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The common Ser326Cys polymorphism in the base excision repair protein 8-oxoguanine glycosylase 1 is
associated with a reduced capacity to repair oxidative DNA damage particularly under conditions of intra-
cellular oxidative stress and there is evidence that Cys326-OGG1 homozygous individuals have increased
susceptibility to specific cancer types. Indirect biochemical studies have shown that reduced repair capac-
ity is related to OGG1 redox modification and also possibly OGG1 dimer formation. In the current study we
have used bimolecular fluorescence complementation to study for the first time a component of the base
excision repair pathway and applied it to visualise accumulation of Cys326-OGG1 protein complexes in
the native cellular environment. Fluorescence was observed both within and around the cell nucleus,
was shown to be specific to cells expressing Cys326-OGG1 and only occurred in cells under conditions
of cellular oxidative stress following depletion of intracellular glutathione levels by treatment with buthi-
onine sulphoximine. Furthermore, OGG1 complex formation was inhibited by incubation of cells with the
thiol reducing agents b-mercaptoethanol and dithiothreitol and the antioxidant dimethylsulfoxide indi-
cating a causative role for oxidative stress in the formation of OGG1 cellular complexes.

In conclusion, this study has provided for the first time evidence of redox sensitive Cys326-OGG1
protein accumulation in cells under conditions of intracellular oxidative stress that may be related to
the previously reported reduced repair capacity of Cys326-OGG1 specifically under conditions of oxidative
stress.
� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Reactive oxygen species (ROS) are ubiquitous in the intracellular
environment and are generated by numerous endogenous
processes including, for example the mitochondrial electron trans-
port chain, reviewed by Murphy [1]. In addition, exposure to both
physical (e.g. ionising radiation) [2] and chemical agents (e.g. toxic
metals) [3] can further increase ROS formation inside cells. DNA is
susceptible to a range of oxidative modifications including oxida-
tion of guanine to 7,8-dihydro-8-guanine (8-oxo G), which, if not
repaired has the capacity to mis-pair during DNA replication result-
ing in the formation of GC to TA transversion mutations [4,5] and
oxidative modifications to DNA are considered to contribute to
the aetiology of a range of human pathological conditions including
cancer [6–8]. The major pathway for the repair of 8-oxo G in
genomic DNA is base excision repair (BER), which is initiated by
the DNA glycosylase 8-oxoguanine glycosylase 1 (OGG1). The
human OGG1 (hOGG1) gene is located on chromosome 3p26.2 [9],
a region subject to deletion and loss of heterozygosity in human
cancers. Furthermore, OGG1 knockout mice have been shown to
accumulate elevated levels of 8-oxo G as they age and are more
susceptible to a range of chemical stressors [10–14]. hOGG1 is
polymorphic in the human population with a relatively common
single nucleotide polymorphism – allele frequency of 0.22–0.27 in
Caucasian populations – occurring at position 1245 in exon 7
resulting in a serine to cysteine amino acid substitution at position
326 (Ser326Cys) [15–17]. There is also evidence that post-transla-
tional modification to hOGG1 including: nitrosylation [18], phos-
phorylation [19–22], acetylation [23], ubiquitination [24] and
redox modifications [25,26] modulate both the cellular localisation
of hOGG1 and its catalytic activity and mechanistic studies focused
on the Ser326Cys polymorphism indicate that the Cys326 variant is
repair deficient, that this deficiency is enhanced under conditions of
cellular oxidative stress [27] and that reduced repair activity may
be related to oxidative modification of the Cys326 amino acid
which resides in a positively charged sequence of amino acids (AD-
LRQ[ser326cys]RHAQ) rendering the thiol group labile to oxidation
[28]. As part of these data, work by Hill and Evans [29] has
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demonstrated that purified Cys326 hOGG1 exists predominantly as
a homo-dimer dependent on the Cys326 amino acid. Despite this,
there is little if any direct evidence of OGG1 complex formation in
cells and specifically how this is related to OGG1-genototype and
to the cellular redox environment. Here we report the novel appli-
cation of the imaging technique bimolecular fluorescence comple-
mentation (BiFC) to study OGG1 complex formation for the first
time in the native cellular environment and show that this only
occurs with the Cys326 variant of the protein and is specific to
conditions of cellular oxidative stress.
2. Materials and methods

2.1. Preparation of BiFC vectors

Plasmids (pBluescript II KS-) containing either the N- or C-ter-
minus of yellow fluorescent protein (YFP-N and YFP-C) were a gen-
erous gift from Dr. Saverio Brogna (University of Birmingham, B15
2TT). Full length Ser326- and Cys326-hOGG1 cDNA was amplified
from hOGG1 containing pcDNA3� plasmids [30] by PCR (Forward
primer: 50-GAGAGGATCCATGCCTGCCCGCGCGCTTCTG-30 Reverse
primer: 50-GGCAGGATCCTTACTAGCCTTCCGGCCCTTTG-30). Follow-
ing overnight digestion with BamHI hOGG1 cDNA fragments were
ligated into the pBluescript II vector in frame with YFP-N or YFP-C.
Next hOGG1-YFP cDNA constructs were sub-cloned into the
pcDNA3.1/Hygro� (+) mammalian expression vector (Invitrogen,
USA) to generate: YFP-N-Ser326-hOGG1, YFP-C-Ser326-hOGG1,
YFP-N-Cys326-hOGG1 and YFP-C-Cys326-hOGG1 constructs. Vec-
tors containing only the YFP fragments were prepared in the same
manner. All vectors were confirmed by sequencing and plasmids
(A)

(B)

Fig. 1. (A) Induction of oxidative stress and (B) depletion of reduced glutathione (GSH) in
mean of four independent experiments (±SD, n = 4) carried out in duplicate, ⁄⁄⁄ and ⁄⁄ s
were propagated using standard protocols in super competent
JM109 Escherichia coli (Promega, UK) with antibiotic selection
(ampicillin 100 lg/ml). Plasmids were recovered from bacteria
using a Qiagen plasmid mini-prep kit according to manufacturer’s
instructions.
2.2. Cell culture

A549 lung carcinoma cells (HPA catalogue number 86012804)
were cultured at 37 �C in T75 flasks in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% v/v foetal calf serum,
glutamine (2 mM), penicillin (100 lg/ml) and streptomycin
(100 lg/ml). Cells were grown to approximately 80% confluence
and passaged using trypsin–EDTA either into new T75 flasks or well
culture plates for experimentation as appropriate.
2.3. Assessment of oxidative stress and GSH levels

Cells were cultured in 6-well plates to confluence before
treatment with buthionine sulphoximine (BSO, 1000 lM) for
24 h. Following treatment dichlorodihydrofluoroscein-diacetate
(H2DCF-DA, final concentration 10 lM) was added and cells incu-
bated at 37 �C in the dark for 60 min. Cells were washed with
PBS (2 � 2 ml), trypsin (1 ml) added and cells incubated for
10 min at 37 �C. Next PBS (1 ml) was added and cells transferred
to centrifuge tube (15 ml). Cells were pelleted by centrifugation
at 1500g (10 min), the supernatant removed and the cell pellet
re-suspended in PBS (2 ml) and transferred to flow cytometry
tubes for flow cytometry analysis (FACScalibur, BD Biosciences,
USA). For each treatment the FITC fluorescence (517–527 nm) of
A549 cells following treatment with BSO (1000 lM, 24 h). The results represent the
ignificantly different from controls (Student t-test), P < 0.001 and 0,01 respectively.



Fig. 2. (A) Principle of the BiFC assay: Cultured A549 cells were co-transfected with YC- and YN-YFP hOGG1 constructs. In the event of hOGG1 dimer formation the YC and YN
fragments of YFP come into close physical proximity resulting in YFP fluorescence, which can be detected by confocal microscopy. (B) BiFC fluorescence is only observed in
cells transfected with Cys326 N/C and only under conditions of oxidative cellular oxidative stress. (A) and (B) control vectors, (C) and (D) Ser326 N and C, (D) and (E) Cys326 N
and C. (A), (C) and (E) untreated, (B), (D) and (E) treated with BSO (1000 lM, 24 h). Scale bar is 10 lm. In all images, nuclear DNA is counterstained with Hoechst 33258.
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10,000 cells were quantified with unlabelled cells used as a blank
to control for background fluorescence. Weasel software (Walter
and Eliza Hall Institute of Medical Research, Australia) was used
for the analysis of results and to calculate the mean fluorescence
of each population of cells. Total reduced GSH was measured in
cells using the method of Hissin and Hilf [31], as described previ-
ously [32].

2.4. Transfection of cells with GFP-OGG1

A549 cells were cultured on sterile round 13 mm glass cover-
slips (PAA Laboratories Ltd.) until approximately 65% confluent be-
fore being transfected with OGG-GFP constructs [33] using
Turbofect (Thermo-Fisher Scientific Inc.) according to the manufac-
tures instructions. 48 h later cells were fixed and analysed by
confocal microscopy and flow cytometry to confirm location of
OGG1-GFP and transfection efficiency respectively.
2.5. Detection of BiFC fluorescence

Cells were cultured on sterile round 13 mm glass coverslips as
above. At approximately 65% confluence cells were transfected
with pairs of BiFC constructs (4 lg each) described above using
Turbofect according to the manufacturers instructions (Thermo-
Fisher Scientific Inc.), 24 h after transfection cells were treated
with BSO (1000 lM, 24 h). In some experiments the disulphide
reducing agents b-mercaptoethanol (1 mM) or dithiothreitol
(1 mM) were added for the final four hours of incubation. In other
experiments cells were co-incubated with BSO (1000 lM) and the
antioxidant DMSO (1% v/v). Following treatment the media was re-
moved, cells washed with PBS (2 ml) and fixed at room tempera-
ture (15 min) with neutral buffered formalin (10%, pH 7.4, 2 ml).
Following further washing with PBS (2 � 1 ml) cells were counter-
staining with 1 ml of PBS containing Hoechst 33258(0.6 lM, Invit-
rogen, UK) for 5 min, washed again with PBS (2 � 1 ml) before been



Fig. 3. (A) Higher magnification representative images of BiFC fluorescence in Cys326 N/C transfected cells following treatment with BSO (1000 lM, 24 h). Scale bar is 10 lm,
nuclear DNA is counterstained with Hoechst 33258. (B) Three-dimensional distribution of yellow BiFC fluorescence in the nucleus of a cell transfected with Cys326-OGG1
vectors following treatment with BSO (1000 lM, 24 h). Nuclei are counterstained with Hoechst 33258.
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mounted onto a glass microscope slide with Hydromount Vecta
Mountant (approximately 50 ll, National Diagnostics, UK). Excess
mountant was carefully removed by dabbing with a paper towel
and slides were stored at 4 �C in the dark for a maximum period
of 48 h prior to analysis by confocal microscopy. Image acquisition
was performed using a Leica TCS SP2 confocal microscope (Leica
Microsystems) using an oil immersion objective (63x). Fluoro-
phores were excited using a 488 nm laser for YFP and 405 nm laser
for Hoechst 33258. Images were analysed using Leicalite software
and post-processing was carried out using Adobe Photoshop CS5
extended.

3. Results

3.1. Confirmation of oxidative stress

As expected and consistent with previous studies, treatment of
A549 cells with BSO (1000 lM) for 24 h resulted in a statistically
significant (P < 0.01) induction of reactive oxygen species
(Fig. 1A) as assessed by the oxidation of DCF as well as depletion
of glutathione (Fig. 1B) in the absence of cytotoxicity as assessed
by the MTT assay (data not shown). To confirm nuclear localisation
of OGG protein in this cell line, cells were transfected with GFP-
tagged proteins and imaged by confocal microscopy. OGG-GFP
was found to be nuclear located (Fig. S1) and consistent with pre-
vious studies in MEF cells [34], the nuclear sub-localisation of
OGG1 was not influenced by OGG1 genotype and was not affected
by treatment with BSO (1000 lM) for 24 h.
3.2. Oxidative stress induces BiFC fluorescence only in cells expressing
Cys326-OGG1

BiFC is a powerful technique for the visualisation of direct pro-
tein–protein interactions (Fig. 2A). To investigate possible OGG1
protein complex formation, A459 cells were transfected with either
Ser326-OGG1 half YFP vectors, Cys326 half YFP vectors or YFP only
half vectors as a control prior to treatment with 1000 lM BSO
(24 h) to induce oxidative stress and deplete intracellular GSH be-
fore BiFC fluorescence was assessed by confocal microscopy. Little
to no BiFC fluorescence was observed in YFP control or Ser326-
OGG1 transfected cells either before or after treatment with BSO
(1000 lM, Fig. 2B panels A, B and C, D). In contrast, although there
was no evidence of BiFC fluorescence in cells transfected with
Cys326-OGG1 in the absence of treatment with BSO (Fig. 2B panel
E) there was clear BiFC fluorescence following treatment with BSO
(1000 lM, 24 h, Fig. 2B panel F). BiFC fluorescence appeared as dis-
crete foci that were mainly located to the nucleus as mapped by
counterstaining with the nuclear stain Hoescht 33258. YFP fluores-
cence was also apparent in peri-nuclear regions; this is shown at
higher magnification in Fig. 3A. A similar pattern of fluorescence
was observed when cells were treated with the pro-oxidant hydro-
gen peroxide (data not shown). The presence of BiFC fluorescence
inside of the nucleus was confirmed by a z-scan that clearly shows
yellow BiFC fluorescence staining in the same plane as the Hoechst
33258 counterstained nucleus (Fig. 3B). Co-transfection experi-
ments with YFP-N-Cys326-hOGG1 and YFP-C-Ser326-hOGG1 or
YFP-N-Ser326-hOGG1 and YFP-C-Cys326-hOGG1 constructs did



BSO + β-ME

BSO + DTT BSO + DMSO

BSO

(A)

(B)

Fig. 4. (A) Inhibition of BiFC fluorescence in Cys326 OGG1 transfected cells treated with BSO (1000 lM), 24 h after co-incubation with the antioxidant DMSO (1% v/v) or
addition of the disulphide reducing agents b-mercaptoethanol (1 mM) of dithiothreitol (1 mM) for the final four hours of incubation. (B) The bar graph represents the average
number of BiFC fluorescent foci per cell ± SD for three independent fields of view; the average number of cells per field was 57.3 ± 13.33. ⁄⁄⁄ Significantly different from BSO
treated cells alone (P < 0.001, t-test).
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not result in any BiFC fluorescence (data not shown) suggesting
that BiFC fluorescence was entirely dependent on Cys326-OGG1
protein and did not involve an interaction between Ser326-OGG1
and Cys326-OGG1.
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3.3. Antioxidants inhibit BiFC fluorescence

To further investigate the role of disulphide bond formation in
the observed BiFC fluorescence in Cys326-OGG1 expressing cells
following oxidative stress cells, the disulphide reducing agents
b-mercaptoethanol and dithiothreitol were added for the final four
hours of culture. Under these experimental conditions the number
of BSO-induced fluorescence foci per cell was significantly reduced
(Fig. 4A and B), strongly supporting our hypothesis that OGG1
complex formation within cells is dependent on the formation of
a disulphide bond. Furthermore, co-incubation of cells with BSO
and the antioxidant DMSO for 24 h also inhibited BiFC fluorescence
suggesting that ROS generation is also important in the generation
of BiFC fluorescence (Fig. 4A and B).
4. Discussion

Regulation of nuclear localisation of OGG1 has been putatively
linked to phosphorylation of Ser326, with the Cys326 variant of
OGG1 apparently excluded from the nucleolus during S-phase of
the cell cycle [19,21]. Campalans et al. [35] have shown that fol-
lowing UVA irradiation, OGG1 is relocated from the nuclear matrix
to form complexes that co-localise in ‘‘nuclear speckles’’ and it has
been suggested that they represent foci of OGG1 and other BER
components at sites of active repair of oxidative DNA damage.
Although similar to the fluorescence observed in the current study,
localisation of OGG1 to nuclear speckles described by Campalans
et al. [35] were observed in cells expressing wild type OGG1-GFP
protein. In contrast, we report BiFC fluorescence specifically in cells
expressing Cys326 OGG1-YFP only under conditions of oxidative
stress. Interestingly, we observed BiFC fluorescence in the form
of discreet foci within the nucleus suggesting that the BiFC fluores-
cence observed represents the accumulation of Cys326-OGG1
complexes at sites of active DNA repair but further work is
required to confirm this. Regardless of the exact nature of
Cys326-OGG1 at sites of nuclear BiFC fluorescence, in regions of ac-
tive repair it seems likely that the concentration of OGG1 protein
would be relatively high facilitating the formation of BiFC fluores-
cent complexes of OGG1. Alternatively as discussed below, BiFC
fluorescence may represent sites where oxidatively damaged
Cys326-OGG1 has accumulated in the cell.

Interestingly, BiFC fluorescent foci were also present outside of
the nucleus of cells. There are several possible explanations that
could account for this observation – it may represent redox sensi-
tive Cys326-OGG1 complex formation at sites of protein synthesis
in the cell. Alternatively it could represent accumulation of mis-
folded or inactive Cys326-OGG1 protein that has been targeted
for degradation. In support of this second hypothesis there is
emerging evidence that base excision repair proteins are regulated
and targeted for proteasome-mediated degradation by the activity
of ubiquitin ligases [36–38] and it is possible that similar pathways
may act to regulate OGG1 protein. Increased turnover and degrada-
tion of damaged Cys326-OGG1 protein would account for the
reduced repair activity of this form of OGG1 observed under condi-
tions of oxidative stress and we have observed previously that
treatment of cells with the pro-oxidant sodium dichromate results
in reduced levels of OGG1 protein expression and activity [39].

At the molecular level there is emerging evidence that reduced
activity of Cys326-OGG1 under oxidative conditions may be re-
lated to redox modification of the Cys326 amino acid. Hill and
Evans [29] have shown that purified Cys326-OGG1 exists predom-
inantly as a homo-dimer whose formation is dependent on the
short c-terminal loop containing the Cys326 residue. Studies in cel-
lular systems indicate that DNA repair rates of Cys326-OGG1 are
reduced 2–4-fold compared to wild type protein [25,29,33,40,41]
and the existence of a Cys326-OGG1 dimer might be expected to
reduce catalytic activity by approximately 2-fold because only
one protein of each dimer would have access to the substrate at
a time. A recent study [42] has utilised mass spectrometry to iden-
tify the formation of redox sensitive disulphide bond formation in
Cys326-OGG1 involving Cys28 and Cys326 amino acids but con-
clude that this is only possible under conditions where folding of
the protein is altered because the bond distance between Cys326
and Cys28 residues is too large to form a intra-molecular disul-
phide bridge when OGG1 is in its native folded state. It is possible
that under conditions of oxidative stress Cys326-OGG1 becomes at
least partially unfolded and an intra-molecular Cys28-Ser326
disulphide bond is formed. This would explain the occurrence of
discreet foci of fluorescence, which may represent accumulation
of mis-folded Cys326-OGG1 under conditions of oxidative stress
and would also explain the reduced repair capacity of Cys326-
OGG1 specifically under conditions of oxidative stress observed
previously [27]. It is also possible that an inter-molecular disul-
phide bridge between two Cys326 residues may be formed in cel-
lular environments and that the BiFC fluorescence observed
represents Cys326-dependent OGG1 homo-dimer formation. Con-
sistent with a role for redox dependent Cys326-OGG1 complex for-
mation, BiFC fluorescence was specifically observed in cells
expressing Cys326-OGG1 and only under conditions of oxidative
stress and GSH depletion. The observation that incubating cells
with disulphide reducing agents inhibits BSO-induced BiFC fluores-
cence also strongly supports the hypothesis that Cys326-OGG1
complex formation in cells is dependent on the formation of a re-
dox sensitive disulphide bond possibly between two Cys326 amino
acids and is in agreement with the previous studies of Hill and
Evans in purified OGG1 protein [29]. Furthermore, the observation
that BSO-induced BiFC was also inhibited by co-incubation with
the antioxidant DMSO appears to confirm that BSO-mediated gen-
eration of ROS is also important for Cys326-OGG1 BiFC fluores-
cence. In conclusion, this study has demonstrated for the first
time the application of BiFC to study a component of the BER path-
way and provided further insight into the molecular mechanisms
of the reduced repair capacity Cys326-OGG1. The novel finding of
redox dependent Cys326-OGG1 complex accumulation and possi-
ble dimer formation within the native cellular environment pro-
vides further support to an increasing body of data implicating
redox modification and disulphide dimer formation in the mecha-
nism of the reduced repair capacity of Cys326-OGG1 observed.
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