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A generalized precession parameter χ p to interpret gravitational-wave data
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University of Birmingham, Birmingham B15 2TT, United Kingdom

(Received 24 November 2020; accepted 1 March 2021; published 25 March 2021)

Originally designed for waveform approximants, the effective precession parameter χp is the most
commonly used quantity to characterize spin-precession effects in gravitational-wave observations of
black-hole binary coalescences. We point out that the current definition of χp retains some, but not all,
variations taking place on the precession timescale. We rectify this inconsistency and propose more general
definitions that either fully consider or fully average those oscillations. Our generalized parameter χp ∈
½0; 2� presents an exclusive region χp > 1 that can only be populated by binaries with two precessing spins.
We apply our prescriptions to current LIGO/Virgo events and find that posterior distributions of χp tend to
show longer tails at larger values. This appears to be a generic feature, implying that (i) current χp
measurement errors might be underestimated, but also that (ii) evidence for spin precession in current data
might be stronger than previously inferred. Among the gravitational-wave events released to date, that
which shows the most striking behavior is GW190521.

DOI: 10.1103/PhysRevD.103.064067

I. INTRODUCTION

Spin precession is a key phenomenological feature of
black-hole (BH) binary coalescences. As the two BHs
inspiral toward merger due to the emission of gravitational-
waves (GWs), relativistic spin-spin and spin-orbit cou-
plings cause the orbital plane and the spins to precess about
the direction of the total angular momentum [1].
BH binary spin precession is often characterized using a

single effective parameter, denoted as χp. First introduced
by Schmidt et al. [2] for waveform building purposes, χp is
now widely used in state-of-the-art analyses of LIGO/Virgo
data to infer the occurrence of spin precession [3–5]. A
confident measurement of χp away from zero with signifi-
cant information gain from the prior is considered a strong
indication that orbital-plane precession has been measured.
Alternatively, Ref. [6] proposed to quantify spin precession
in terms of the excess signal-to-noise ratio (SNR) ρp of a
precessing signal compared to a nonprecessing one.
Most recently, the parameter χp was the main tool used

by Abbott et al. [7] to claim that, although evidence for spin
precession in individual events is mild to moderate, current
data show much stronger collective evidence for precessing
spins that emerges at the population level. This has
important consequences for the astrophysical interpretation
of BH mergers, most notably in terms of their formation
channel(s). Precessing spins are a key prediction of BH
binaries formed in dense clusters, but might also be present

in the case of sources formed in isolation because of, e.g.,
supernova kicks [8–14].
In this paper, we reinvestigate the derivation of χp and

rectify an inconsistency in its current definition—namely
that only some, but not all, of the precession-timescale
oscillations are averaged. Section II provides a concrete
recipe to either retain all such variations or properly average
them. The latter approach results in an augmented defi-
nition of χp that varies only on the longer radiation-reaction
timescale and includes two-spin effects. Some details of the
full averaging procedure are postponed to the Appendix.
Section III presents a brief exploration of the parameter
space using post-Newtonian (PN) integrations and quan-
tifies the extent to which the current definition of χp fails to
properly capture two-spin effects. Section IV explores the
consequences of our findings on current LIGO/Virgo
events. The proposed generalization of χp causes long tails
in the posterior distributions, indicating that evidence for
spin precession inferred from current data might be under-
estimated, while the accuracy may be overestimated. This is
a generic feature, with potential consequences for
GW population studies. Finally, in Sec. V we make our
conclusions and discuss future prospects.

II. HOW TO QUANTIFY PRECESSION?

Let us consider a quasicircular BH binary with total mass
M ¼ m1 þm2, mass ratio q ¼ m2=m1 ≤ 1, spin vectors
S1;2, and dimensionless spin magnitudes χ1;2. We employ
geometric units G ¼ c ¼ 1. The orbit-averaged evolution
of the orbital angular momentum L can be written as*d.gerosa@bham.ac.uk
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dL
dt

¼ dL̂
dt

Lþ dL
dt

L̂ ¼ ðΩL × L̂ÞLþ dL
dt

L̂; ð1Þ

where the first term describes precession and the second
term encodes radiation reaction. The magnitude of the angu-
lar momentum L is related to the orbital separation r by the
Newtonian expression L=M2 ¼ ðr=MÞ1=2q=ð1þ qÞ2. The
precession frequency ΩL includes contributions from both
spins,

ΩL ¼ Ω1χ1Ŝ1 þ Ω2χ2Ŝ2; ð2Þ

which at next-to-leading order in M2=L are given by [15]

Ω1 ¼
M2

2r3ð1þ qÞ2
�
4þ 3q −

3qχeff
ð1þ qÞ

M2

L

�
; ð3Þ

Ω2 ¼
qM2

2r3ð1þ qÞ2
�
4qþ 3 −

3qχeff
ð1þ qÞ

M2

L

�
; ð4Þ

where χeff is the effective spin [15,16]

χeff ¼
χ1Ŝ1 þ qχ2Ŝ2

1þ q
· L̂: ð5Þ

The amount of orbital-plane precession is thus set by the
magnitude

���� dL̂dt
����
2

¼ ðΩ1χ1jŜ1 × L̂jÞ2 þ ðΩ2χ2jŜ2 × L̂jÞ2

þ 2Ω1Ω2χ1χ2ðŜ1 × L̂Þ · ðŜ2 × L̂Þ: ð6Þ

We follow common practice and describe the geometry of
the systems in terms of the tilt angles θ1;2 and the difference
ΔΦ between the phases of the in-plane components of the
two spins.1 In symbols, these are

cos θ1 ¼ Ŝ1 · L̂; ð7Þ

cos θ2 ¼ Ŝ2 · L̂; ð8Þ

cosΔΦ ¼ Ŝ1 × L̂

jŜ1 × L̂j ·
Ŝ2 × L̂

jŜ2 × L̂j ; ð9Þ

which yields

���� dL̂dt
����
2

¼ ðΩ1χ1 sin θ1Þ2 þ ðΩ2χ2 sin θ2Þ2

þ 2Ω1Ω2χ1χ2 sin θ1 sin θ2 cosΔΦ: ð10Þ

The argument made in Ref. [2] where χp is first
introduced can be recast as follows. The factor cosΔΦ
can (in principle, at least) take values between −1 and þ1.
At those extrema one has

���� dL̂dt
����
�
¼ jΩ1χ1 sin θ1 �Ω2χ2 sin θ2j: ð11Þ

The parameter χp is defined as the arithmetic mean of these
two contributions normalized by the frequency Ω1, i.e.,

χp ≡ 1

2Ω1

����� dL̂dt
����
þ
þ
���� dL̂dt

����
−

�

¼ max ðχ1 sin θ1; Ω̃χ2 sin θ2Þ; ð12Þ

where we introduced the ratio between the spin frequencies

Ω̃ ¼ Ω2

Ω1

¼ q
4qþ 3

4þ 3q
−

3χeffq2ð1 − qÞ
ð4þ 3qÞ2ð1þ qÞ

M2

L
þO

�
M4

L2

�
:

ð13Þ

To leading order in M2=L, one has

χp ≃max

�
χ1 sin θ1; q

4qþ 3

4þ 3q
χ2 sin θ2

�
; ð14Þ

which is the expression from Ref. [2] used in current GW
analyses (e.g., [3–5]).
While the simplicity of this procedure is appealing, it is

worth pointing out that the three angles θ1, θ2, and ΔΦ all
vary on the same timescale tpre ∝ ðr=MÞ5=2. One is not
justified to devise a procedure that removes the ΔΦ
dependence from Eq. (10) while at the same time retaining
θ1 and θ2. The definition of χp given in Eq. (14) is therefore
inconsistent because it contains some, but not all, short-
timescale variations. Let us stress that this is not the case for
the other commonly used spin parameter χeff, which is a
constant of motion at 2PN [15].
There are two possible strategies one can pursue: either

retain all the precession-timescale variations or integrate
them out.
If precession-timescale variations are to be retained, one

can immediately generalize the definition of χp as the
magnitude of dL̂=dt normalized by Ω1, i.e.,

1The angle ΔΦ is sometimes indicated as ϕ12 in LIGO/Virgo
analyses and data products.
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χp≡
���� dL̂dt

���� 1

Ω1

¼ ½ðχ1 sin θ1Þ2 þ ðΩ̃χ2 sin θ2Þ2

þ 2Ω̃χ1χ2 sin θ1 sin θ2 cosΔΦ�1=2: ð15Þ

If one instead wishes to remove those variations, Eq. (15)
should be precession averaged in a consistent fashion.
Given a suitable quantity ψðtÞ that parametrizes the
precession cycle (this is analogous to, say, Kepler’s mean
anomaly for the orbital problem), the precession-averaged
value of χp can be found by evaluating

hχpi ¼
R
χpðψÞðdψdt Þ−1dψR ðdψdt Þ−1dψ : ð16Þ

When plugging Eq. (15) into Eq. (16), one should remem-
ber that the angles θ1ðψÞ, θ2ðψÞ, andΔΦðψÞ all vary on the
precession timescale and thus depend (perhaps nontri-
vially) on ψ . On the other hand, the ratio Ω̃ is constant
at leading order and presents only long-timescale variations
if the first PN correction is included; see Eq. (13). Two
explicit parametrizations at 2PN are constructed in
Refs. [17–19]. In particular, the parameter ψðtÞ can be
chosen to be either the angle

cosφ0 ¼ S1 · ½ðS1 ×LÞ × S2 þ ðS2 ×LÞ × S2�
jS1 × S2jjðS1 þ S2Þ ×Lj ð17Þ

or the magnitude of the total spin

S ¼ jS1 þ S2j: ð18Þ

A practical implementation for ψðtÞ ¼ SðtÞ is provided in
the Appendix.
We can now put the approximation of Eqs. (12) on more

formal grounds. Let us picture a simplified precession cycle
where S1 and S2 precess aboutLwith constant velocity and
constant opening angles. In this case, one has dθ1=dt ¼
dθ2=dt ¼ d2ΔΦ=dt2 ¼ 0 and the angle ΔΦ itself can be
used to parametrize the precession cycle. With these
assumptions, Eq. (16) simplifies to

hχpi≃
1

2π

Z
2π

0

χpdΔΦ

¼ jχ1 sinθ1 − Ω̃χ2 sinθ2j
π

E

�
−

4Ω̃χ1χ2 sinθ1 sinθ2
ðχ1 sinθ1 − Ω̃χ2 sinθ2Þ2

�

þ χ1 sinθ1 þ Ω̃χ2 sinθ2
π

E
�

4Ω̃χ1χ2 sinθ1 sinθ2
ðχ1 sinθ1 þ Ω̃χ2 sinθ2Þ2

�
;

ð19Þ

where EðmÞ ¼ R π=2
0 ð1 −m sin2 xÞ1=2dx is the complete

elliptic integral of the second kind.

The conditions dθ1=dt ¼ dθ2=dt ¼ d2ΔΦ=dt2 ¼ 0 are
satisfied whenever spin-spin couplings can be neglected
compared to spin-orbit couplings. This is true at large
separations [18] and, indeed, one can show that Eq. (19) is
the formal limit of Eqs. (15) and (16) as r=M → ∞. At
finite separations, however, spin-spin couplings introduce
variations of the opening angles (resulting in spin nuta-
tions) as well as nonuniform angular velocities of the
in-plane spin components. In particular, geometrical con-
straints can prevent binaries from ever reaching either
cosΔΦ ¼ 1 or cosΔΦ ¼ −1 (the “librating morphologies”
in the language of Refs. [17,18]). This is not compatible
with the argument made in Eq. (12) which relies on
jdL̂=dtj� where cosΔΦ ¼ �1. Neglecting nutations can
also introduce a significant mismodeling, as the spin angles
can vary by as much asΔθi ∼ π on short timescales [20,21].
Spin-spin couplings also vanish, trivially, for binaries

with a single spin. Let us recall that S1 → 0 corresponds to
χ1 → 0, while S2 → 0 corresponds to either χ2 → 0 or
q → 0, which is equivalent to Ω̃χ2 → 0. One can encap-
sulate both these limits in the quantity

δχ ¼ min ðχ1 sin θ1; Ω̃χ2 sin θ2Þ
max ðχ1 sin θ1; Ω̃χ2 sin θ2Þ

; ð20Þ

such that single-spin binaries correspond to δχ ¼ 0.
Equation (19) can now be Taylor expanded to obtain

hχpi≃maxðχ1 sinθ1;Ω̃χ2 sinθ2Þ
�
1þδχ2

4
þOðδχ4Þ

�
: ð21Þ

The heuristic definition of χp given in Eq. (12) is equivalent
to the leading-order term and reduces to it identically if
either S1 ¼ 0 or S2 ¼ 0. The physical scenario where a
single spin dominates the precession dynamics was indeed
the motivation behind the waveform model developed in
Refs. [2,22,23] where χp was first introduced. The asym-
metric case is explored explicitly in Ref. [24].

III. PARAMETER-SPACE EXPLORATION

We now investigate similarities and differences between
the various definitions of χp using PN integrations. We use
the following terminology:

Eq:ð14Þ → “Heuristic” χp;

Eq:ð19Þ → “Asymptotic” χp;

Eq:ð15Þ → “Generalized” χp;

Eq:ð16Þ → “Averaged” χp:

We assume Ω̃ ¼ qð4qþ 3Þ=ð4þ 3qÞ as in Ref. [2]. We
have verified that the additional PN correction reported in
Eq. (13) is irrelevant.
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Figure 1 shows the evolution of χp for a set of
representative BH binaries. Sources are initialized by
specifying values of q, χ1, χ2, θ1, θ2, and ΔΦ at
r ¼ 100M, and evolved down to r ¼ 10M using the
orbit-averaged PN code of Ref. [25].
The top two panels of Fig. 1 illustrate cases where the

heuristic estimate of χp (blue) fails to capture the dynamics.
The kinks in the topmost panel are due to the maximum
taken in Eq. (14): for this system, the two terms χ1 sin θ1
and Ω̃χ2 sin θ2 alternate their relative importance during
each precession cycle, such that selecting only one of them
introduces sharp features. This specific issue is rectified if
one considers the asymptotic expression (orange) which,
however, still fails to match either the generalized (green)
or the averaged (red) result. This is because the assump-
tions used to derive Eq. (19) are only valid in the limit

r=M → ∞, while here we evaluate the asymptotic χp
inappropriately along the inspiral. The averaged χp (green)
correctly tracks the long-term behavior of jdL̂=dtj. In
general, we find that the heuristic estimate of χp can either
overestimate or underestimate the averaged evolution.
Conversely, the bottom two panels of Fig. 1 present

systems where the heuristic expression tracks the overall
dynamics more faithfully. Notably, these are cases where
the spin of the primary BH dominates, i.e., closer to the
m2

1χ1 ≫ m2
2χ2 limit. Even in this favorable scenario, how-

ever, both the heuristic and the asymptotic definition of χp
retain prominent short-timescale variations which are
instead smoothed out by the averaged result. The gener-
alized χp contains the full precession-timescale dynamics
and thus oscillates with an even larger amplitude.

FIG. 1. Evolution of χp during the inspiral of four representative BH binaries. The heuristic χp from Eq. (14) is shown in blue, the
asymptotic χp from Eq. (19) (here used inappropriately at finite separations) is shown in orange, the generalized χp from Eq. (15) is
shown in green, and the averaged χp from Eq. (16) is shown red. Binaries are evolved from r ¼ 100M to r ¼ 10M with initial conditions

set by the values indicated to the right of each panel. The top axis indicates the corresponding GW frequency f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=π2r3

p
for nominal

sources with M ¼ 60 M⊙.
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A careful inspection of Fig. 1 reveals that the red curve
for the averaged evolution of χp still retains some (much
smaller) variations that correlate with the precession period.
This is signaling the breaking down of the timescale
separation that underpins the averaging procedure. Much
like the quasicircular approximation cannot accurately
describe the orbital problem close to merger, averaging
over a precession cycle is also less justified at small orbital
separations where radiation reaction becomes more
prominent.
Figure 2 explores the statistical distribution of χp for all

four definitions. Each panel is produced assuming a pop-
ulation of sources with fixed values of q, χ1, and χ2, and spin
directions distributed isotropically. The values of χp are
evaluated at r ≃ 14M, corresponding to GW frequencies of
f ¼ 20 Hz for a nominal source with total mass M ¼
60 M⊙ (where we converted frequency to separation using
the Newtonian expression f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=π2r3

p
).

An immediate observation is that the heuristic value of
χp is bounded by χp ≤ 1 while the generalized and
averaged estimates satisfy χp ≤ 2. This is another

reflection of the fact that cases where both spins con-
tribute to the precession dynamics cannot be faithfully
reduced to a single spin. The blue histograms for the
heuristic χp in Fig. 2 show two prominent peaks at χp ¼
χ1 and χp ¼ χ2qð4qþ 3Þ=ð4þ 3qÞ. These artificial fea-
tures are not present in either the generalized or the
averaged distributions. Interestingly, the averaged χp
distributions lie between the generalized and the heuristic
ones. This is a consequence of the derivation of the
heuristic χp presented in Sec. II which relies on an
inconsistent average.
One could be tempted to evaluate the asymptotic limit

reported in Eq. (19) along the inspiral (much as we did in
Fig. 1) because it represents an easy-to-implement, semi-
analytical expression. The red histograms in Fig. 2 show
that, overall, such an approach would also be inappropriate
to describe the precession dynamics. This is because
Eq. (19) is only valid in the r=M → ∞ limit where spin
nutations can be neglected and the precessional velocity is
approximately constant. It is worth stressing that Eq. (19),
and not Eq. (14), provides the correct asymptotic limit of

FIG. 2. Distribution of χp using the heuristic [Eq. (14), blue], asymptotic [Eq. (19), orange], generalized [Eq. (15), green], and
averaged [Eq. (16), red] definitions. Each panel contains a population of 104 sources with fixed values of q, χ1, χ2 (as indicated in the
figure), and isotropic spin directions. Sources are taken at r ≃ 14M or f ¼ 20 Hz for a total mass M ¼ 60 M⊙.
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hχpi as r=M → ∞. The averaged result agrees with its
asymptotic limit within a few percent only at extremely
large separations r≳ 105M. These values are not accessible
by LIGO and Virgo: in the sensitivity windows of the
detectors where r=M is of Oð10Þ, differences can be of
order unity.
Figure 3 shows the difference Δχp between the averaged

and heuristic estimates for the same populations of sources
used in Fig. 2. The heuristic evaluation can either under-
estimate or overestimate the averaged result, with a dis-
tribution that is mildly skewed towardΔχp > 0. The largest
disagreements depend on the injected value of q, χ1, and χ2
but can reach ∼50% for some of the cases shown in Fig. 3.
As expected, differences are smaller for parameters that
better satisfy the single-spin limit m2

1χ1 ≫ m2
2χ2.

Finally, let us briefly interpret our findings using the
“spin morphologies” identified in Refs. [17,18]. These are
mutually exclusive classes of sources where jΔΦj can
either circulate through full range ½0; π�, librate about
jΔΦj ¼ 0 and never reach π, or librate about jΔΦj ¼ π
and never reach 0. For q ¼ 0.8, χ1 ¼ 1, χ2 ¼ 1, r ≃ 14M,
and isotropic spins, we find that Δχp ¼ −0.06þ0.31

−0.27 for
binaries in the circulating morphology, Δχp ¼ 0.46þ0.27

−0.33 for
binaries that librate about jΔΦj ¼ 0, and Δχp ¼ −0.35þ0.30

−0.10
for binaries that librate about jΔΦj ¼ π (where we indi-
cated medians and 90% interval). The heuristic estimate of

χp assumes that contributions from ΔΦ ¼ 0 and ΔΦ ¼ π
are equally important [cf. Eq. (12)]. This assumption is not
appropriate to describe binaries in the librating morphol-
ogies but provides a fairer description of the circulating
sources. As shown in Ref. [18], the number of sources in
each of these three classes strongly depends on the binary
parameters. The mismodeling introduced by the heuristic
definition of χp is therefore highly nonuniform, affecting
specific regions in the parameter space much more promi-
nently than others.

IV. IMPACT ON CURRENT LIGO EVENTS

The examples presented so far indicate that a consistent
generalization of χp can in principle be an important player
in the interpretation of BH-binary observations. We now
turn our attention to current GW events from the first three
observing runs of the LIGO/Virgo detectors.
For O1 and O2, we make use of publicly released

posterior samples from Ref. [26], which include all 10 BH
binary events reported in the GWTC-1 catalog2 [4]. For
O3a, we use data products released together with the
GWTC-2 catalog [5] and consider all BH binary events
with false-alarm rate < 1=yr. The resulting sample of 45
detections is reported in Table I.
The O1-O2 analysis of Ref. [26] employs the

IMRPhenomPv2 [23] waveform model, where two-spin
effects are not fully included. For the case of GW151226,
we cross-checked our results using posterior samples
obtained with the more accurate IMRPhenomPv3 model
from Ref. [27] and did not detect significant differences.
Unless specified otherwise, events from O3a are analyzed
using combined samples obtained with different waveform
families as described in Appendix A.1 of Ref. [5]. LIGO/
Virgo parameter estimation samples report the spin direc-
tions at a fixed GW frequency, which was set to fref ¼
20 Hz for all the events but GW190521 where the high
mass imposed a lower value fref ¼ 11 Hz. We convert GW
frequency to PN separation r as described in the Appendix.
Figure 4 shows posterior distributions for the heuristic

(blue) and averaged (red) estimates of χp for all 45 events.
Medians and symmetric 90% confidence intervals are
reported in Table I. For most events, the posterior
distributions obtained with different definitions of χp
are qualitatively similar, indicating that the generalization
proposed in this paper does not alter the physical
interpretation of these systems, at least at the present
SNR. However, our χp distributions present an overall
tendency toward larger values. This appears to be a rather
generic feature: the posteriors of the averaged and
generalized χp’s have longer tails compared to both the

FIG. 3. Difference Δχp between the averaged [Eq. (16)] and
heuristic [Eq. (14)] estimates for the same population of sources
shown in Fig. 2. Each histogram is produced assuming isotropic
spin directions and fixed values of q, χ1, and χ2 as indicated in the
legend. The parameter Δχp is evaluated at r ≃ 14M, equivalent to
f ¼ 20 Hz for M ¼ 60 M⊙.

2We could not use the posterior samples publicly released with
Ref. [4] because they do not include the variable ΔΦ. The
analyses of Refs. [26,4] were found to be compatible.
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heuristic and asymptotic ones. Some cases that are
worth singling out from Fig. 4 are GW170814,
GW170823, GW190413_134308, GW190421_213856,
GW190424_180648, GW190514_065416, GW190521
(see below), GW190727_060333, GW190803_022701,
and GW190915_235702.
In these cases, the posterior of the heuristic χp is

somewhat steep near its χp ¼ 1 boundary. On the other
hand, the averaged and generalized distributions extend
smoothly into the χp ≳ 1 region. The heuristic definition of
χp from Eq. (14) causes an artificial pileup of posterior
samples at the boundary χp ≲ 1; the samples affected are
those with in-plane spin components which are moderately
large and coaligned.
Some statistical properties of these χp measurements are

summarized in Fig. 5 where we contrast the heuristic and
the averaged definitions. At least at the current detector
sensitivity, medians of the χp posteriors (orange circles) are
not sensitive to the generalizations put forward in this
paper. On the other hand, the width of their 90% confidence
interval depends on the χp definition. In particular, we find
that the common heuristic approach systematically under-
estimates the χp measurement errors. This is once more due

to the χp ≳ 1 tails of the posteriors shown in Fig. 4, which
push the upper edge of the 90% confidence interval toward
larger values. As shown in Fig. 5, the majority of the
current GW events are affected, with potential conse-
quences for current and future population studies.
Figure 5 also shows the Kullback-Leibler (KL) diver-

gence DKL between prior and posterior samples evaluated
using the averaged and heuristic estimates of χp. The χp KL
divergence, also known as relative entropy, is often used
as a metric to discriminate whether the data contain
enough evidence for spin precession. For the few systems
with DKL ≳ 0.4 bits (GW190412, GW190512_180714,
GW190521, and GW190814), the relative entropy of the
averaged χp is up to 7% higher, indicating that current
estimates tend to mildly underestimate the informa-
tion gain.
In terms of the alternative metric ρp [6,28,29], Ref. [5]

reports that the events with the largest excess SNR are
GW190412 (ρp ¼ 3.0) and GW190521 (ρp ¼ 1.6), which
are also among those we highlight. Posterior distributions
of ρp for some of the current events are reported in Fig. 1 of
Ref. [6] and Fig. 1 of Ref. [29], and can be compared
against our Fig. 4.

TABLE I. Medians and 90% confidence intervals of χp for 45 GW events from the first three observing runs of the LIGO/Virgo
interferometers. For each event, we consider all four definitions of χp: heuristic [Eq. (14)], asymptotic [Eq. (19)], generalized [Eq. (15)],
and averaged [Eq. (16)].

Event χðHeuÞp χðAsyÞp χðGenÞp χðAvÞp Event χðHeuÞp χðAsyÞp χðGenÞp χðAvÞp

GW150914 0.32þ0.41
−0.26 0.35þ0.43

−0.28 0.33þ0.55
−0.27 0.34þ0.52

−0.27 GW190521_074359 0.40þ0.32
−0.29 0.43þ0.32

−0.31 0.39þ0.40
−0.30 0.40þ0.35

−0.28
GW151012 0.31þ0.40

−0.24 0.33þ0.42
−0.26 0.31þ0.51

−0.26 0.33þ0.45
−0.25 GW190527_092055 0.46þ0.42

−0.35 0.49þ0.43
−0.37 0.47þ0.56

−0.38 0.48þ0.48
−0.36

GW151226 0.42þ0.29
−0.27 0.44þ0.29

−0.28 0.43þ0.40
−0.31 0.44þ0.29

−0.27 GW190602_175927 0.43þ0.41
−0.32 0.46þ0.42

−0.34 0.43þ0.56
−0.34 0.43þ0.52

−0.32
GW170104 0.37þ0.36

−0.28 0.40þ0.36
−0.29 0.38þ0.48

−0.30 0.39þ0.41
−0.28 GW190620_030421 0.43þ0.37

−0.29 0.46þ0.37
−0.31 0.44þ0.48

−0.33 0.45þ0.43
−0.30

GW170608 0.31þ0.35
−0.24 0.33þ0.37

−0.25 0.31þ0.45
−0.25 0.33þ0.39

−0.25 GW190630_185205 0.31þ0.32
−0.23 0.33þ0.32

−0.24 0.31þ0.39
−0.24 0.32þ0.33

−0.23
GW170729 0.42þ0.36

−0.28 0.45þ0.37
−0.30 0.43þ0.50

−0.33 0.44þ0.44
−0.30 GW190701_203306 0.42þ0.42

−0.31 0.45þ0.42
−0.34 0.43þ0.53

−0.34 0.43þ0.51
−0.32

GW170809 0.34þ0.38
−0.26 0.36þ0.40

−0.28 0.34þ0.50
−0.28 0.36þ0.44

−0.27 GW190706_222641 0.41þ0.38
−0.28 0.43þ0.38

−0.30 0.42þ0.49
−0.32 0.43þ0.44

−0.30
GW170814 0.49þ0.32

−0.37 0.52þ0.33
−0.40 0.49þ0.52

−0.39 0.49þ0.48
−0.38 GW190707_093326 0.29þ0.39

−0.23 0.31þ0.40
−0.24 0.28þ0.47

−0.23 0.30þ0.40
−0.24

GW170818 0.51þ0.29
−0.35 0.54þ0.30

−0.36 0.51þ0.47
−0.39 0.51þ0.43

−0.35 GW190708_232457 0.29þ0.43
−0.24 0.31þ0.44

−0.25 0.28þ0.45
−0.23 0.31þ0.39

−0.24
GW170823 0.45þ0.41

−0.35 0.48þ0.42
−0.37 0.46þ0.57

−0.37 0.47þ0.52
−0.35 GW190720_000836 0.33þ0.43

−0.22 0.35þ0.45
−0.24 0.34þ0.50

−0.25 0.35þ0.44
−0.23

GW190408_181802 0.39þ0.37
−0.31 0.42þ0.39

−0.33 0.38þ0.46
−0.31 0.39þ0.39

−0.30 GW190727_060333 0.48þ0.39
−0.36 0.51þ0.40

−0.38 0.49þ0.57
−0.40 0.50þ0.51

−0.37
GW190412 0.31þ0.19

−0.16 0.32þ0.19
−0.16 0.31þ0.23

−0.20 0.32þ0.19
−0.16 GW190728_064510 0.29þ0.37

−0.20 0.31þ0.39
−0.21 0.29þ0.44

−0.22 0.31þ0.38
−0.21

GW190413_052954 0.42þ0.42
−0.32 0.45þ0.43

−0.33 0.42þ0.55
−0.33 0.43þ0.49

−0.32 GW190731_140936 0.42þ0.43
−0.32 0.45þ0.45

−0.34 0.42þ0.58
−0.34 0.43þ0.51

−0.32
GW190413_134308 0.56þ0.36

−0.42 0.60þ0.36
−0.45 0.59þ0.52

−0.47 0.58þ0.48
−0.43 GW190803_022701 0.45þ0.42

−0.34 0.47þ0.43
−0.36 0.45þ0.58

−0.36 0.46þ0.54
−0.34

GW190421_213856 0.49þ0.40
−0.37 0.52þ0.40

−0.39 0.49þ0.56
−0.39 0.50þ0.52

−0.37 GW190814 0.04þ0.04
−0.03 0.05þ0.04

−0.03 0.04þ0.05
−0.03 0.05þ0.04

−0.03
GW190424_180648 0.52þ0.37

−0.37 0.55þ0.38
−0.40 0.54þ0.57

−0.42 0.54þ0.52
−0.39 GW190828_063405 0.43þ0.36

−0.30 0.46þ0.36
−0.32 0.44þ0.48

−0.34 0.45þ0.44
−0.32

GW190503_185404 0.39þ0.41
−0.29 0.41þ0.42

−0.31 0.39þ0.52
−0.31 0.40þ0.47

−0.30 GW190828_065509 0.29þ0.40
−0.22 0.30þ0.40

−0.23 0.29þ0.43
−0.24 0.30þ0.39

−0.23
GW190512_180714 0.23þ0.37

−0.18 0.24þ0.38
−0.19 0.23þ0.39

−0.19 0.24þ0.34
−0.18 GW190910_112807 0.41þ0.39

−0.32 0.44þ0.41
−0.34 0.40þ0.49

−0.32 0.40þ0.45
−0.31

GW190513_205428 0.30þ0.40
−0.22 0.32þ0.41

−0.24 0.31þ0.48
−0.25 0.32þ0.40

−0.24 GW190915_235702 0.56þ0.36
−0.39 0.59þ0.35

−0.41 0.57þ0.50
−0.44 0.57þ0.43

−0.40
GW190514_065416 0.47þ0.39

−0.34 0.50þ0.40
−0.37 0.47þ0.59

−0.38 0.47þ0.55
−0.34 GW190924_021846 0.24þ0.40

−0.18 0.26þ0.42
−0.20 0.24þ0.45

−0.19 0.26þ0.40
−0.19

GW190517_055101 0.48þ0.31
−0.28 0.52þ0.31

−0.30 0.50þ0.46
−0.36 0.50þ0.40

−0.31 GW190929_012149 0.39þ0.43
−0.30 0.41þ0.42

−0.31 0.41þ0.46
−0.33 0.41þ0.42

−0.31
GW190519_153544 0.45þ0.34

−0.29 0.48þ0.33
−0.31 0.46þ0.46

−0.34 0.46þ0.39
−0.30 GW190930_133541 0.34þ0.40

−0.24 0.36þ0.41
−0.25 0.34þ0.48

−0.26 0.35þ0.40
−0.25

GW190521 0.67þ0.26
−0.44 0.72þ0.26

−0.46 0.70þ0.58
−0.52 0.70þ0.56

−0.46
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FIG. 4. Posterior distributions for the heuristic [Eq. (14), blue] and averaged [Eq. (16), red] estimate of χp for 45 GW
events from the first, second, and third LIGO/Virgo observing runs. Posteriors for the asymptotic (generalized) χp are qualitatively
similar to the heuristic (averaged) results and are omitted for clarity. We report the generic tendency of tails extending toward the region
where χp ≳ 1.
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The most striking case from Fig. 4 is undoubtedly that
of GW190521. Classified as the most massive event to
date, GW190521 is a BH binary with total mass
∼150 M⊙ which shows some preference for spinning,
precessing BHs (odds ratio of ∼10∶1) [30]. The χp
properties of this event are singled out in Fig. 6. The
left panel shows prior and posterior distributions for all
four definitions of χp. While the priors are all qualita-
tively similar, the posteriors (here computed averaging
over different waveform families [5]) show more pro-
nounced differences between the heuristic/asymptotic and
the generalized/averaged χp’s. The χp generalization put
forward in this paper affects the posterior much more
prominently than the prior, and thus highlights features
which are present in the data. The right panel shows
posterior distributions obtained using three different
waveform models—NRSur7dq4 [31], SEOBNRv4PHM
[32], and IMRPhenomPv3HM [33]—which all include
two-spin effects and higher-order modes. While some
dependence on the waveform is present (cf. [5]), we find
that the differences between the definitions of χp cannot
be absorbed within these uncertainties. At least for
GW190521, the generalization of χp presented here
dominates over waveform systematics.

FIG. 5. Statistical properties of the precession parameter χp for
current GW events. We contrast the averaged [Eq. (16), x-axis]
and heuristic [Eq. (14), y-axis] definitions of χp. Scatter points
show the medians of the posterior distributions (orange circles),
the width of their 90% confidence interval (purple triangles), and
the KL divergence between prior and posterior measured in bits
(teal squares). The KL divergence of GW190814 is ∼4.3 bits,
which is off the scale of this figure in the direction of the arrow.

FIG. 6. Precession parameter χp for GW190521. Colors indicate the four definitions of χp described in this paper: heuristic [Eq. (14),
blue], asymptotic [Eq. (19), orange], generalized [Eq. (15), green], and averaged [Eq. (16), red]. The left panel shows prior (dashed) and
posterior (solid) distributions obtained by combining samples from different waveform approximants. The right panel shows posterior
distributions obtained with three different waveform models: NRSur7dq4 (“NRsur,” solid), SEOBNRv4PHM (“EOB,” dashed), and
IMRPhenomPv3HM (“Phenom,” dotted).
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V. CONCLUSIONS

The parameter χp is commonly used to characterize
relativistic precession in GW observations of BH binaries.
The reduction of the spin-precession problem to a single
parameter was initially motivated by efficient waveform
construction and template placing [2]. The popular wave-
form model of Ref. [23] indeed makes direct use of a single
effective precessing spin. Waveform models have evolved
since then and now fully include two-spin effects [31–33].
Although GW parameter-estimation algorithms sample all
six Cartesian components of the BH spins, information on
the spin components perpendicular to the orbital angular
momentum is often condensed into χp for interpretation
purposes (for measurement accuracies on the individual
spins see, e.g., [34,35]). It is indeed very desirable to have a
single parameter that, if measured confidently, can be
interpreted as “the amount of precession” in a given GW
observation.
The parameter χp was first defined in Ref. [2] with

specific assumptions that are here relaxed for the first time.
In particular, we propose that the common definition

χp ¼ max

�
χ1 sin θ1; q

4qþ 3

4þ 3q
χ2 sin θ2

�
ð22Þ

should be generalized to

χp ¼
�
ðχ1 sin θ1Þ2 þ

�
q
4qþ 3

4þ 3q
χ2 sin θ2

�
2

þ 2q
4qþ 3

4þ 3q
χ1χ2 sin θ1 sin θ2 cosΔΦ

�
1=2

: ð23Þ

The latter can then be precession averaged as in Eq. (16)
and the Appendix. For a public implementation using the
PYTHON programming language see github.com/dgerosa/
generalizedchip [36].
The crucial difference between the two definitions above

is that χp depends not only on the magnitudes of the in-
plane spin components χ1 sin θ1 and χ2 sin θ2 but also on
the angle ΔΦ between them.
It is worth noting that the generalization we propose is

bound by χp ≤ 2, compared to χp ≤ 1 for the heuristic
definition. This reflects one’s intuition that binaries where
both BHs contribute significantly to the precession dynam-
ics cannot be reduced to an effective system with a single
spin. From the definition of Eq. (23) one can immediately
prove that χp < 1 if either spin is parallel to the orbital
angular momentum (χi sin θi ¼ 0). It follows that the
additional region χp > 1 is exclusive to binaries with
two precessing spins. Much like an observation where
χp is confidently> 0 would indicate the presence of at least
one precessing spin, a GWevent in the χp > 1 region can be
interpreted as a detection of two-spin effects.

It is important to note that there is some arbitrariness in
the precise definition of χp. For instance, instead of the
magnitude jdL̂=dtj adopted in Sec. II, one could use the
projection of the total spin onto the orbital plane

χ⊥≡ jðS1þS2Þ×L̂j
M2

¼ 1

ð1þqÞ2 ½ðχ1 sinθ1Þ
2

þðqχ2 sinθ2Þ2þ2qχ1χ2 sinθ1 sinθ2cosΔΦ�1=2; ð24Þ

which differs from Eq. (23) only by some factors of q (see
also [37]). Similarly, in Eq. (15) we, somehow arbitrarily,
opted for normalizing the magnitude of dL̂=dt by the
precession frequency of the primary BH Ω1. This is the
same choice made in Ref. [2] and was here retained to allow
for a meaningful comparison between our results and
theirs. This ensures that our χp redefinition agrees with
the heuristic one in the χp → 0 limit, as evidenced by the
small-χp regions in Fig. 4. A reflection of this feature is that
the single-spin limit is preserved [cf. Eq. (21)]. An
alternative normalization, which goes further in the direc-
tion of putting the two BHs on equal footing, would be to
divide jdL̂=dtj by Ω1 þ Ω2. Our results can trivially be
rescaled to that choice by the transformation

χp →
χp

1þ Ω̃
: ð25Þ

In this case, one would obtain a precession parameter that is
≤ 1 but it would present a different small-spin behavior,
resulting in an estimator that cannot be easily compared
with the heuristic definition.
We stress that our recipe for evaluating χp does not

require new or different parameter-estimation runs, which
are computationally expensive, but can be carried out
entirely in postprocessing. In this paper, we pursued this
strategy using public posterior samples from the LIGO/
Virgo events reported to date. We report the generic
occurrence of long tails in the posterior distributions of
χp that extend smoothly into the previously forbidden
region where χp ≳ 1. The most relevant case to date which
shows the importance of defining a consistent precession
parameter is GW190521, where pðχp > 1Þ ≃ 16%. This
number can be interpreted as a lower limit to the probability
that GW190521 contained two precessing spins. In total,
there are 6 (29) events for which this “two-spin probability”
is greater than 5% (1%).
Such tails in the χp posteriors have two main

consequences:
(i) First, they enlarge the 90% confidence interval of χp,

indicating that current estimates of the measurement
errors with which precession is measured might be
underestimated.

(ii) Second, more posterior weight is placed at higher
values of χp, which can arguably be interpreted as an
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indication that the data show more evidence for spin
precession than previously reported.

Both these points might have important consequences
for the astrophysical interpretation of GW events, because
spin precession is thought to be a key tracer of BH binary
formation pathways.
The issues of constructing waveform models and that of

interpreting observations are not decoupled. The relative
success of approximants which rely on effective-spin
parameters indicates that two-spin effects are subdominant
and intrinsically difficult to measure [34,35]. One should
also keep in mind that the event posteriors are dependent on
the waveform models used in the analysis and are therefore
subject to their systematics [5]. With these caveats in mind,
our results indicate that some of the current events present
some hints of two-spin physics. Data are bound to become
more informative as detectors improve in sensitivity.
Current GW population studies (e.g., Ref. [7]) all make

use of χp at a fixed reference frequency fref and neglect its
evolution along the inspiral. This issue is exacerbated by
the common adoption of the heuristic expression of χp,
which varies on the short timescale of the problem. The
averaging procedure proposed here is the most natural
mitigation strategy.
Large sets of software injections are necessary to better

understand how these augmented χp estimators respond to
current LIGO/Virgo parameter-estimation pipelines and
compare with other metrics such as excess SNR ρp and
Bayes’ factor. In this paper, we have only investigated the
relevance of our redefinition of χp on individual events, not
its collective effect on the detected population. The impact
of our findings on population studies might be significant
because the generalization of χp here proposed affects
current events in a weak but systematic manner.
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APPENDIX: PRECESSION-AVERAGE
IMPLEMENTATION

In this Appendix we provide a practical implementation
of Eq. (16). We rely on the multi-timescale framework
presented in Refs. [17–19], where precession cycles are
parametrized using the magnitude of the total spin
SðtÞ ¼ jS1ðtÞ þ S2ðtÞj.
Current LIGO/Virgo pipelines provide the binary con-

figurations in terms of detector-frame total mass M, mass
ratio q, spin magnitude χ1, χ2, and the orientations θ1, θ2,
ΔΦ at a given GW frequency fref. First, we obtain the
corresponding separation r using the PN expression
reported in Eq. (4.13) of Ref. [38],

r
M

¼ ðMωÞ−2=3−
�
1−

q
3ð1þqÞ2

�

−
ðMωÞ1=3
3ð1þqÞ2 ½ð3qþ 2Þχ1 cosθ1þqð3þ 2qÞχ2 cosθ2�

þ ðMωÞ2=3
�

q
ð1þqÞ2

�
19

4
þ q
9ð1þqÞ2

�

−
χ1χ2
2

ðsinθ1 sinθ2 cosΔΦ− 2cosθ1 cosθ2Þ
	
; ðA1Þ

where ω ¼ πfref is the orbital angular velocity.
One can then evaluate quantities that are constant on the

precession timescale. These include the magnitudes of the
spins Si ¼ χim2

i , the magnitude of the Newtonian angular
momentum L ¼ m1m2

ffiffiffiffiffiffiffiffiffi
r=M

p
, the effective spin χeff from

Eq. (5), and the magnitude of the total angular momentum

J¼ ½L2þS21þS22þ 2LðS1 cosθ1þS2 cosθ2Þ
þ 2S1S2ðsinθ1 sinθ2 cosΔΦþ cosθ1 cosθ2Þ�1=2: ðA2Þ

These quantities can be used to derive the following
parametric expressions of spin angles as a function of S,

cosθ1ðSÞ¼
1

2ð1−qÞS1

�
J2−L2−S2

L
−
2qM2χeff
1þq

�
; ðA3Þ

cosθ2ðSÞ¼
q

2ð1−qÞS2

�
−
J2−L2−S2

L
þ2M2χeff

1þq

�
; ðA4Þ

cosΔΦðSÞ¼S2−S21−S22−2S1S2cosθ1ðSÞcosθ2ðSÞ
2S1S2sinθ1ðSÞsinθ2ðSÞ

; ðA5Þ

which can be substituted into Eq. (15) to obtain χpðSÞ.
The time derivative of S follows directly from the spin-

precession equations (e.g., [15]):
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���� dSdt
���� ¼ 3

2

S1S2M9

L5

q5ð1 − qÞ
ð1þ qÞ11

�
1 −

qM2χeff
ð1þ qÞ2L

�

×
sin θ1ðSÞ sin θ2ðSÞj sinΔΦðSÞj

S
: ðA6Þ

One can prove [18] that there are two stationary points
where dS=dt ¼ 0, which we refer to as S� with S− ≤ Sþ.
The absolute values in Eqs. (A6) are related to the fact that
the two halves of the precession cycle S− → Sþ and Sþ →
S− are symmetric, so we can safely integrate only over the
first half.

Putting all these ingredients together yields

hχpi ¼
R Sþ
S−

χpðSÞ
��� dSdt

���−1dS
R Sþ
S−

��� dSdt
���−1dS : ðA7Þ

Parametrizing the precession cycle in terms of SðtÞ holds
as long as q < 1. The angle φ0 of Eq. (17) should instead
be used if q ¼ 1 (which, strictly speaking, never
happens) [39].

[1] T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S.
Thorne, Phys. Rev. D 49, 6274 (1994).

[2] P. Schmidt, F. Ohme, and M. Hannam, Phys. Rev. D 91,
024043 (2015).

[3] B. P. Abbott et al. (LIGO and Virgo Scientific Collabora-
tions), Phys. Rev. X 6, 041015 (2016).

[4] B. P. Abbott et al. (LIGO and Virgo Scientific Collabora-
tions), Phys. Rev. X 9, 031040 (2019).

[5] R. Abbott et al. (LIGO and Virgo Scientific Collaborations),
arXiv:2010.14527.

[6] S. Fairhurst, R. Green, M. Hannam, and C. Hoy, Phys. Rev.
D 102, 041302 (2020).

[7] R. Abbott et al. (LIGO and Virgo Scientific Collaborations),
arXiv:2010.14533.

[8] V. Kalogera, Astrophys. J. 541, 319 (2000).
[9] I. Mandel and R. O’Shaughnessy, Classical Quantum

Gravity 27, 114007 (2010).
[10] D. Gerosa, M. Kesden, E. Berti, R. O’Shaughnessy, and U.

Sperhake, Phys. Rev. D 87, 104028 (2013).
[11] C. L. Rodriguez, M. Zevin, C. Pankow, V. Kalogera, and F.

A. Rasio, Astrophys. J. Lett. 832, L2 (2016).
[12] D. Gerosa, E. Berti, R. O’Shaughnessy, K. Belczynski, M.

Kesden, D. Wysocki, and W. Gladysz, Phys. Rev. D 98,
084036 (2018).

[13] N. Steinle and M. Kesden, arXiv:2010.00078 [Phys. Rev. D
(to be published)].

[14] T. A. Callister, W. M. Farr, and M. Renzo, arXiv:
2011.09570.

[15] É. Racine, Phys. Rev. D 78, 044021 (2008).
[16] T. Damour, Phys. Rev. D 64, 124013 (2001).
[17] M. Kesden, D. Gerosa, R. O’Shaughnessy, E. Berti, and U.

Sperhake, Phys. Rev. Lett. 114, 081103 (2015).
[18] D. Gerosa, M. Kesden, U. Sperhake, E. Berti, and R.

O’Shaughnessy, Phys. Rev. D 92, 064016 (2015).
[19] K. Chatziioannou, A. Klein, N. Yunes, and N. Cornish,

Phys. Rev. D 95, 104004 (2017).
[20] C. O. Lousto, J. Healy, and H. Nakano, Phys. Rev. D 93,

044031 (2016).
[21] D. Gerosa, A. Lima, E. Berti, U. Sperhake, M. Kesden, and

R. O’Shaughnessy, Classical Quantum Gravity 36, 105003
(2019).

[22] P. Schmidt, M. Hannam, and S. Husa, Phys. Rev. D 86,
104063 (2012).

[23] M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F.
Ohme, G. Pratten, and M. Pürrer, Phys. Rev. Lett. 113,
151101 (2014).

[24] G. Pratten, P. Schmidt, R. Buscicchio, and L. M. Thomas,
Phys. Rev. Research 2, 043096 (2020).

[25] D. Gerosa and M. Kesden, Phys. Rev. D 93, 124066
(2016).

[26] I. M. Romero-Shaw, C. Talbot, S. Biscoveanu, V. D’Emilio
et al., Mon. Not. R. Astron. Soc. 499, 3295 (2020).

[27] S. Khan, K. Chatziioannou, M. Hannam, and F. Ohme,
Phys. Rev. D 100, 024059 (2019).

[28] S. Fairhurst, R. Green, C. Hoy, M. Hannam, and A. Muir,
Phys. Rev. D 102, 024055 (2020).

[29] R. Green, C. Hoy, S. Fairhurst, M. Hannam, F. Pannarale,
and C. Thomas, arXiv:2010.04131.

[30] R. Abbott et al. (LIGO and Virgo Scientific Collaborations),
Phys. Rev. Lett. 125, 101102 (2020).

[31] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, D.
Gerosa, L. C. Stein, L. E. Kidder, and H. P. Pfeiffer, Phys.
Rev. Research 1, 033015 (2019).

[32] S. Ossokine, A. Buonanno, S. Marsat, R. Cotesta,
S. Babak, T. Dietrich, R. Haas, I. Hinder, H. P. Pfeiffer,
M. Pürrer, C. J. Woodford, M. Boyle, L. E. Kidder,
M. A. Scheel, and B. Szilágyi, Phys. Rev. D 102, 044055
(2020).

[33] S. Khan, F. Ohme, K. Chatziioannou, and M. Hannam,
Phys. Rev. D 101, 024056 (2020).

[34] S. Vitale, R. Lynch, J. Veitch, V. Raymond, and R. Sturani,
Phys. Rev. Lett. 112, 251101 (2014).

[35] M. Pürrer, M. Hannam, and F. Ohme, Phys. Rev. D 93,
084042 (2016).

[36] D. Gerosa, github.com/dgerosa/generalizedchip, https://
doi.org/10.5281/zenodo.4288255 (2020).

[37] L. M. Thomas, P. Schmidt, and G. Pratten, arXiv:
2012.02209.

[38] L. E. Kidder, Phys. Rev. D 52, 821 (1995).
[39] D. Gerosa, U. Sperhake, and J. Vošmera, Classical Quantum

Gravity 34, 064004 (2017).

DAVIDE GEROSA et al. PHYS. REV. D 103, 064067 (2021)

064067-12

https://doi.org/10.1103/PhysRevD.49.6274
https://doi.org/10.1103/PhysRevD.91.024043
https://doi.org/10.1103/PhysRevD.91.024043
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevX.9.031040
https://arXiv.org/abs/2010.14527
https://doi.org/10.1103/PhysRevD.102.041302
https://doi.org/10.1103/PhysRevD.102.041302
https://arXiv.org/abs/2010.14533
https://doi.org/10.1086/309400
https://doi.org/10.1088/0264-9381/27/11/114007
https://doi.org/10.1088/0264-9381/27/11/114007
https://doi.org/10.1103/PhysRevD.87.104028
https://doi.org/10.3847/2041-8205/832/1/L2
https://doi.org/10.1103/PhysRevD.98.084036
https://doi.org/10.1103/PhysRevD.98.084036
https://arXiv.org/abs/2010.00078
https://arXiv.org/abs/2011.09570
https://arXiv.org/abs/2011.09570
https://doi.org/10.1103/PhysRevD.78.044021
https://doi.org/10.1103/PhysRevD.64.124013
https://doi.org/10.1103/PhysRevLett.114.081103
https://doi.org/10.1103/PhysRevD.92.064016
https://doi.org/10.1103/PhysRevD.95.104004
https://doi.org/10.1103/PhysRevD.93.044031
https://doi.org/10.1103/PhysRevD.93.044031
https://doi.org/10.1088/1361-6382/ab14ae
https://doi.org/10.1088/1361-6382/ab14ae
https://doi.org/10.1103/PhysRevD.86.104063
https://doi.org/10.1103/PhysRevD.86.104063
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevResearch.2.043096
https://doi.org/10.1103/PhysRevD.93.124066
https://doi.org/10.1103/PhysRevD.93.124066
https://doi.org/10.1093/mnras/staa2850
https://doi.org/10.1103/PhysRevD.100.024059
https://doi.org/10.1103/PhysRevD.102.024055
https://arXiv.org/abs/2010.04131
https://doi.org/10.1103/PhysRevLett.125.101102
https://doi.org/10.1103/PhysRevResearch.1.033015
https://doi.org/10.1103/PhysRevResearch.1.033015
https://doi.org/10.1103/PhysRevD.102.044055
https://doi.org/10.1103/PhysRevD.102.044055
https://doi.org/10.1103/PhysRevD.101.024056
https://doi.org/10.1103/PhysRevLett.112.251101
https://doi.org/10.1103/PhysRevD.93.084042
https://doi.org/10.1103/PhysRevD.93.084042
github.com/dgerosa/generalizedchip
github.com/dgerosa/generalizedchip
https://doi.org/10.5281/zenodo.4288255
https://doi.org/10.5281/zenodo.4288255
https://arXiv.org/abs/2012.02209
https://arXiv.org/abs/2012.02209
https://doi.org/10.1103/PhysRevD.52.821
https://doi.org/10.1088/1361-6382/aa5e58
https://doi.org/10.1088/1361-6382/aa5e58

