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ABSTRACT

When a microbubble is subject to ultrasound, non-spherical oscillation or surface modes can be generated after many acoustic cycles. This
phenomenon has wide applications, including ultrasonic cleaning, sonochemistry, and biomedical ultrasonics. Yet, the nonlinear develop-
ment of the bubble shape modes over dozens of cycles is not well understood. Here, we describe a grid-free and robust model to simulate the
phenomenon. A viscous pressure correction is introduced to compensate the non-zero tangential stress at the free surface in the potential
flow model, based on conservation of energy. Consequently, the phenomenon is modeled using the boundary integral method, in which the
compressible and viscous effects are incorporated into the model through the boundary conditions. The computations have been carried out
for axisymmetric cases; however, the numerical model can be extended for three-dimensional cases in a straightforward manner. The numer-
ical results are shown to be in good agreement for many cycles with some independent viscous and compressible theories for axisymmetric
bubbles and experiments for microbubbles undergoing shape oscillation subject to ultrasound. The development of the shape oscillation of a
bubble after a dozen cycles, the formation of a reentry jet and its penetration through the bubble, and the topological transformation of the
bubble are simulated and analyzed in terms of the amplitude and frequency of the ultrasound. The computations and physical analysis are
carried out for the development of shape modes due to a resonant volume oscillation, strong pressure wave, or the matching of the acoustic
wave frequency with the shape mode frequency.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0077091

I. INTRODUCTION

Bubble dynamics has remained a central research topic for
many decades, due to its properties of high energy concentration,
which can damage pumps, turbines, and propellers (Blake and
Gibson, 1987; Lauterborn and Kurz, 2010). Microbubble dynam-
ics subject to an acoustic wave are associated with applications in
biomedical ultrasonics (Coussios and Roy 2008; Curtiss et al.,
2013; Vyas et al., 2016, 2017, 2019), sonochemistry (Suslick, 1990;
Blake, 1999) and cavitation cleaning (Ohl et al., 2006; Reuter
et al., 2017).

It is observed in experiments that bubbles may be activated into
repeated stable shape oscillations in an acoustic field (Asaki and
Marston, 1995; Versluis et al., 2010). The experimental results are lim-
ited by the resolution in space and time, especially for microbubbles
whose size and period are atO(10�6) m atO(10�6) s. Theoretical stud-
ies were carried on shape oscillations of bubbles at small amplitude
using perturbation methods via spherical harmonics, predicting the

natural frequency of shape modes and the stability threshold (Plesset,
1954; Prosperetti, 1977; Shaw, 2009, 2017; Doinikov, 2004; Gu�edra
et al., 2017; Gu�edra and Inserra, 2018). We aim to implement a
numerical model to simulate and analyze the development of shape
modes of bubbles at large amplitude.

Viscous effects are important for microbubbles, since the associ-
ated Reynolds numbers can be O(10) (Lauterborn and Kurz, 2010).
The radical oscillation and shape modes of microbubbles and the jet-
ting velocity are damped by viscous effects (Boulton-Stone and Blake,
1993; Smith and Wang, 2017). The compressible effects of liquid are
essential, which are associated with the acoustic radiation at the mini-
mum volumes of bubbles (Prosperetti and Lezzi, 1986; Lezzi and
Prosperetti, 1987; Smith and Wang, 2018), when significant energy is
radiated to the far field (Wang, 2016). This phenomenon is associated
with three length scales: the thickness of the viscous boundary layer at
the bubble surface, the bubble radius, and the wavelength of acoustic
waves. The boundary layer thickness is smaller than the bubble radius,

Phys. Fluids 34, 012105 (2022); doi: 10.1063/5.0077091 34, 012105-1

VC Author(s) 2022

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0077091
https://doi.org/10.1063/5.0077091
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0077091
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0077091&domain=pdf&date_stamp=2022-01-04
https://orcid.org/0000-0002-2574-6752
https://orcid.org/0000-0002-7922-4562
https://orcid.org/0000-0002-0778-3226
mailto:q.x.wang@bham.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0077091
https://scitation.org/journal/phf


both changing by an order of magnitude with time, and the wave-
length is in turn much larger than the bubble radius.

Bubble dynamics in a viscous liquid was simulated based on the
Navier–Stokes equations using the finite volume method (FVM)
(Popinet and Zaleski, 2002; Minsier et al., 2009; Hua and Lou, 2007)
or finite element method (Chen et al., 2016). The compressible effects
were modeled by Tiwari et al. (2013) using a diffuse interface model,
and Han et al. (2015) and Lechner et al. (2017) using the FVM.
However, domain numerical simulations of the three-scaled problem
for dozens of cycles of oscillation or more have proven to be computa-
tionally demanding, even if feasible on supercomputers in the future.
Cleve et al. (2018) evidenced the possibility of inducing steady-state
shape oscillations over hundreds or thousands of oscillation cycles.
Consequently, any theoretical development that can reduce the com-
putational complexity is desirable and this creates the opportunity for
a relatively simple computational analysis of a wide range of models.
Our objective is to describe a new model for non-spherical micro-
bubble dynamics in a compressible viscous flow.

Free surface flows at high Reynolds numbers are often approxi-
mated by potential flow theory. Miksis et al. (1982) included the nor-
mal viscous force at the surface of a rising bubble. Lundgren and
Mansour (1988) developed the boundary layer theory for a pulsating
drop. The method was later developed for bubble dynamics, by
Boulton-Stone and Blake (1993) for bursting bubbles near an interface,
and by Tsiglifis and Pelekasis (2005, 2007) for bubbles that deform
subject to an initial elongation, overpressure or acoustic disturbance,
where highly deformed shapes and the details of the final stages of jet
formation were captured with viscous dissipation. This rational theory
is only for axisymmetric cases and tedious to be implemented.

Alternatively, Joseph and Wang (2004) introduced an auxiliary
function, the viscous correction to the pressure due to potential flows,
to address the shear stress not vanishing at a gas–liquid interface. We
will derive a formula for the pressure correction in terms of the veloc-
ity and the shear stress of the potential flow at the interface based on
conservation of energy. This model can be readily developed for three-
dimensional cases.

The liquid flow associated with bubbles is irrotational in the bulk
volume of the liquid (Boulton-Stone and Blake, 1993). The compress-
ible effects associated with the acoustic radiation are modeled using
weakly compressible theory of Wang and Blake (2010, 2011). In the
theory, the flow far away from the bubble is shown to satisfy the linear
wave equation to second order in terms of the Mach number and it is
obtained analytically. The flow near the bubble is shown to satisfy
Laplace’s equation to second order too. Wang (2013, 2014) showed
the computational results based on the weakly compressible theory
agreed well with the experiments for underwater explosion bubbles
(Hung and Hwangfu, 2010) and laser generated bubbles near a rigid
boundary (Philipp and Lauterborn, 1998).

The remainder of the paper is organized as follows. The physical
and mathematical model is described in Sec. II based on the weakly
compressible theory, the viscous potential flow theory and the boundary
integral method (BIM). In Sec. III, the formula for the viscous correc-
tion pressure is derived using conservation of energy at the interface
between the liquid and gas. In Sec. IV, our numerical model is validated
by comparing with Shaw’s nonlinear asymptotic theory for oscillation
of a bubble in a compressible and viscous liquid, Tsiglifis and Pelekasis’s
modeling (2005, 2007) based on the viscous boundary layer and

boundary integral method, and the experiments (Versluis et al., 2010)
for shape oscillation of a bubble subject to ultrasound. In Sec. V, we per-
form a parametric analysis for microbubble dynamics in a compressible
viscous liquid in terms of the amplitude and frequency of acoustic
waves. The summary and conclusions are presented in Sec. VI.

II. PHYSICAL AND MATHEMATICAL MODEL
A. Physical model

Consider a gas bubble suspended in a compressible and slightly
viscous fluid of infinite extent, subject to an acoustic wave. The reference
length, density, and pressure are chosen as the equilibrium bubble
radius R0, the density of the undisturbed liquid q1, and Dp¼ p1 � pv,
respectively. Here, p1 is the hydrostatic pressure and pv the vapor pres-
sure. The reference velocity is thus obtained as U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dp=q1

p
, and the

Reynolds number Re for the liquid flow is Re ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffi
q1Dp

p
=lL. The

Reynolds number is often O(10) or larger, the flow is potential in
the bulk volume of the liquid except for a thin viscous boundary layer at
the bubble surface, which can thus be described approximately by the
viscous potential flow theory.

With the above considerations, we describe the flow in the bulk
volume of the liquid as inviscid and compressible. A Cartesian-
coordinate system is chosen, with the origin at the center of the initial
spherical bubble, and the z-axis is along the direction of the acoustic
wave, as shown in Fig. 1. The flow in the bulk volume of the liquid is
governed by the continuity equation,

@qL

@t
þr � qLuð Þ ¼ 0; (1)

and the Euler equation,

@u
@t
þ u � ru ¼ g� 1

qL
rpL; (2)

where t is the time, u the velocity of the flow, pL the liquid pressure,
and g the gravity.

The highest speed of the liquid flow induced by bubble dynamics
is usually associated with the velocity of the bubble jet, which is often
lower than 200m�s�1 at normal ambient pressure, as observed in
experiments (Philipp and Lauterborn, 1998; Lindau and Lauterborn,
2003; Brujan and Matsumoto, 2012; Yang et al., 2013; Zhang et al.,
2015). As the speed c of sound in water is about 1500m�s�1, the flow
induced by the bubble dynamics is assumed to be associated with a
low Mach number e,

e ¼ U
c
� 1: (3)

The wavelength k of incident waves or acoustic radiation is usu-
ally large compared to the bubble scale R0. The wavelength of ultra-
sound is k ¼ c/f, where f is the frequency of ultrasound, thus k is from
15mm–150lm for the typical range of ultrasounds of 0.1–10MHz.
The wavelength of ultrasound is usually much larger than the size of
microbubbles. The wavelength k of acoustic radiation is also much
larger than the bubble size, since

k ¼ OðcR0=UÞ ¼ O R0=eð Þ � R0: (4)

B. Weakly compressible theory

As the bulk volume of the liquid has two length scales, the wave-
length k and the bubble radius R0, it is divided into two asymptotic
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regions: the inner region near the bubble where (x, y, z) ¼ O(R0), and
the outer region far away from the bubble where (x, y, z) ¼ O(k), are
illustrated in Fig. 1.

Using the method of matched asymptotic expansions to the gov-
erning Eqs. (1) and (2), the outer solution was shown to satisfy the lin-
ear wave equation to second order in terms of the Mach number e,

@2u
@t2
¼ c2r2uþ O e2ð Þ; (5)

where u is the velocity potential, u ¼ ru. Strictly speaking the order
of the errors in (5) is Oðe2Þ and this holds for the subsequent
equations.

An analytical solution for the outer region was obtained as fol-
lows (Wang and Blake, 2010; Wang, 2013),

u ¼ b cos kz � xtð Þ �
_V t � r=cð Þ

4pr
þ O e2ð Þ; (6)

where V(t) is the transient bubble volume at time t, r¼ jrj, r¼ (x, y, z),
and b, k, and x are the amplitude, wave number, and angular frequency
of the acoustic wave, respectively. The first term of the solution (6) is
the incident acoustic wave and the second term is associated with the
acoustic radiation due to the volume oscillation of the bubble. The solu-
tion (6) satisfies the wave Eq. (5), the matching conditions with the
inner expansion, and the boundary condition of an incident acoustic
wave at infinity,

ujr!1 ¼ b cos kz � xtð Þ: (7)

The corresponding boundary condition at infinity in terms of the pres-
sure is

pjr!1 ¼ p1 þ pa sin kz � xtð Þ; (8)

where pa is the pressure amplitude of the wave.
The inner solution to the second order for Eqs. (1) and (2) satis-

fies Laplace’s equation and the kinematic boundary condition on the
bubble surface, S, as follows (Wang and Blake, 2010, 2011):

r2u ¼ O e2ð Þ (9a)

Dr
Dt
¼ ruþ O e2ð Þ on S: (9b)

To the second order, the inner flow is incompressible, which can
be interpreted as follows. The wavelength k, of the incident wave or
acoustic radiation, is much larger than the scale R0 of the inner region,
as such the variation of physical quantities associated with the acoustic
wave over the inner region is small. The time period for an acoustic
wave traveling across the inner region is of O(R0/c), which is much
smaller than the period of bubble oscillation of O(R0/U).

The far-field boundary condition of the inner solution is obtained
by matching with the outer solution as follows (Wang and Blake,
2010; Wang, 2016):

u! f z; tð Þ ¼ b cos xtð Þ þ bx
c
sin xtð Þz þ

€V tð Þ
4pc
þO e2ð Þ as r!1;

(9c)

where the first two terms are associated with the incident wave and the
last term is associated with the acoustic radiation due to volume oscil-
lation of the bubble.

The initial condition on the boundary is given as

unjt¼0 ¼ �Rt0 on r ¼ R0; (9d)

where n is the unit normal at the bubble surface pointing to the gas
side and Rt0 is the initial rate of change of the bubble radius.

C. Viscous potential flow model

Boulton-Stone and Blake (1993) noticed that a thin viscous
boundary layer exists at the bubble surface if the associated Reynolds
number Re is large, whose thickness is ofO R0=

ffiffiffiffiffi
Re
p� �

. We will approx-
imate the viscous effects using the viscous potential flow theory.

In the viscous potential flow theory, the normal stress balance at
the bubble surface S is given as follows:

pL þ pvc þ rr � n� sLn ¼ pG on S; (10)

where pvc is the viscous pressure correction to be discussed later, sLn the
normal viscous stress, and pG the pressure of the bubble contents. We

FIG. 1. Illustration of a bubble suspended in a viscous compressible liquid subject to an acoustic wave. The liquid flow domain consists of three asymptotic regions: the outer
region far away from the bubble with its length scale of the wavelength k, the inner region with its length scale of the equilibrium bubble radius R0, and a thin viscous boundary
layer with its thickness being R0=

ffiffiffiffiffi
Re
p

.
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assume here that the viscous stress of the bubble gas is negligible and
the pressure is uniform inside the bubble, since the density and viscos-
ity of gases are two to three orders of magnitude smaller than liquids.

The normal viscous stress sLn at the bubble surface due to the
potential flow is (e.g., Miksis et al., 1982)

sLn ¼ 2lL
@2u
@n2

on S: (11)

We assume that the expansion and compression of the bubble
gas is adiabatic and thus the partial pressure of the bubble gas follows
the adiabatic law. According to Dalton’s law, the internal pressure of
the bubble is

pG ¼ pv þ pg0
V0

V

� �j

; (12)

where V0 is the initial volume of the bubble, and pg0 is the initial pres-
sure of the non-condensable bubble gas. We do not consider the ther-
mal effects associated with this phenomenon (Szeri et al., 2003; Fuster
and Montel, 2015). The effects of viscoelasticity were included in
potential flow theory of microbubbles by Lind and Phillips (2010,
2012, 2013).

The tangential stress of the liquid flow at the bubble surface
should approximately vanish as a result of the relatively low viscosity
of the gas inside the bubble. However, the shear stress of a potential
liquid flow is non-zero at the bubble surface. As shown in Sec. III, the
viscous pressure correction pvc to the pressure due to potential flows
can be introduced to address this discrepancy based on conservation
of energy. It is given in terms of the normal velocity un, tangential
velocity us, and shear stress sLs due to the potential flow at the bubble
surface as follows:

pvc ¼ �
us � sLs
un

on S: (13)

Using the Bernoulli equation, the dynamic boundary condition
(10) at the bubble surface can be written as

qL
Du
Dt
¼ p1 � qL

@f
@t
� pG þ

1
2
qLjruj2 þ rrs � n

� qLgz � sLn þ pvc þ O e2ð Þ on S; (14)

where g is the acceleration of gravity.
For the axisymmetric case, pvc ¼ �ussLs =un. As the above equa-

tion is invalid for un ¼ 0, pvc is thus set to be zero as j un/Uj � 0.01 in
our calculations. Noticing sLs ¼ lLð@un=@sþ @us=@nÞ and the flow is
irrotational, i.e., @un=@s� @us=@n ¼ 0, the shear stress sLs is
(Boulton-Stone and Blake, 1993)

sLs ¼ 2lln � ru � s ¼ 2l
@un
@s
þ j1us

� �
; (15)

where j1 is the curvature of the intersection curve of the bubble sur-
face with the azimuthal plane, and s is the arc length parameter of the
curve. Denoting the intersection curve as: rc(s) and zc(s), we have

j1 ¼
€r c _zc � €zc _r c

_r2c þ _z2c
� �3=2 ; (16)

where the overdot denotes a derivative with respect to s.

Substituting (12)–(15) into (16) yields

qL
Du
Dt
¼p1�qL

@f
@t
�pv�pg0

V0

V

� �j

þ1
2
qLjruj2þrr�n�qLgz

�2lL
@2u
@n2
�2lL

@u=@s
@u=@n

@2u
@s@n

þj1
@u
@s

� �
þO e2ð ÞonS: (17)

Examining the initial and boundary value problem of (9), one
can see that the compressible effects and the viscous effects appear in
the dynamics boundary condition at the bubble surface (17). As the
basic equation is Laplace’s equation, this problem can be modeled
using the boundary integral method (BIM). The details on the numeri-
cal model using the BIM for this problem can be found in (Wang
et al., 1996a, 1996b; Curtiss et al., 2013). The computations have been
carried out for axisymmetric cases; however, the numerical model can
be developed for three-dimensional cases in a straightforward manner,
by updating the potential using (14) instead of (17). The effects of
buoyancy is usually negligible in for microbubbles applications, since
the associated buoyancy parameter d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qLgR0=Dp

p
is small d

¼ O(10�3).
A non-spherical bubble collapse often leads to the formation of a

high-speed liquid jet. The jet subsequently impacts the opposite bubble
surface and penetrates the bubble, and the liquid domain is then trans-
formed from a singly connected to a doubly connected domain. The
solution to a potential problem in a doubly connected domain is non-
unique. The doubly connected domain can be made singly connected
by, for example, using a branch cut by Best (1993) or a vortex sheet by
Zhang et al. (1993) and Zhang and Duncan (1994).

Wang et al. (1996b) developed a vortex ring model from these
earlier ideas to model the topological transition of a singly connected
bubble to a subsequent toroidal bubble. In the vortex ring model, a
vortex ring is put inside the toroidal bubble after jet impact. The circu-
lation of the vortex ring is equal to the jump of the potential u across
the contact point at the time of jet impact,

C ¼
þ
C

ru � dr ¼ uN � uS; (18)

where uN and uS are the potentials at the impact point. Here, we
assume that jet impact occurs at a single point. The potential u is then
decomposed as follows:

u ¼ uvr þ /; (19)

where uvr is the potential of the vortex ring, which can be obtained
from the Biot-Savart law (Wang et al., 1996b; Liu et al., 2016). With
the potential jump being accounted for by the vortex ring using (19),
the remnant potential / is continuous in the flow field and can be sim-
ulated using the BIMmodel.

III. VISCOUS PRESSURE CORRECTION

In the classical potential flow theory, the fluids are assumed to be
inviscid in order to guarantee that the flow is irrotational. However,
there are many situations where the viscosity of fluids is not small but
the vorticity is small and not important, which may be well approxi-
mated by a potential flow model. The typical cases studied using the
viscous potential flow theory are two-phase gas–liquid flows associated
with an interface.
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A key issue is that the shear stress due to the irrotational flow
does not vanish at the interface, which contradicts the physical bound-
ary condition. This results in the violation of the conservation of
energy, as to be shown later on. A viscous pressure correction to the
irrotational pressure was introduced to resolve this discrepancy, ini-
tially regarding the drag on a rising spherical bubble at a constant
velocity by Moore (1959, 1963). Kang and Leal (1988a, 1988b) showed
that the viscous pressure correction at the surface of a rising spherical
bubble can be expressed in terms of the spherical harmonic series. The
viscous potential flow theory has been applied for many cases, includ-
ing a rising spherical cap bubble (Davies and Taylor, 1950; Joseph,
2003), the decay and stability of free surface waves (Wang and Joseph,
2006; Wang et al., 2005), and the Kelvin–Hemholtz instability (Joseph,
2006; Padrino et al., 2011).

A. Conservation of energy at a free surface

Consider a two-phase Newtonian flow of liquid and gas. The
mechanical energy of a compressible Newtonian flow of the liquid side
follows:

q
D
Dt

1
2
juj2

� �
¼ qf � uþr � u � rsð Þ � e � rs; (20)

where q and u are the fluid density and velocity, respectively, f is the
body force per unit mass, e is the rate of the strain tensor, and rs is the
stress tensor,

rs ¼ � pþ 2
3
lr � u

� �
1þ 2le; (21)

where 1 is the unit tensor, p the pressure, and l the viscosity the flow.
Equation (20) can be obtained from the Navier–Stokes equations and
continuity equation for a compressible flow.

An arbitrary material control region X around an area SI on the
interface and slightly into the liquid side is prescribed, as shown in
Fig. 2. The boundary R of the region X consists of SI, SL, and a narrow
surface SJ joining SI and SL.

We apply the integral form of the energy Eq. (20) to the material
control region X,

d
dt

ð
X

1
2
qjuj2 dV ¼

ð
X

qf � udV þ
ð
R

u � TdS�
ð
X

e � rs dV ; (22)

where T is the stress T ¼ rs � n ¼ � pþ 2
3 lr � u

� �
nþ 2le � n.

We replace the volume integrals in (22) by an average value times
the volume of integration region as follows, based on the continuum
assumption:

d
dt

1
2
qLjuj2X

� �
¼ qLf � uXþ

ð
R

u � TdSþ pLr � uX� e � rsX: (23)

We limit the region toward the interface so that the volume X
and the narrow joining surface SJ vanish, and only the surfaces SI and
SL remain, SL! SI, nL! -n, where n and nL are the unit outward nor-
mal at the surfaces SI and SL, respectively. Providing the velocities and
their partial derivatives are continuous, (23) becomesð

SI

u � TL � u � TIð ÞdS ¼ 0; (24)

where TL is the stress at SL due to the liquid flow, and TI is the stress at
the interface due to the gas flow. Since the integration surface SI is arbi-
trary, the integrand must be zero,

u � TL � u � TI ¼ 0: (25)

We make the following approximations:

u � TL ¼ un �pL þ sLn
� �

þ us � sLs (26a)

u � TI ¼ un �pG þ sGn
� �

þ us � sGs � �unpG; (26b)

where pL, sLn, and sLs , and pG, sGn , and sGs are the pressure, normal vis-
cous stress, and shear stress of the liquid and gas at the interface,
respectively. As the viscosity of gases is much smaller than liquids, the
normal viscous stress and shear stresses sGn and sGs are negligible.

Substituting (26) into (25) yields

un �pL þ sLn
� �

� �pGð Þ
� �

þ us � sLs ¼ 0: (27)

This equation is satisfied at the free surface in the viscous modeling with
the balance of the normal stress and vanishing of the shear stress, but it is
not satisfied in the potential flow theory, where�pL þ sLn ¼ �pG holds
but us � sLs at the interface is usually non-zero. Accordingly, the energy is
not conserved at the interface in potential flow theory.

B. Viscous pressure correction

Now we introduce the viscous potential flow theory. It is assumed
that the flow is irrotational in the flow domain. It satisfies Eq. (27) at
the gas–liquid free surface to satisfy the conservation of energy.
Equation (27) can be rewritten as

un �pL þ
us � sLs
un
þ sLn

� �
� �pGð Þ

� �
¼ 0: (28)

Introducing a viscous correction pressure pvc as follows:

pvc ¼ �
us � sLs
un

: (29)

Equation (28) becomes

un �pL � pvc þ sLn
� �

� �pGð Þ
� �

¼ 0; (30)

or
FIG. 2. Arbitrary material control region control region X on the liquid side around
an area SI on the interface between liquid and gas.
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�pL � pvc þ sLn ¼ �pG: (31)

Adding a viscous correction pressure pvc of (29) in the balance of
normal stress (31) at the interface leads to the satisfaction of (28) as
well as (27) and (22), the energy conservation at the interface. The nor-
mal stress �pL þ sLn due to the liquid potential flow outside the vis-
cous boundary layer is corrected by adding pvc to include the viscous
effects of the boundary layer and to conserve the energy at the inter-
face. With the inclusion of surface tension, (31) becomes

�pL � pvc þ sLn � rr � n ¼ �pG: (32)

The integral form of (29) on the interface I can be written asð
I

unð�pvcÞ dS ¼
ð
I

us � sLs dS: (33)

This relation was introduced by Joseph and Wang (2004).
Relation (33) is a foundation for and widely used in the viscous poten-
tial flow theory (c.f. Joseph and Wang, 2004; Wang and Joseph, 2006;
Wang et al., 2005; Joseph, 2006; Padrino et al., 2011). It has led to
improvements to the potential flow theory for many problems, includ-
ing the rising of a spherical bubble/drop, the decay of free gravity
waves on water and the Kelvin–Helmholtz instability. Motivated by
these great successes, we have developed their hypothesis locally for
potential flow theory. The viscous pressure correction (29) can be used
for three-dimensional free surface flows, but it does not apply when
the viscous boundary layer separates into the liquid bulk.

A remarkable example of the viscous pressure correction is for a
spherical gas bubble of radius R rising in a viscous liquid at high
Reynolds number. Levich (1949) obtained the drag on the bubble at
12pRlU, where U is the rising velocity of the bubble, by calculating
the dissipation of the irrotational flow around the bubble. Moore
(1959) calculated the drag directly by integrating the pressure and vis-
cous normal stress of the potential flow and neglecting the viscous
shear stress, obtaining the value 8pRlU. This approach results in one
third of the relative error, because the energy of the flow is not con-
served at the free surface in potential flow theory. The total energy is
conserves as well, since the energy is conserved in the inner flow
domain via Bernoulli’s equation. Joseph and Wang (2004) obtained
the correct value for the drag, 12pRlU, using the potential flow theory
with the viscous pressure correction. The viscous pressure correction
guarantees the conservation of the energy at the free surface as well as
globally.

IV. VALIDATIONS

In this section, comprehensive validations will be carried out for
the viscous compressible potential flow theory, because it is new. It
will first be compared with the Keller–Miksis equation for the oscilla-
tion of spherical bubbles. It will be then compared with Shaw’s nonlin-
ear asymptotic theory (2017) for nonspherical bubbles in a
compressible and viscous liquid as well as Tsiglifis and Pelekasis’s
model (2005) based on the viscous boundary layer and boundary inte-
gral method. It will be further compared with experiments for the
dynamics of non-spherical bubbles. We also check the convergence of
the results in terms of the mesh size.

We first compare the results obtained from the viscous compress-
ible BIM (VCBIM) and the Keller–Miksis equation (KME). The case

considered is a bubble having an equilibrium radius of 26lm sus-
pended in water subject to an acoustic wave with the pressure ampli-
tude of 20 kPa and frequency of 130 kHz. Figure 3 compares the time
histories of the bubble radius obtained from the VCBIM and KME,
respectively. The two results have excellent agreement for the first nine
cycles of oscillation.

Next, the VCBIM is compared with other numerical results.
Shaw (2017) developed a nonlinear asymptotic model to study the
shape mode oscillation of parametrically forced bubbles including vis-
cous and compressible effects, which accounts for nonlinear shape
mode interactions to third order. Many cycles of oscillation were con-
sidered, showing the importance of the inclusion of viscous and com-
pressible effects. The case chosen for comparison considers a
microbubble with an equilibrium radius of 144lm subject to an
acoustic wave with a pressure amplitude of 13 kPa and a frequency of
10 kHz. The remaining parameters are the same as in Fig. 3. As is seen
in Fig. 4, the VCBIM obtains excellent agreement with the results of
the asymptotic model. Non-spherical oscillation is accurately predicted
at each time, despite the numerous cycles of oscillation leading up to
this time. The bubble displays mixed shape modes, with mode 3 being
predominant at t¼ 10.07 [Fig. 4(a)] and t¼ 10.17 [Fig. 4(c)] and
mode 6 predominant being at t¼ 10.11 [Fig. 4(b)] and t¼ 10.22
[Fig. 4(d)]. This demonstrates the accuracy and robustness of the
VCBIM to model bubble dynamics for dozens of cycles of oscillation
with important viscous and compressible effects. This also shows that
Shaw’s nonlinear asymptotic model is accurate for non-spherical oscil-
lations of bubbles at large amplitude.

Additionally, Tsiglifis and Pelekasis (2005) examined the weakly
viscous oscillation of elongated bubbles using the viscous boundary
layer theory coupled with the boundary integral method. They
revealed that small initial elongations would return to a spherical
shape for any Ohnesorge number, Oh ¼ l=ðqRrÞ1=2, while for larger
elongations there is a threshold value of Oh�1 above which the bubble
breaks up. The case chosen for comparison considers a microbubble
with an equilibrium radius of 5.8lm and an initial elongation parame-
ter of S¼ 0.6. The elongation is defined as S¼ a/Req0 with a and Req0

FIG. 3. Comparison of the results obtained from the VCBIM and KME for the radius
history R(t) for a bubble having an equilibrium radius of 26 lm subject to an acous-
tic wave with the amplitude 20 kPa and frequency 130 kHz for nine cycles. The
other parameters are j ¼ 1.4, r ¼ 0.073 N m�1, p1 ¼ 100 kPa, pv ¼ 3 kPa, and
qL ¼ 1000 kg m�3.
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denoting the length of the smaller semi-axis and the radius of a bubble
with the same initial volume, V0, as the elongated bubble. The inverse
Ohnesorge number is given by Oh�1 ¼ 1000, with the rest of the
parameters as in Fig. 3. Figure 5 shows the comparison between the
results of Tsiglifis and Pelekasis (2005) with those of the VCBIM
during jet formation. Very good agreement is achieved between the
bubble shapes, with good agreement between the jet profiles.

We next compare the numerical results of the VCBIM with
experiments. Versluis et al. (2010) carried out a series of experiments

for the shape oscillation of a microbubble driven by an ultrasonic
wave. They revealed shape oscillations for various mode numbers n
¼ 2–6 of microbubbles, with the ultrahigh-speed imaging. They found
that the mode number n is dependent on the bubble radius but is inde-
pendent of the pressure amplitude. The experimental case chosen for
the comparison is for amplitude of 120 kPa and frequency of 130 kHz.
Figure 6 shows the comparison of the bubble shapes using the experi-
mental images and the computational results, at successive maximum
and minimum bubble volumes. The wave propagates from the left to
the right side for this case as well as the subsequent cases.

Figure 6(a) shows the bubble shapes during the first 5 cycles of
oscillation. The bubble is in equilibrium before the arrival of the acous-
tic wave (t¼ 0 ls). It starts to collapse as the acoustic wave defined by
(8) is initially positive at the bubble location. During the first 5 cycles,
the bubble oscillates in a spherical shape with the amplitude increasing
with each cycle. Figure 6(b) shows the bubble shape from the sixth to
ninth cycles of oscillations. At the sixth maximum volume (t¼ 48.25
ls), the bubble is approximately spherical, with its right side slightly
over protruding. However, the bubble quickly becomes non-spherical
during the following collapse, when its cross section takes a square
shape at the sixth minimum volume, with rounded corners and a
weak jet forming on the right side. The jet further develops as the bub-
ble expands to the seventh maximum volume. The surface mode n¼ 4
becomes obvious at and after the seventh minimum volume. The right
jet remains as the bubble oscillates during the eighth cycle. At the end
of the eighth minimum volume, a left jet starts to develop and becomes
obvious at the ninth maximum volume, when two opposing jets occur
along the axis of symmetry.

The computational results agree well with the experimental
images for all nine cycles of oscillation, in terms of the bubble shapes
and the time sequence. All the above features were reproduced by the
computation. However, the jet is not visible in the experimental
images due to the opaqueness of the bubble.

Figure 7 illustrates the convergence of the numerical results for

the time history of the equivalent bubble raduis Req� ¼
ffiffiffiffiffiffiffiffiffiffi
3
4pV�

3

q
, in

terms of the element number m ¼ 51, 61 and 71 used for meshing the
intersection curve of the bubble surface in the azimuthal plane, for the

FIG. 4. Comparison of the results obtained from the VCBIM (red dotted line) with
those of Shaw (2017) where a bubble with equilibrium radius 144lm is subject to
an acoustic wave with a pressure amplitude of 13 kPa and a frequency of 10 kPa.
The selected times are at (a) t¼ 10.07; (b) t¼ 10.11; (c) t¼ 10.17; and (d)
t¼ 10.22 ms. The other parameters are j ¼ 1.4, r ¼ 0.073 N m�1, p1
¼ 100 kPa, pv ¼ 3 kPa, and qL ¼ 1000 kg m�3.

FIG. 5. Comparison of the results of (a) Tsiglifis and
Pelekasis (2005) with (b) the VCBIM where a bubble with
equilibrium radius 5.8 lm is perturbed by an initial elongation
parameter of S¼ 0.6. The inverse Ohnesorge number is
given by Oh�1 ¼ 1000, with the remainder of the parameters
as in Fig. 3. The selected times are at t¼ 1.3215,
t¼ 1.3312, and t¼ 1.3453.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 012105 (2022); doi: 10.1063/5.0077091 34, 012105-7

VC Author(s) 2022

https://scitation.org/journal/phf


FIG. 6. Comparison between the computations using the VCBIM and the experimental images (Versluis et al., 2010) for the shapes of a microbubble having an equilibrium
radius of 36 lm subject to an acoustic wave with the pressure amplitude pa ¼ 120 kPa and frequency f¼ 130 kHz: (a) spherical oscillation for the first five cycles of oscillation
and (b) the development of a surface mode n ¼ 4 from the sixth–ninth cycles. The computational results are added separately for the last collapse phase. The dimensionless
times of the experiment and computation are shown on the upper right and lower right corners in each frame, respectively. The frame width is 56 lm. The other parameters
are j ¼ 1.4, r ¼ 0.073 N m�1, p1 ¼ 100 kPa, pv ¼ 3 kPa, and qL ¼ 1000 kg m�3.
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case shown in Fig. 6. The numerical results for m ¼ 61 and 71 have
excellent agreement for the first 9 cycles of oscillation. The remaining
calculations in this paper were undertaken form¼ 61.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we perform a parametric analysis of the oscillation
of a microbubble suspended in an infinite liquid subject to acoustic
waves of various amplitudes and frequencies. Particular attention is
paid to the bubble oscillations when the driving frequency of acoustic
waves is set to be the natural frequencies of either spherical oscillation
or shape oscillation.

A. Effects of the pressure amplitude of ultrasound pa

To study the effects of the pressure amplitude of acoustic waves,
we consider a bubble with the equilibrium radius R0 ¼ 30lm, subject
to an acoustic wave having the frequency f ¼ 130 kHz and the various
pressure amplitudes pa ¼ 40, 47, and 50 kPa. The remaining parame-
ters are the same as in Fig. 6. For the lower pressure amplitude pa
¼ 40 kPa the bubble remains approximately spherical as far as the
23th cycle of oscillation, with the spherical bubble shapes at the 23th
minimum and 23th maximum volumes being shown in Fig. 8(a).

For the intermediate pressure amplitude pa ¼ 47 kPa, the bubble
remains approximately spherical for the first 13 cycles of oscillation.
As shown in Fig. 8(b), the bubble is still approximately spherical at the
14th minimum and 14th maximum volumes but its left side, facing
the wave propagation direction, is slightly flattened. The right side is,
in turn, flattened at the 15th minimum and maximum volumes, while
its left side returns to a spherical shape. A jet starts forming at the min-
imum volume. The turnover of jetting at the minimum volume and
the flattened left and right sides repeats and enhances during subse-
quent cycles. Surface mode n¼ 3 becomes obvious gradually from
14th oscillation to 19th oscillation. During the 18th and 19th cycles of
oscillation, shape mode 3 has become well developed. The cross sec-
tion of the bubble roughly takes the form of an equilateral triangle
with one of its sides alternating between either facing or backing onto
the wave direction during successive cycles of oscillation. The jet also
alternates between the left and right sides during successive cycles, fac-
ing the acoustic wave and along the direction of the acoustic wave.

For the larger pressure amplitude pa ¼ 50 kPa the bubble is
approximately spherical for the first 8 cycles of oscillation. Its left side
is flattened and the right side elongated at the ninth minimum and
ninth maximum volumes. The jet forms at the right side at the tenth
minimum volume and at the left side at the 11th minimum volume.
Subsequently, the jet alternates between the left and right sides. The
surface mode n ¼ 3 of the bubble becomes obvious in cycle 12, and
continues developing. During cycles 13 and 14, jets occur both at the
minimum and maximum values.

The bubble initially oscillates in a purely spherical mode and sur-
face modes can be generated after several acoustic cycles if the acoustic
pressure is above a critical threshold. When the pressure amplitude is
slightly higher than the threshold, the shape mode develops gradually
for many cycles of oscillation. The parametric instability for a bubble
due to an acoustic wave is a cumulative effect, requiring many oscilla-
tion cycles to build up. As the pressure amplitude increases, the develop-
ment of shape modes starts earlier and grows faster, and the subsequent
shape mode has larger amplitude. This is because the Bjerknes force FB
acting on the bubble due to the pressure wave pac(r, t) is proportional to
the pressure amplitude. The Bjerknes force FB is given by

FB tð Þ ¼ �V tð Þrp rc; tð Þ ¼ �V tð Þkpa cos kzc � xtð Þi; (34)

where rc is the geometrical center of the bubble and zc is its z-coordi-
nate. Here, we used the pressure wave given in (8).

B. Effects of the frequency of ultrasound

To consider the effects of the driving frequency of ultrasound, we
repeat the case shown in Fig. 8(b) for the acoustic pressure amplitude
pa ¼ 47 kPa and the equilibrium radius R0¼ 30lm with different fre-
quencies, the remaining parameters being kept the same. The natural
frequency for spherical oscillation for a bubble is given as (Brennen,
1995)

f0 ¼
1

2pqLR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qL 3j p1 � pvð Þ þ

2 3j� 1ð Þr
R0

� �
� 4l2

L

R2
0

s
: (35)

Using R0 ¼ 30lm, j ¼ 1.4, r ¼ 0.073 N�m�1, p1 ¼ 100 kPa, pv
¼ 3 kPa, and qL ¼ 1000 kg�m�3, we have f0 ¼ 110 kHz. We want to
compare the three cases for f¼ 85 kHz < f0, f ¼110 kHz ¼ f0, and
f¼ 130 kHz > f0. The last case for the driving frequency being larger
than the natural frequency was considered in Fig. 8(b).

For f ¼ 85 kHz, the driving frequency is smaller than the natural
frequency f0 of the bubble. The bubble remains a spherical shape till
the 24th cycle, as shown in Fig. 9(a).

For f ¼ 110 kHz, the wave frequency is equal to the natural
frequency f0 of the bubble, the bubble undergoes resonant oscillation.
As shown in Fig. 9(b), the bubble reaches a much larger maximum
volume during the first and second cycles as compared to f ¼ 85 or
130 kHz [shown in Figs. 9(a) and 8(b), respectively]. Consequently, a
much larger Bjerknes force acts on the bubble, since it is proportional
to the bubble volume as shown in (34). During the third cycle of oscil-
lation, a reentry liquid jet forms at the bubble side facing the acoustic
wave at the minimum volume and it retakes a spherical shape at the
subsequent maximum volume. This repeats during the fourth cycle of
oscillation, when the jet develops further. Subsequently, the non-
spherical oscillation develops quickly. The bubble shape at the fifth

FIG. 7. Convergence test in terms of the number m of mesh elements for the time
histories of the equivalent bubble radius Req using the CVBIM for the case shown
in Fig. 6.
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FIG. 8. Dynamics of a bubble with an
equilibrium radius R0 ¼ 30 lm driven by
an acoustic wave having the frequency f
¼ 130 kHz and the various pressure
amplitudes: (a) pa ¼ 40, (b) pa ¼ 47, and
(c) pa ¼ 50 kPa, respectively. The dimen-
sionless time is shown on the upper right
corner in each frame. The remaining
parameters are the same as in Fig. 6.
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maximum volume (t� ¼ 15.73) is elongated along the wave direction.
Two opposing jets develop and impact each other at the sixth mini-
mum volume. The bubble then rejoins before reaching the sixth maxi-
mum volume. In subsequent time, the singly connected bubble
continues to oscillate.

The bubble remains spherical as f ¼ 85 kHz < f0 [Fig. 9(a)],
becomes non-spherical after 15 cycles of oscillation for f ¼ 130 kHz
> f0 [Fig. 8(b)], but undergoes obvious non-spherical oscillation even
from the third cycle if the driving frequency is equal to the natural fre-
quency of the bubble for f¼ 110 kHz¼ f0, when the bubble undergoes
resonant oscillation.

C. Driving frequency equal to resonance frequency
of shape mode

The natural frequency fn of shape modes n of bubbles is given as
(Lamb, 1932)

fn ¼
1

2pR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þ nþ 1ð Þ nþ 2ð Þ r

qR0

r
; (36)

where n >¼2. For R0 ¼ 39lm, r ¼ 0.073 N m�1 and j ¼ 1.4, the
natural frequencies for shape modes of the bubble for n¼ 3, 4, and 6
are f3 ¼ 70.6 kHz, f4 ¼ 145 kHz, and f6 ¼ 193 kHz, respectively. We
are now considering the bubble suspended in a liquid subject to an
acoustic wave at the natural frequencies of shape modes, when the
shape instability of the bubble is prone to appear.

We first consider the case for the driving frequency being set at
the natural frequency of mode 3: f ¼ f3 ¼ 70.6 kHz and the amplitude
pa ¼ 40 kPa. As shown in Fig. 10, the bubble oscillates for nine cycles
in a spherical volumetric mode. The bubble starts developing surface
mode 3 during the tenth cycle of oscillation, the right part of the bub-
ble is flattened at the tenth minimum volume and the left part
becomes flattened at the tenth maximum volume (t� ¼ 36.97). This is

FIG. 9. Dynamics of a bubble with an
equilibrium radius R0 ¼ 30 lm driven by
an acoustic wave with the pressure ampli-
tude pa ¼ 47 kPa and frequencies: (a) f
¼ 85 and (b) f ¼ 110 kHz, respectively.
The dimensionless time is shown on the
upper right corner in each frame. The
remaining parameters are the same as in
Fig. 6.
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reversed during the subsequent period, when the left side becomes flat-
tened at the 11th minimum volume, where a jet forms, and the right
part becomes flattened at the 11th maximum volume. Subsequently,
the above features repeat and mode 3 develops and becomes obvious
in the 19th cycle of oscillation.

Figure 11 shows the development of shape mode 4 of the bubble
as the driving frequency is equal to the corresponding natural fre-
quency f4 ¼ 145 kHz and the pressure amplitude pa ¼ 75 kPa. The
bubble becomes non-spherical at the third minimum volume, when
both left and right sides become flattened with weak jets, but is
approximately spherical at the third maximum volume. During the
fourth cycle of oscillation, the bubble is elongated along the wave
direction at both minimum and maximum volumes. At the fifth mini-
mum and maximum volumes, shape mode 4 becomes obvious, when
the bubble cross section takes a square shape with rounded corners
and its sides parallel or perpendicular to the wave direction. At the
sixth minimum volume, the bubble has a square cross section, with its
diagonals now being parallel or perpendicular to the wave direction. A
larger expansion of the bubble takes place in this cycle and the bubble
regains a spherical shape at the sixth maximum volume. From seventh
to eighth cycle of oscillation, the surface mode grows in magnitude.
During the ninth cycle, two opposing jets develop along the wave
direction and impact each other at the ninth minimum volume.
Subsequently, the bubble becomes toroidal but it still displays the char-
acter of mode 4.

Figure 12 shows that the bubble displays shape mode 6 as the
driving frequency is equal to the corresponding natural frequency f
¼ f6 ¼ 194 kHz and the pressure amplitude pa ¼ 235 kPa. The surface
mode n¼ 6 develops at the 13th minimum volume and it has a square

shape at the 13th maximum volume. For the next four cycles, the bub-
ble displays the surface mode n ¼ 4. During 19th and 20th oscillation,
the bubble displays surface mode n ¼ 6. As predicted by Doinikov
(2004), even modes can interact with each other. Energy can be trans-
ferred back and forth between the two modes.

D. Viscous and compressible effects

To analyze the viscous and compressible effects, we compare the
computational results with and without these effects. The importance
of viscous effects is demonstrated in Fig. 13, where the bubble shapes
of the viscous and inviscid models are compared during bubble col-
lapse. This is the case considered in Fig. 5 for the oscillation of an elon-
gated bubble. Including viscous effects leads to the formation of a
wider jet, at both the opening of the jet and the tip. This is as expected
when considering viscous effects and agrees with the results of Tsiglifis
and Pelekasis (2005).

Four variations of the case described in Fig. 6 are considered,
including (a) both viscous and compressible effects, (b) only viscous
effects, (c) only compressible effects, and (d) neither viscous nor com-
pressible effects. The corresponding bubble shapes are shown in Fig.
14 at the ninth minimum bubble volume, where the jet is clearly weak-
ened due to the viscous effects. However, there are no significant dissi-
pative compressible effects for this case, since there is no significant
collapse here. This is consistent with the observation of Calvisi et al.
(2007).

The ninth minimum occurs at different times in Fig. 14 depend-
ing on whether or not viscous effects are included. Compressible
effects do not modify the time for the ninth minimum. The frequency

FIG. 10. Development of shape mode 3 of
a bubble with an equilibrium radius R0
¼ 39lm subject to an acoustic wave with
the pressure amplitude pa ¼ 40 kPa, and
the driving frequency being equal to the
natural frequency of mode 3 of the bubble,
f ¼ f3 ¼ 70.6 kHz. The dimensionless
time is shown on the upper right corner in
each frame. The remaining parameters
are the same as in Fig. 6.
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and the phase shift for the bubble oscillations are modified by viscosity
(Smith and Wang, 2017) but not by compressibility (Smith andWang,
2018).

VI. SUMMARY AND CONCLUSIONS

In potential flow theory for free surface flows with large Reynolds
number, the key issue is that the shear stress should approximately
vanish at a gas–liquid interface, but it does not. This results in the vio-
lation of the conservation of energy. We have derived a formula for
the viscous pressure correction in terms of the velocity and the shear
stress of the potential flow at a free surface, to enforce the conservation
of energy. The formula approximates directly the local viscous effects
at an interface and is applicable for three-dimensional free surface
flows. We have developed an accurate, grid free in the flow domain
and robust numerical model for a bubble oscillation over many cycles
involving topological transformation, with the viscous pressure correc-
tion as well as the weakly compressible theory and vortex ring model.

The numerical results are shown to be in good agreement with
Shaw’s nonlinear asymptotic theory (2017) for bubbles in viscous and

compressible liquids, the Tsiglifis and Pelekasis model (2005) based on
the viscous boundary layer theory and boundary integral method for
the oscillation of elongated bubbles, as well as experiments for micro-
bubbles undergoing shape oscillation when subject to ultrasound.

The computations have been carried out for axisymmetric cases
however the numerical model can be developed for three dimensional
straightforwardly. We observed the following features for microbubble
dynamics subject to a pressure wave.

A bubble subject to an acoustic wave first oscillates in a spherical
shape due to surface tension. Shape modes develop gradually if the
wave amplitude is beyond a critical threshold, this being a supercritical
bifurcation. The parametric instability for a bubble due to an acoustic
wave is a cumulative effect, requiring many oscillation cycles to build
up. As the wave amplitude increases, the shape modes start earlier and
develop faster, because the Bjerknes force is proportional to the wave
amplitude.

If the wave frequency is near to the natural frequency of spherical
oscillation, the bubble undergoes resonant spherical oscillation at large
amplitude and shape mode 3 develops quickly. The large Bjerknes

FIG. 11. Development of shape mode 4 of
a bubble with an equilibrium radius R0
¼ 39lm subject to an acoustic wave with
the pressure amplitude pa ¼ 75 kPa, and
the driving frequency being equal to the
natural frequency of mode 4 of the bubble,
f ¼ f4 ¼ 145 kHz. The dimensionless time
is shown on the upper right corner in each
frame. The remaining parameters are the
same as in Fig. 6.
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force along the direction of acoustic wave propagation, which is pro-
portional to the bubble volume, is responsible for the growth of shape
mode 3.

If the driving frequency is equal to the natural frequencies of dif-
ferent shape modes of a bubble, the bubble is excited into the corre-
sponding shape modes. The orientation of the shape mode and the
jetting are determined by the direction of propagation of the driving
acoustic wave. For shape mode 3, the bubble takes a triangular shape
with the sides facing and backing onto the wave direction being flat-
tened in turn during each successive cycle of oscillation, where reentry
liquid jets often form parallel to the wave direction. For shape mode 4,
the bubble takes a square shape with its sides and diagonals being par-
allel to the wave direction during each successive cycle of oscillation. If
the driving frequency is equal to the natural frequency of shape mode
6, the bubble alternates between shape modes 4 and 6. This is associ-
ated with the exchange of energy between even shape modes, it being
due to the nonlinearities in the kinematic and normal stress conditions
at the free surface.

The standard inviscid model and BIM capture the essential shape
of the bubble, but prediction of the amplitude of the bubble oscillation
requires the conservation of energy including viscosity. Viscous effects

FIG. 12. Development of shape mode 6 of
a bubble with an equilibrium radius R0
¼ 39 lm subject to an acoustic wave,
with the driving frequency equal to the nat-
ural frequency of mode 6 of the bubble, f
¼ f6 ¼ 194 kHz and the pressure ampli-
tude pa ¼ 235 kPa. The dimensionless
time is shown on the upper right corner in
each frame. The remaining parameters
are the same as in Fig. 6.

FIG. 13. Comparison between the VCBIM (solid line) and Tsiglifis and Pelekasis
(2005) (dotted line) during bubble collapse at t¼ 1.3453. The parameters are the
same as in Fig. 5, except Oh�1 is infinite in Tsiglifis and Pelekasis (2005).
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result in a reduction of the amplitude and a modification of the phase
shift for strongly nonlinear non-spherical bubble oscillations in com-
parison with the inviscid fluid flow. The reduction in the amplitude
also results in changes to the oscillation frequency which is dependent
on amplitude in the finite-amplitude case. Furthermore, during the
collapse, viscosity dampens the jet formation, which leads to flatter
bubble jets.
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