 binaries, calculated with both the χ⃗⊥
(orange) and χp (purple) effective spin mappings. For the
new mapping, we see a clear correlation between lower
values ofΔλLðt0Þ and lower strain mismatches. Overall, the
χ⃗⊥-parametrization yields a more accurate initial cone
opening angle resulting in a more faithful representation
of the fully precessing waveform.
The better agreement between the initial opening

angles suggests that the spins themselves are captured
more faithfully. To show this, as a second diagnostic we
compare the spin evolutions of a fully precessing binary
with its effective counterparts. Figure 7 shows the time
evolution of the total in-plane spin S⊥ (blue) for the fully
precessing fiducial binary and those of the χ⃗⊥ (orange)
and χp (purple) parametrizations for the fiducial binary.
We obtain these by transforming the spin evolutions in
the inertial frame to the coprecessing frame using the
quaternions. It is evident that the two-dimensional χ⃗⊥-
mapping represents the full-spin dynamics much more
faithfully than χp.
As a third diagnostic, we investigate how faithfully both

mappings reproduce the fully spinning precession dynam-
ics, which is represented by the unit quaternions q̂i. In
Fig. 8 we show the time evolution of the four unit
quaternion components of the fiducial binary. The new
effective spin mapping χ⃗⊥ clearly replicates the time

evolution of each quaternion component much more
accurately than χp, with the most dramatic improvement
observed for q̂1 and q̂2.
To quantify the improvement in replicating the preces-

sion dynamics, we perform a match calculation for each of
the four quaternion components q̂i, i ∈ ½0; 1; 2; 3�, similar
to the white match calculation in Eq. (14) but replacing the
waveforms h and hσ with the quaternion components,

Mq̂i ¼ Mðq̂i; q̂σ;iÞ; ð24Þ

where we use Sn ¼ 1, q̂i denotes the quaternion component
from the fully precessing system, and q̂σ;i is the quaternion
component produced by the effective mapped system,
with σ ∈ ½χp; χ⃗⊥�.
We compute the quaternion matches for the same 20,833

binaries used in the sky-and-polarization-averaged strain
match calculations. Figure 9 shows the results for q̂1 (left)
and q̂2 (right), which show the largest improvements: The
percentage of matches below 0.99 improves from 98.65%
with χp to 46.33% with χ⃗⊥ for q̂1, and for q̂2 it improves
from 95.71% to 46.37%. We see a negligible difference in
the results for q̂0, which is well reproduced by both spin
mappings: None of cases have a match value below 0.99. We
see a small improvement in the results for q̂3, with the
percentage of quaternion matches below 0.99 dropping from
40.5% for χp to 34.21% for χ⃗⊥. These results indicate that
the observed improvements when using χ⃗⊥ can indeed be
attributed to a more faithful representation of precession
dynamics itself.

C. Accuracy of the final spin and recoil

Finally, we quantify how well the χ⃗⊥-parametrization is
able to reproduce the final spin and recoil of the remnant

FIG. 6. Sky-and-polarization-averaged strain mismatch
MMstrain versus ΔλLðt0Þ for the 20,833 binaries with both
the χ⃗⊥ (orange) and χp (purple) effective spin parametrizations.
We observe a slight correlation between small ΔλLðt0Þ and low
mismatches for χ⃗⊥, yielding a significantly better replication of
the initial opening cone in comparison to χp.

FIG. 7. Time evolution of total in-plane spin magnitude S⊥ in
the coprecessing frame for the same fiducial binary as in Fig. 1
(blue). The purple graph shows the spin evolution obtained after
applying the χp-mapping at the initial time t0, the orange graph
that of the χ⃗⊥-parametrization. We see that χ⃗⊥ preserves the total
in-plane spin magnitude, and thus the spin dynamics, much better
than the χp-mapping.
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black hole. The final mass and spin of the remnant
determine the quasinormal modes of the ringdown
[57–60], so it is therefore crucial to understand the accuracy
with which the final state can be replicated by the reduced
set of spin parameters. We will focus on the final spin
estimates as previous comparisons against NR simulations
have shown that the final mass estimate is only very weakly
dependent on precession [61].
To evaluate the final spin using the surrogate model we

first evolve the BH spins in the inertial frame from t0 to a
time t ¼ −100M before merger, which are then used to
evaluate the remnant fits of Ref. [62] via the public
PYTHON package surfinBH [63]. The same procedure is
followed to obtain the results under the two-spin para-
metrizations, where either effective spin map is applied at
the initial time t0. We evaluate the remnant spin for the
20,833 binary configuration of column two in Table II.
We assess the accuracy of the final state under the two
mappings by calculating the differences in the remnant
spin magnitude Δχf, the final spin tilt angle Δθf, the
azimuthal spin angle Δϕf, the recoil velocity Δvf, and its
tilt angle Δθvf defined as

Δχf ¼ jjχ⃗fjj − jjχ⃗fσjj; ð25Þ

Δθf ¼ jj arccosðẑ · χ̂fÞ − arccosðẑ · χ̂fσÞjj; ð26Þ

Δϕf ¼ arccosðχ̂f⊥ · χ̂fσ⊥Þ; ð27Þ

Δvf ¼ jjv⃗fjj − jjv⃗fσjj; ð28Þ

Δθvf ¼ jj arccosðẑ · v̂fÞ − arccosðẑ · v̂fσÞjj; ð29Þ

where σ ∈ ½χp; χ⃗⊥�, and χ⃗f⊥ indicates the xy-components
of the final spin vector in the inertial frame. We note that
the remnant spin and recoil velocities are also returned in
the inertial coordinate frame of the NR surrogate, which
has no particular physical meaning postmerger. However,
as we are computing relative differences in magnitudes
and angles, this gauge choice has no effect on the results
presented here.
We find marginal improvements in the accuracy of the

final spin magnitude and tilt angle using the χ⃗⊥-mapping
as opposed to χp. The median tilt angle difference Δθf

FIG. 9. Cumulative distribution of matches for two of the four quaternion elements q̂1 (left) and q̂2 (right), between the fully
precessing dynamics and each of the χ⃗⊥- (orange) and χp-mapped (purple) systems. The dashed horizontal lines indicate the percentages
of matches which are below 0.99 for each effective mapping. We see significant improvements for the χ⃗⊥-parametrization over χp.

FIG. 8. Time evolution of the quaternion components q̂0 and q̂3 (left), and q̂1 and q̂2 (right) for the fiducial precessing binary. The
system parametrized by χ⃗⊥ (orange) reproduces the precession dynamics of the fully spinning system (blue) much more faithfully than
the χp-mapping (purple).
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improves slightly from 2.30 × 10−3 rad with χp to 1.43 ×
10−3 rad with χ⃗⊥; the absolute value Δχf also improves
slightly from 1.75 × 10−3 for χp to 9.96 × 10−4 for χ⃗⊥.
However, the largest improvement is found for the azimu-
thal angle Δϕf, which encapsulates the difference in the
relative angle in the xy-plane of the inertial frame as shown
in Fig. 10. We see a dramatic difference between the two
mappings, with χ⃗⊥ effectively reproducing the azimuthal
orientation with a median error of less than 0.1 rad, whereas
the χp-mapping poorly replicates the azimuthal orientation
with a median difference of more than 1 rad, and a
significant proportion of differences around Δϕ ¼ π. We
also note the significantly long tail of the χ⃗⊥ histogram
toward angle differences of zero.
We now analyze the effect of the two mappings on the

recoil velocity vf of the final black hole. For the recoil

velocity tilt angleΔθvf , i.e., the polar direction of the recoil,
we find a large improvement from a median error of
0.67 rad for χp to 0.08 rad for χ⃗⊥ as shown in the
right panel of Fig. 11. For the recoil velocity itself, we
only find a modest improvement in Δvf from a median
error of 3.81 × 10−4c for χp to 1.47 × 10−4c for χ⃗⊥,
corresponding to an improvement in accuracy of
∼70 km=s on average.
To summarize, overall the χ⃗⊥-parametrizations repro-

duce the final state, in particular the orientation of the final
spin and the direction of the recoil, much more accurately.
Both effective spin parametrizations perform similarly in
determining the final spin magnitude.
We note that the comparison using χp is not directly

comparable to the definition of the final spin used in
semianalytical waveform models, which use (a variety of)
in-plane spin corrections to modify the final spin of an
aligned-spin binary [19]. The current generation of pre-
cessing Phenom models [16,18,39] apply a correction of
the form Sp=M2

f, where Mf is the remnant mass and Sp is
an effective in-plane spin contribution. In [16,18], Sp is
taken to be defined as in Eq. (3), which is similar to the
results presented here obtained by applying the χp-mapping
[61,64]. For the more recent model presented in [19], a
range of different final spin mappings have been imple-
mented including the χp-mapping as well as a precession-
averaged mapping that attempts to account for the change
in the aligned-spin components due to nutation effects. The
EOB models [20] employ the final spin fits of [65] which
introduce corrections to the aligned-spin final state fits that
depend on the angle between the two in-plane spin vectors
and the projection of the spins along the orbital angular
momentum. As discussed in [20,58] and above, a crucial
choice is the separation at which the spins are used to
evaluate the final state taken to be r ¼ 10M in [20]. This
approach enables the effective-one-body models to account
for the evolution of the spin vectors ensuring that the same
waveform is produced irrespective of the initial separation.

FIG. 10. Error in the azimuthal angle of the final spin state,
Δϕf , in radians, between the final spin state produced by the fully
precessing waveform, χf, and the resulting final spin state of the
waveform produced by the χ⃗⊥- (orange) and χp- (purple)
mappings. The new effective spin χ⃗⊥ reproduces the azimuthal
angle of the remnant spin much more accurately, reducing the
median error to less than 0.1 rad.

FIG. 11. Absolute value of the error in the recoil velocity magnitudeΔvf (left) in units of c, and recoil velocity tilt angleΔθvf (right) in
radians, between the fully spinning waveform and each of the χ⃗⊥- (orange) χp- (purple) mappings. The dashed vertical lines indicate the
median error values.
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V. DISCUSSION

The inclusion of fully relativistic precession effects in
semianalytic IMR waveform models in the strong-field
regime remains a challenging problem, with none of the
current waveform models from either the Phenom or the
EOB waveform family including calibration to NR in
the precessing sector. The high dimensionality of the
precessing BBH parameter space obfuscates a clear path
for calibration. Effective spin parametrizations to reduce
the number of spin degrees of freedom are a promising way
forward to including fully relativistic precession in the
strong-field regime. Previously, a scalar quantity χp was
introduced to this effect but its efficacy was only demon-
strated for the inspiral regime [42]. Here, we have assessed
its applicability in the strong-field regime. Crucially, we
have found that while χp does faithfully represent the
(2,2)-mode of the majority of fully precessing systems, it
does not accurately reproduce HMs. Since HMs are excited
by mass and spin asymmetries, which can be very pro-
nounced for precessing binaries, they carry crucial param-
eter degeneracy breaking power [66–71] making the
accurate modeling of HMs critical. Therefore, NR calibra-
tion through a simple χp-parametrization is unlikely to be
sufficient to satisfy the accuracy requirements for future
GW observations.
To improve upon the shortcomings of χp, we have

introduced a new two-dimensional effective precession
spin vector, χ⃗⊥, and have performed extensive studies
comparing the efficacy of χ⃗⊥ to that of χp in the strong-
field regime using the NR surrogate waveform model
NRSur7dq4 [49]. When analyzing individual hlm-modes,
in particular the ð2;�1Þ-modes, we have found that χ⃗⊥
performs significantly better than χp, but both effective
parametrizations yield comparable results for the quad-
rupolar ð2;�2Þ-modes. Correspondingly, we also have
found a significant improvement in the precessing strain
matches with the new mapping, from which we have
concluded that the improved efficacy of χ⃗⊥ over χp for
the HMs has a significant effect on the accuracy of the
overall strain, demonstrating the importance of accurately
modeling HMs in precessing systems. Furthermore, we
have found that χ⃗⊥ performs better compared to χp in the
equal-mass limit (see Fig. 2). In this limit, the BH spins
precess at the same rate, locked in orientation relative to
each other. The parameter χp, which is defined to mimic the
average rate of precession, performs knowingly poorly in
this limit [42]; χ⃗⊥, on the other hand, is constructed such
that it approximates the total in-plane spin of the fully
precessing system at some reference time, leading to a
significantly improved behavior in the equal-mass limit as
anticipated from PN theory [31,72]. As expected, we have
found that χ⃗⊥ performs increasingly better for larger mass
ratios q ≳ 2, where the spin on the smaller BH becomes
negligible and hence the approximation with a single

in-plane spin becomes more accurate. However, in the
intermediate region between these two regimes, while still a
considerable improvement upon χp, we have found a small
drop in accuracy at a mass ratio of q ∼ 1.4, where two-spin
effects are important but are not fully captured in χ⃗⊥.
We have further demonstrated that the overall improve-

ment relative to a χp-parametrization can be attributed to a
more accurate replication of the precession dynamics itself
when using the χ⃗⊥-parametrization. Indeed, in the case
where only one of the two objects has nonzero in-plane spin
components, the full dynamics are returned exactly, which
is not the case for χp. The accurate capture of the precession
dynamics of particular interest as a natural way for
incorporating strong-field precession information into
waveform models is through calibrating the precession
dynamics itself, i.e., the rotation operator R of Eq. (2) or,
equivalently, the quaternions.
Additionally, we have also quantified how well the χ⃗⊥-

mapping is able to replicate the final spin and recoil
velocity of the remnant black hole. We have found a
considerable improvement in the accuracy with which we
have replicated the azimuthal direction of the remnant spin,
and moderate improvements in the accuracy of the magni-
tude and direction of the recoil velocity. This suggests our
χ⃗⊥-mapping is better able to replicate the final direction of
GW emission, compared to χp. Previous work has dem-
onstrated that the relative orientation of the in-plane spins at
merger plays a crucial role in determining the final state
properties [73–76]. We have attributed the observed
improvements to the (partial) incorporation of two-spin
effects, which are crucial for determining the recoil
direction and velocity of the final BH.
Despite its significantly better performance in all areas,

there are also caveats associated with χ⃗⊥: (i) For spin
configurations with similar in-plane spin magnitudes, i.e.,
S1⊥ ≃ S2⊥, we expect larger mismatches due to, by con-
struction, the neglect of larger in-plane spin-spin couplings.
(ii) We have normalized χ⃗⊥ such that the Kerr limit is not
violated. Consequently, for binaries with large spin mag-
nitudes, χ⃗⊥ will underestimate the magnitude of the in-
plane spin in the system. Due to the limited spin parameter
range of the surrogate, we have not been able to fully
quantify the effect of this on the performance of the
mapping. (iii) The conditional placement of χ⃗⊥ on either
of the two black holes introduces a discontinuity, in the
sense that waveforms with χ⃗⊥ placed on the primary BH
show slightly different features from those with χ⃗⊥ on the
secondary BH. We note that all of our χ⃗⊥-mapped indi-
vidual waveforms are physical and continuous, but that a
shift in phenomenological features can occur between
binary configurations with S1⊥ ¼ S2⊥ þ ϵ where χ⃗⊥ is
placed on the primary BH, against the same binary
configuration with slightly smaller S1⊥ ¼ S2⊥ − ϵ, where
χ⃗⊥ will be placed on the secondary BH. With this in mind,
we have tested the performance of χ⃗⊥ without the
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conditional placement. We have recalculated the sky-and-
polarization-averaged strain matches shown in Fig. 4 with
χ⃗⊥ always placed upon the primary BH irrespective of
whether the precession is dominated by the primary or
secondary BH, and indeed have found little difference
from the original χ⃗⊥ strain match distribution, with the
median mismatch increasing minimally from 2 × 10−4 to
2.08 × 10−4. Additionally, we have recalculated the white
noise mode-by-mode matches of Eq. (14), again with χ⃗⊥
always placed on the primary BH. While we have found
little difference between the ð2;�2Þ-mode results for χ⃗⊥
with and without conditional placement, we have found
that it has a marked effect on the results for HMs. For
example, in the (2,1)-mode at mass ratio q ¼ 3, the
percentage of mismatches below 0.99 using χ⃗⊥ without
conditional placement rises to 41.9%, compared to just
9.1% if we include the conditional placement (under the
χp-mapping the value is 98.8%). We therefore have con-
cluded that for HMs, it is crucial to accurately capture spin
asymmetries by placing the effective spin appropriately, to
achieve an accurate mapped waveform mode.
Lastly, we have also tested whether the improvements

found by using χ⃗⊥ over χp are entirely due to the condi-
tional placement, and whether an analogous conditional
placement of χp would have similar effects. An example of
imposing this condition also on χp is shown in Fig. 16 in
Appendix B for the fiducial binary, and we have indeed
seen that the phenomenology is captured better. To quantify
the improvement in the performance of χp when imposing
conditional placement, we have recalculated the sky-and-
polarization-averaged strain matches shown in Fig. 4 with
an analogous conditional placement for χp. We have found
only a small improvement compared to the χp-mapping
without conditional placement, with the median strain
mismatch improving from 4 × 10−3 to 3.4 × 10−3, com-
pared to a median of 2 × 10−4 with χ⃗⊥. We have also
recalculated the mode-by-mode white noise matches shown
in Fig. 2, for both effective spin parametrizations, with and
without conditional placement. These results are shown in
Fig. 17 in Appendix B. We have seen that for HMs at
unequal-mass ratios, neither a conditionally placed χp, nor
χ⃗⊥ always placed on the primary object, can replicate the
dramatic improvements we have previously seen in Fig. 2.
We therefore have surmised that the improvements we have
seen in the performance of χ⃗⊥ over χp are due to a
combination of both the new parametrization itself, and
the conditional placement, and that both are a necessary
requirement to reproduce accurate precessing higher-order
waveform modes.
Finally, we also note that the efficacy of χ⃗⊥ has not been

investigated for the special case of transitional precession,
which leads to the tumbling of the total angular momentum
Ĵ when L ≃ S and L̂ ¼ −Ŝ. As with all effective mapping
that neglects some spin contributions, however, we expect

that the fine-tuned conditions needed for the occurrence of
the transitional precession phase are not preserved under
the mapping.
In conclusion, our results have demonstrated that by

introducing the two-dimensional vector quantity χ⃗⊥, which
partially accounts for two-spin effects, we can accurately
reproduce the waveforms of fully precessing binaries, and
in particular their HMs, in the strong-field regime across a
wide range of the BBH parameter space. The effective
reduction of four in-plane spin components to two provides
a clear and tractable path forward to meaningfully incor-
porating precession effects in the strong-field regime into
semianalytic waveform models with HMs, which we leave
to future work.
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APPENDIX A: COMPLETE MODE-BY-MODE
MATCH RESULTS

Here we present the complete results of the white
noise and O4 aLIGO PSD matches, for which a selection
was presented in Fig. 2. As described in Sec. III C, we
systematically sampled a total of 47,136 intrinsic binary
configurations fq; χ⃗1; χ⃗2g, across the parameter range
of the NR surrogate. For the PSD matches, which also
require a total mass scale, we choose three masses M ∈
f75; 150; 250gM⊙ compatible with the fixed length of the
surrogate waveforms, bringing the total sampled binaries to
141,408. Full details of the sampling are given in Table II.
The white match results are shown in Fig. 12. We split

the results by mass ratio q ∈ ½1; 1.5; 2; 3; 4� and mode
ðl; mÞ ∈ ½ð2� 2Þ; ð2� 1Þ; ð3;�3Þ; ð4;�4Þ�. We show the
percentages of matches below 0.99 between the fully
spinning waveform, and the waveforms produced by each
of the two effective spins, χ⃗⊥ in orange, and χp in purple.
We first note that at the match threshold of 0.99, we see an
improvement by using χ⃗⊥ over χp, across all mass ratios
and modes. These improvements are particularly dramatic
for higher modes, particularly the ð2;�1Þ-modes. For
example, at mass ratio q ¼ 4, the percentage of (2,1)-mode
matches below 0.99 using the χp-parametrization is 96.3%,
which improves dramatically with χ⃗⊥ to just 4.3%. The
parametrizations perform more similarly for the ð2;�2Þ-
modes, but even for the quadrupolar modes we see small
improvements. For example, at mass ratio q ¼ 1.5 we see
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the percentage of (2,2)-mode matches below 0.99 improv-
ing from 8.5% with χp to 4.7% with χ⃗⊥.
Using the O4 aLIGO PSD, we similarly split the results

by mass ratio and mode, and additionally by the total mass
of the system. The results are shown in Fig. 13. The PSD-
weighted match results are qualitatively very similar to the
white match results, albeit with small improvements across
all matches due to the frequency weighting of the PSD,
with only minor differences between each total mass.

APPENDIX B: ADDITIONAL EXAMPLES

Here we provide additional examples of waveform
modes and corresponding precession dynamics produced
using the effective spin mappings, both χp and χ⃗⊥. For each
of the three binaries considered here, we show the (2,1)-
mode, as well as two of the four quaternion component
evolutions. In all of the figures, the fully precessing
system’s results are shown in blue, the results parametrized
by χ⃗⊥ in orange, and by χp in purple.
Our first example is an equal-mass binary, i.e., q ¼ 1,

with initial spins χ⃗1ðt0Þ ¼ ð0.225; 0.13;−0.15Þ, χ⃗2ðt0Þ ¼
ð0.09; 0.15; 0.1Þ. In this equal-mass limit, we expect χp
to perform poorly, and χ⃗⊥ to perform much better, as
discussed more thoroughly in Sec. V. Indeed, in the left
panel of Fig. 14, we see that χ⃗⊥ better replicates the (2,1)-
mode for this particular binary, with an amplitude closer to
that of the fully precessing waveform and slightly improved
phasing. We see the improvement by using χ⃗⊥ as opposed
to χp more clearly in the dynamics as shown in the right

panel. The good agreement between the time evolution of
fully precessing quaternion components in blue and those
of the χ⃗⊥-mapped system in orange, is in stark contrast to
the χp-mapped components in purple, which matches the
dynamics poorly.
The second example is a binary with q ¼ 3,

and initial spins χ⃗1ðt0Þ ¼ ð0.45; 0.26;−0.3Þ, χ⃗2ðt0Þ ¼
ð0.15; 0.08; 0.1Þ. We note that in this example, unlike
the fiducial binary shown in Fig. 1, χ⃗⊥ is mapped onto
the primary BH. The left panel of Fig. 15 shows the (2,1)-
mode, where we see that unlike in the previous example,
the amplitudes of the two mapped waveform modes are
very similar to that of the fully precessing mode (blue).
However, χ⃗⊥ clearly much better matches the phasing of
the fully precessing mode, with the orange and blue lines
being indistinguishable for much of the inspiral, in contrast
to χp which shows a clear dephasing, especially in the
merger ringdown. We also see that, like for the other
fiducial binaries, the quaternion components mapped by
χ⃗⊥, much more faithfully represent the fully precessing
quaternions, compared to the χp-mapped components,
demonstrating that χ⃗⊥ better replicates the precession
dynamics of the fully precessing system.
Third, we illustrate the impact of the conditional place-

ment using the original fiducial binary of Fig. 1, but this
time showing the effect of an analogous conditional
placement with the χp-parametrization. In Fig. 16, we
show the fully precessing fiducial binary in blue, χ⃗⊥-
mapped system in orange, and the χp-mapped system with
conditional placement in purple. We note that now both χ⃗⊥

FIG. 12. Complete results for white noise matches between the fully spinning waveform and each of the effective spin
parametrizations, χ⃗⊥ (orange) and χp (purple). We show percentages of matches split by mass ratio and mode, which fall below
a threshold of 0.99. The dashed horizontal lines indicate the 1% and 10% marks. We see improved results using χ⃗⊥ as opposed
to χp across all mass ratios and modes, and note particularly the dramatic improvements in performance for HMs, especially the
ð2;�1Þ-modes.
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FIG. 13. Full results for the O4 PSD-weighted matches between the fully spinning waveform and each of the effective spin
parametrizations, χ⃗⊥ (orange) and χp (purple). We show percentages of matches split by total mass, mass ratio, and mode, which have a
match less than 0.99. The dashed horizontal lines indicate 1% and 10%. Similar to the white noise matches of Fig. 12, we see
improvements by using χ⃗⊥ over χp across all masses, mass ratios, and modes, but we note the dramatic improvements in performance for
HMs, particularly the ð2;�1Þ-modes. We also note the high degree of similarity between each of the three total masses.
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FIG. 14. Amplitude of the (2,1)-mode (left), and time evolution of the two quaternion components, q1ðtÞ and q2ðtÞ (right), for an
equal-mass binary with initial spins χ1ðt0Þ ¼ ð0.225; 0.13;−0.15Þ, and χ2ðt0Þ ¼ ð0.09; 0.15; 0.1Þ. We show the fully spinning
waveform mode and quaternion components in blue. The mode and quaternions parametrized by χp are shown in purple, and χ⃗⊥ in
orange. We see that χ⃗⊥ more faithfully reproduces the fully precessing (2,1)-mode, and much more accurately reproduces the precession
dynamics, than χp.

FIG. 15. Amplitude of the (2,1)-mode (left), and time evolution of the two quaternion components, q1ðtÞ and q2ðtÞ (right), for a q ¼ 3
fiducial binary, with initial spins χ⃗1ðt0Þ ¼ ð0.45; 0.26;−0.3Þ and χ⃗2ðt0Þ ¼ ð0.15; 0.087; 0.1Þ. The fully precessing waveform mode and
quaternions are shown in blue, with the system parametrized by χp shown in purple, and χ⃗⊥ in orange. We see that χ⃗⊥ more faithfully
reproduces the fully precessing (2,1)-mode, capturing the correct phasing of the mode, and more accurately reproduces the precession
dynamics represented by the quaternion components, than χp.

FIG. 16. Amplitude of the (2,1)-mode (left), and time evolution of the two quaternion components, q1ðtÞ and q2ðtÞ (right), for the same
fiducial binary as in Figs. 1 and 8, but with χp conditionally placed on the secondary BH. The fully precessing waveform mode and
quaternions are shown in blue, with the system parametrized by a conditionally placed χp shown in purple, and χ⃗⊥ in orange. We see that
although the conditional placement of χp does lead to an improvement in the accuracy with which it reproduces the (2,1)-mode, χ⃗⊥ still
outperforms χp. Additionally, conditionally placing χp does not improve the accuracy with which it reproduces the precession
dynamics, with χ⃗⊥ still much more closely matching the time evolution of the fully precessing q̂1 and q̂2 quaternion components.
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and χp are placed on the secondary BH for this binary.
We can see in the left panel that the conditional
placement does improve the accuracy with which χp
reproduces the (2,1)-mode; however the χ⃗⊥-mapping still
reproduces the phasing of the mode significantly better.
Additionally, we see in the right panel that the condi-
tional placement of χp does not produce the precession
dynamics more accurately, with χ⃗⊥ still much more
closely matching the time evolution of the fully pre-
cessing quaternion components.
In addition to these individual cases, in Fig. 17 we

recalculate the white noise mode-by-mode matches shown
in Fig. 2, for both spin parametrizations χp and χ⃗⊥,
using (i) conditional placement (solid) and (ii) placement
always on the primary black hole (dashed). We note that in

all four panels, the best performance is obtained when
conditionally placing χ⃗⊥. The (2,2)-mode at mass ratio
q ¼ 1 (top left) shows a small improvement in both
parametrizations’ performance when conditional placement
is included. The biggest improvement can be seen in the
(2,1)-mode at mass ratio q ¼ 3 (bottom right), where a
conditionally placed χ⃗⊥ dramatically outperforms all other
configurations, and neither a conditionally placed χp, nor a
χ⃗⊥ affixed to the primary would be able to achieve these
improvements. Interestingly, this panel also displays the
only instance where conditional placement can worsen the
performance of χp. Therefore, we conclude that particularly
for HMs at unequal-mass ratios, to obtain the dramatic
improvements we have seen, both the new effective spin χ⃗⊥
and conditional placement are required.

FIG. 17. Cumulative histograms of white noise mode-by-mode matches for the (2,2)-mode (top row) and the (2,1)-mode (bottom row)
for mass ratios q ¼ 1 (left column) and q ¼ 3 (right column) for the same binaries as in Fig. 2 with the χ⃗⊥-parametrization (orange) and
the χp-parametrization (purple). The solid outlines represent the parametrizations including conditional placement, whereas the dashed
lines show results when the effective spin is always placed on the primary black hole. The effect of conditional placement is most
noticeable at q ¼ 3 in the (2,1)-mode, where χ⃗⊥ with conditional placement dramatically outperforms other mappings. We also note that
including conditional placement improves the performance of both effective spin parametrizations in most cases, although this
improvement is negligible for the (2,2)-mode at mass ratio q ¼ 3. The exception to this is the χp-parametrization for the (2,1)-mode at
mass ratio q ¼ 3, where conditional placement worsens the match distribution for χp.
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