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Abstract: With the global net-zero strategy implementation, decarbonisation of transport by massive
deployment of electric vehicles (EVs) has been considered to be an essential solution. However,
charging EVs and integration into electricity grids is going to be a fundamental challenge to future
electricity systems. Hence, in this situation, how to effectively deploy massive numbers of EVs,
and in the meantime what can be developed to deliver vehicle-to-grid (V2G) services, become a
fundamental yet interesting tech-economical issues. Furthermore, uncertainty in lack of vehicle
availability and EV battery degradation could lead to revenue loss when using EVs as ancillary
services aggregators. With such considerations, this paper presents a new optimised V2G aggregator
scheduling service that has taken into consideration of a number of risks, including EV availability
and battery degradation through conditional value-at-risk. The proposed method for V2G schedul-
ing service, as an independent aggregator, is formulated as a bi-level optimisation problem. The
performance of the proposed method is to be evaluated through case studies on the Birmingham
International Airport parking lot with onsite renewable generation. Uncertainties of EVs and the
differences in weekdays and weekends are also compared.

Keywords: electrical vehicle (EV); vehicle-to-grid (V2G); bi-level; ancillary service; demand response;
optimisation; risk-aversion; aggregator; conditional value-at-risk

1. Introduction

With the rapid development of electric vehicles (EVs), the role of EVs in the energy
market has received ever increasing attention. The increase in the penetration rate of
electric vehicles has led to greater challenges in EV charging management and scheduling,
which will also affect the reliability of the grid system.

An EV can be seen as a stationary battery when it is parked or being charged. In
addition to coordinated charging, there have been a number of emerging research works
on vehicle-to-grid (V2G) in recent years. The optimisation principle of V2G is to maximise
the benefit of grid connected vehicles through various ancillary services [1,2]. In addition,
small-scale EV charging stations can be aggregated to participate into ancillary market for
large EV fleets [3].

The economic advantages of V2G are eye-catching. It can provide additional income
for car owners to offset the cost of running EVs and can further justify the economic benefits
of replacing conventional combustion engines with EVs. From the perspective of the grid
and energy suppliers, EV and V2G can help balancing the grid demand and supply, as well
as providing reactive power compensation, which can improve the stability and reliability
of the grid [4–6]. In the meantime, in [7,8], the authors have presented an integration of
V2G and wind/solar energy.

However, the uncertainty of V2G may have a huge impact on the system performance
that cannot be ignored, including unpredictable EV charging behaviors and the uncertainty
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of the electricity market price. Reference [9] clearly explained that participating in a
demand response plan is a way to make electric vehicles more profitable. Moreover, the
increase in EV charging load leads to grid voltage changes and frequency regulation, which
increase the operating cost of the grid. But the authors did not consider the uncertainties in
charging activities.

In [10], the authors proposed a multi-objective model to increase the power distribu-
tion system efficiency and the reliability of V2G. A framework was built as a smart power
hub to develop electric car parking lots in [11]. Also, Gunter and other researchers estab-
lished a multi-objective collaborative optimisation distribution method in the distribution
network model. Consideration of the constraints of grid operation, combining charging
facilities and renewable distributed power generation to provide low-cost charging for
EV users was discussed in [12]. In [13,14] the authors considered voltage stability, carbon
emissions and the behavior of other market participants. As use of renewable energy is
crucial to reduce the environmental pollution caused when electricity is generated, [15,16]
discussed plans for a renewable electric vehicle charging system. In order to maximise
the aggregated revenue, [17,18] proposed that EV energy storage can be used in the dis-
tribution network to optimise the revenue of the aggregator. Refs. [19,20] analyzed the
optimisation problem from the perspective of the electric vehicle owner rather than the
system operator or aggregator. Conditional value at risk (CVaR) is used to mitigate the
risk and uncertainties in modelling optimisation problems. The article [21–23] proposed
a CVaR model for power loss in the distribution system, CVaR was used to measure the
impact of uncertainty on the risk of EVA and the risk of renewable energy uncertainty. The
Karush–Kuhn–Tucker (KKT) method is commonly used to decompose the problem to find
the global optimal solution for bi-level optimisation problems [24]. For aggregated V2G
services, past research did not address this as a risk in aggregated V2G scheduling. In
this paper, a bi-level scheduling method can provide efficient interaction at each level and
achieve the goals of each level, and this method can optimise the profit of aggregators and
EV owners at the same time [25]; the contribution can be summarised as follows:

(1) The optimisation method has taken into account the risk of loss of revenue due to
lack of vehicle charging capacity to provide service and EV battery degradation, and
the CVaR was used to mitigate the uncertainties. (CVaR, also known as expected
shortfall, was originally used to evaluate the market and credit risk of investment
portfolios [22,23]).

(2) A preferred operating point will be suggested within the ancillary capacity, with
consideration of the onsite renewable generation and the above risk.

This paper presents a bi-level scheduling model to maximise the profit by considering
uncertainties in participated vehicles through CVaR in Section 2 and explain the details of
the bi-level problem in Section 3. Section 4 combines the bi-level model with conditional
value-at-risk, the impact of risk aversion parameters is also evaluated. Table 1 is the
explanation of the abbreviations in the equation

Table 1. Probability distribution of electric vehicle behavior.

Symbol Mean Standard Deviation Max Min

Initial State of Charge (%) 50 20 70 20
Arrive time (h) 8 4 14 6

Departure time (h) 16 4 24 12



Energies 2021, 14, 7015 3 of 16

2. Bi-Level Scheduling Method for Vehicle-to-Grid and Ancillary Services

A bi-level scheduling method is divided into two problems. The upper problem is
calculated by subtracting the cost of the aggregator from revenue. The lower problem aims
to maximise the profits of electric car owners. In addition to introducing and analyzing how
to use the bi-level to optimise the design of charging stations, this method also considers
uncertainties study methodology, risk management and the system adjustment signal, so
that the accuracy of the results can be further improved.

2.1. Upper-Level Problem

In the upper-level model, when a renewable energy charging station charges an
electric vehicle, it can provide services that trade with the grid. In Equation (1), FCS is the
upper-level profit of aggregators. B and C are the upper-level income and the upper-level
cost, respectively.

maxFCS = B− C (1)

The upper-level cost (C) is composed of three parts, namely charging cost, distributed
power generation cost and energy storage cost, as shown in Equation (2).

C = kc f cc f PNc f + krdgcrdgPNrdg

+kescespPNes + kesceseENes (2)

where cc f , crdg, cesp and cese stand for capital cost of charging facility, renewable distributed
generation, energy storage in power and the energy storage in energy rating, respectively.
PNc f , PNrdg, PNes, and ENes stands for installed capacity of charging of charging facility,
charging of renewable distributed generation, energy storage power capacity and EVs. and
energy rating capacity.

The upper-level income (B) is the sum of the charging power price and the power
exchanged with the grid, including the maintenance costs of charging facilities, renewable
distributed power generation and energy storage.

B = θ
T
∑

t=1

(
δch

t Pch
t − δint

t Pint
t

)
∆t

−
(

cc f mPNc f + crdgmPNrdg + cesmENes
) (3)

where δch
t and δint

t are charging price and price of exchanged power between grid. Pch
t and Pint

t
stands total charging power of EVs and exchanged power between grid. cc f m, crdgm and cesm

are the annual maintenance cost of charging facility, renewable distributed generation, and
energy storage.

Preferred operating point at time t (POPi(t)) consists of two parts: Positive preferred
operating point (POPPos,i(t)) and negative preferred operating point (POPNeg,i(t)) at time t.

POPi(t) = POPPos,i(t)− POPNeg,i(t) (4)

The Equation (5) shows the cost of battery degradation (Degi(t)), which is figure out
by multiply the battery cost per kilowatt with all energy deliver from vehicle to grid. BatC
is battery replacement cost. MinPi(t) and RSRPi(t) stands for minimum additional power
draw and responsive reserve power draw.

Degi(t) = BatC ∗
(

POPNeg,i(t) + MinPi(t) + RSRPi(t)
)

(5)

The decision variables are POPPos,i, POPNeg,i, MaxPi, MinPi and RSRPi of per EV per
hour in this model. The constrains of this model illustrated by Equations (6)–(15).
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Firstly, Equations (6) and (7) limit the battery maximum charge during the parking
time by the battery capacity, while it must be positive:(

∑
t
(E(FPDi(t)) ∗ E fi) + SOCI,i

)
≤ MC,i (6)

(
∑

t
(E(FPDi(t)) ∗ E fi) + SOCI,i

)
≥ 0 (7)

There is an assumption that make sure the state of charge should be reach to 80% of
total capacity when the EV departure. The constraint is illustrated as Equation (8):

T

∑
t=1

(E(FPDi(t)) ∗ E fi) + SOCI,i ≥ 80%MC,i (8)

where FPDi is final power draw at time t with considering the regulation and reserve
service. E fi is the electric vehicle battery charger efficiency. MC,i is maximum battery
capacity of the electric vehicle.

Beyond that, the variables of the first hour during a day show as inequalities (9)–(11):(
MaxPi + POPPos,i − POPNeg,i

)
∗ E fi + SOCI,i ≤ MC,i (9)((

POPPos,i − POPNeg,i −MinPi − RSRPi
)
∗ E fi + SOCI,i

)
≥ 0 (10)((

POPPos,i − POPNeg,i −MinPi − RSRPi
)
∗ E fi + SOCI,i

)
≥ Trip (11)

The positive preferred operating point and a negative operating point each hour are
limited by the maximum charge and discharge rate as in the following equation. These
constraints also consider the regulation by additional power draw and response reserve of
the system: (

POPPos,i(t)− POPNeg,i(t)
)
≥ −MPi(t) (12)

MaxPi(t) +
(

POPPos,i(t)− POPNeg,i(t)
)
≤ MPi(t) (13)

MinPi(t)−
(

POPPos,i(t)− POPNeg,i(t)
)
≤ MPi(t) (14)

RSRPi(t)−
(

POPPos,i(t)− POPNeg,i(t)
)
+ MinPi(t) ≤ MPi(t) (15)

The upper-level model consists of the main aim function which is limited in
Equations (16)–(30). The main solution is to define the optimal renewable energy source
charging station configuration design and pricing strategy according to the renewable
energy source charging station aggregators’ perspective.

The equations of the upper-level model correspond to the maximum profit of the
renewable energy charging station aggregator. The variables of the objective function can be
divided into decision variables and operation variables. Decision variables include energy
storage, energy storage power capacity, installed capacity of charging facility, installed
capacity of renewable distributed generation, and charging tariff upper limit. Operation
variables include total power output of renewable distributed generation, energy storage
charging, energy discharging power, exchanged power with the power grid, and total
power charging of EVs.

0 ≤ PNc f ≤ PNc f
max (16)

0 ≤ PNrdg ≤ PNrdg
max (17)

0 ≤ PNes ≤ PNes
max (18)

0 ≤ ENes ≤ PNes
max (19)

The constraints (16)–(19) set the maximum and minimum limits of charging facility,
renewable distributed generation and energy storage charging capacity in an indepen-
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dent renewable energy source charging station, where PNc f , PNrdg, PNes , and ENes stands
for installed capacity of charging of charging facility, charging of renewable distributed
generation, energy storage power capacity and EVs. and energy rating capacity.

0 ≤ δch ≤ Pch
max; ∀d ∈ D ∀t ∈ T (20)

In order to maintain the stability of the electric vehicle charging market, constraint (20)
sets the charging price

(
δch
)

limit provided by the renewable energy charging station
aggregator within a predetermined range. A benchmark can be added to determine
price variability:

− Ptr
max ≤ Pint ≤ Ptr

max ∀d ∈ D ∀t ∈ T (21)

Constraint (21) restricts the exchange of energy between the grid (Pint
t ) and the electric

vehicle charging station and cannot exceed the maximum capacity of the substation transformer:

0 ≤ Prdg ≤ PNrdgγrdg ∀d ∈ D ∀t ∈ T (22)

Constraint (22) set the limit of the maximum power that renewable charge stations can
use from renewable distributed generation. Where Prdg and PNrdg stands for total power
output of renewable distributed generation and installed capacity of charging of renewable
distributed generation.

0 ≤ Pch ≤ PNc f ∀d ∈ D ∀t ∈ T (23)

0 ≤ Pesc ≤ PNes ∀d ∈ D ∀t ∈ T (24)

0 ≤ Pesd ≤ PNes ∀d ∈ D ∀t ∈ T (25)

The above constraints (23)–(25) limit the charging and discharging of energy through
charging facilities and energy storage. Pch, Pesc and Pesd stands for total charging power of
EVs, energy storage charging power and energy storage discharging power.

ENesSOCes
min ≤ Ees ≤ ENesSOCes

max, ∀d ∈ D ∀t ∈ T (26)

Ees
t = Ees

t−1 + Pesc
t ηesc∆t− Pesd

t ∆t/ηesc, ∀d ∈ D ∀t ∈ T (27)

Constraints (26) and (27) illustrate the limits of energy storage through the state of
charge when participating in auxiliary services. Ees is the energy of the storage, SOCes is
energy storage state of charge. ηesc is efficient of energy storage charging.

Ees
t0 = Ees

24 ∀d ∈ D (28)

Constraints (28) ensure that the energy at the end of the case must be equal to the energy
at the beginning of the case to ensure the sustainability of renewable charging stations.

Prdg
t + Pint

t = Pch
t + Pesc

t − Pesd
t , ∀d ∈ D ∀t ∈ T (29)

The balance of the charging and the discharging system is restricted by constraints (29),
where Prdg and Pint

t stands for total power output of renewable distributed generation and
exchange of energy between the grid

Pch
t ηc f ∆t = ∑

v

M

∑
m=1

dev
v,t,m f ev

v,d,t, ∀d ∈ D ∀t ∈ T (30)

Equation (30) links the upper model with the lower model by making the total energy
demand of the EV owner equal to the energy provided to the EV.
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2.2. Lower-Level Problem

In the lower-level model, the profit of electric vehicle owners can be maximised
through the following objective function:

Max FEV
t = UEV

t − CEV
t (31)

where FEV
t is profit of electric vehicle owners; UEV

t is the marginal utility and CEV
t is the

cost of electric vehicle users.
Taking into account the price provided by renewable charging stations, the behavior

of electric vehicles participating in auxiliary services. In this paper, the profit of electric
vehicle owners is calculated by subtracting the cost of charging the electric vehicle from
the marginal utility. Reference [24] explained that the cost of EV users to charge their cars
decreases with the increase of energy from renewable charging stations. The marginal
utility (UEV

t ) and cost of electric vehicle users
(
CEV

t
)

are shown in Equations (32) and (33)
where dev

t is total charging of the EV. δEV
t is the charging price.

UEV
t =

M

∑
m=1

uEV
t dev

t (32)

CEV
t =

M

∑
m=1

δEV
t dev

t (33)

The equations above are subject to:

M

∑
m=1

dEV
t − dEV

max ≤ 0 ∀t ∈ T
(

µ1
t

)
(34)

dEV
min −

M

∑
m=1

dEV
t ≤ 0 ∀t ∈ T

(
µ2

t

)
(35)

Constraints (34) and (35) set the upper and lower limits of the total charging of the EV.

dEV
t,m,v − dEV

m,v,max ≤ 0, ∀t ∈ T, m = 1 . . . , M.
(

µ3
t

)
(36)

dEV
t,m,v > 0, ∀t ∈ T, m = 1 . . . , M.

(
µ4

t

)
(37)

Constraints (36) and (37) limit the charging of each EV block. Since there are lower-
level discrete variables, this is a non-convex problem. Therefore, the proposed method
in this paper applied Karush–Kush–Tucker (KKT) to convert the bi-level program into a
single linear program.

2.3. Uncertainties Study Methodology

Assume that the behavior of electric vehicles obeys a truncated Gaussian distribution.
Where SOCI,i is state of charge at the initial moment of the ith electric vehicle.

SOCI,i = f (x) = fTG

(
x; µSOC, σ2

SOC,
(

SOCmin
i , SOCmax

i

))
∀i (38)

In this model, the time of EV arrival and departure from the charging point follows a
truncated Gaussian distribution.

tarr
i = f (x) = fTG

(
x; µarr, σ2

arr,
(

tarr,min
n , tarr,max

n

))
∀i (39)

tdep
i = f (x) = fTG

(
x; µdep, σ2

dep,
(

tdep,min
n , tdep,max

n

))
∀i (40)

where tarr
i and tdep

i is EV arrival and departure time.
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Constraint (41) indicates that the time to reach the charging point should be earlier
than the departure time.

tarr
i < tdep

i ∀i (41)

According to Equation (42), the EV parked in the parking lot at time t (iEV
t ) is calcu-

lated by the number of EVs at time t − 1 and the EV arriving/departing at time t.

iEV
t = iEV,arr

t − iEV,dep
t + iEV

t−1 ∀i (42)

2.4. Profit Risk Management of Electric Vehicle (EV) Charging Stations

Different types of EV and charging strategies cause the profit of charging stations to
be a random variable. Therefore, the authors introduced a risk-neutral equation to avoid
the bad profit distribution of EV charging stations. According to references [26,27], several
methods have been widely used to solve the high profit variability and negative profit
problems of charging stations, such as shortage probability, variance, expected shortage,
etc. CVaR was chosen to mitigate the risk in engineered investments in the proposed
method [21–23]. The mathematical expression of CVaR is as follows:

CVaR = ξ − 1
1− α

NS

∑
s=1

ρsηs (43)

where ξ is the VaR, confidence level has been presented as α, ρs and ηs present probability
and the difference between profit and the VaR non-negative variable. When the profit
smaller than VaR, the ηs present difference between them, otherwise, ηs is zero.

The objective function of upper level can be expressed as:

Max Pro f it + β CVar (44)

subject to:
ηs + Pro f it− ξ ≥ 0 (45)

ηs ≥ 0 (46)

β is the risk-aversion parameter. With the increase of β, the objective of aggregators
become more risk averse system. When β equals to zero, the objective of aggregators
become risk neutral system.

Considering the objectives and constraints of conditional risk management respectively,
it is a mixed-integer linear program that requires the application of high-performance solvers.

2.5. The System Adjustment Signal of Aggregator

The EV charging station is a special aggregator. The system adjustment signal is the
key to this aggregator system [24]. EVs will respond to the signal by adjusting the behavior
of charge/discharge [28]. Aggregators receive the signals from the energy market and
analyse them by integrated computing, then send the charge/discharge signal to EVs in
the parking lot [29].

Figure 1a,b below shows the regulatory scheduling is independent of responsive
reserve scheduling. The results of two dispatches can be combined finally to obtain the
behaviour of each kind of EV.
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3. Solution to the Bi-Level Problem

The previous part introduced the method used to solve the bi-level problem in this re-
search. First, the KKT condition can convert a lower-level model into a series of constraints
of a higher-level model by adding a Lagrange multiplier variable. After transmission
through KKT, the lower level becomes a non-linear constraint set. Therefore, the “linprog”
that solves the single-stage problem is no longer applicable to the bi-level model [24]. The
following sections explain the details of the function.

Since the Lagrangian function with Lagrangian multiplier is a non-linear problem,
(34)–(37) can be expressed as:

µ1
v,t·
(

N

∑
n=1

dEV
v,t − dEV

,max

)
= 0, ∀t ∈ T ∀m ∈ M (47)

µ2
v,t·
(

dEV
,min −

N

∑
n=1

dEV
v,t

)
= 0, ∀t ∈ T ∀m ∈ M (48)

µ3
v,t·
(

dEV
t,v − dub

v

)
= 0, ∀t ∈ T ∀m ∈ M (49)

µ4
v,t·dEV

t,v = 0, ∀t ∈ T ∀m ∈ M (50)

µ1
v,t ≥ 0 (51)

µ2
v,t ≥ 0 (52)

µ3
v,t ≥ 0 (53)

µ4
v,t ≥ 0 (54)

Constraints (47)–(54) are the simplified KKT conditions, which can combine with the
upper level model. And the McCormick relaxation also can solve this problem. If z = a× b,
where a ∈ [amin, amax] and b ∈ [bmin, bmax], it can be equivalent as four constraints:

z ≥ aminb + bmina− aminbmin (55)

z ≥ amaxb + bmaxa− amaxbmax (56)
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z ≤ aminb + bmaxa− aminbmax (57)

z ≤ amaxb + bmina− amaxbmin (58)

Besides the non-linear constraints, there are nonlinear elements in the objective func-
tion such as δchPch.

B = θ
T
∑

t=1

(
δch

t Pch
t − δint

t Pint
t

)
∆t

−
(

cc f mPNc f + crdgmPNrdg + cesmENes
) (59)

zch ≥ δch
maxPch

t + zc f
t − δch

maxPNc f
t , ∀t ∈ T (60)

zch ≤ zc f
t , ∀t ∈ T (61)

zch ≤ δch
maxPch

t , ∀t ∈ T (62)

zc f ≥ δch
maxPNc f

t + PNc f
t δch

t − δch
maxPNc f

max , ∀t ∈ T (63)

zc f ≤ PNc f
max δch

t , ∀t ∈ 1, . . . , T (64)

zc f ≤ δch
maxPNc f

t , ∀t ∈ 1, . . . , T (65)

zch ≥ 0, ∀t ∈ 1, . . . , T (66)

zc f ≥ 0, ∀t ∈ 1, . . . , T (67)

Objectives with non-linear elements have been transferred to the standard mixed-
integer linear program as constraints (55)–(67).

4. Case Study

In this paper, the case study is included using Birmingham International Airport as an
example for a duration of 24 h. In this case, it is assumed there are 10,000 EVs. Suppose
there are three types of electric vehicle in the parking lot: 30% Nissan Leaf (2011 model),
50% Tesla Model 3 (long range) and 20% Audi e-tron. The assumption is made against
market share of battery electric vehicle in the UK by aggregating similar body type, engine
and battery sizes [30]. A charge-discharge rate of 90% was selected.

4.1. Electricity Spot Price Data

The electricity spot price is from the European Power Exchange (EPEX SPOT) on
11 February 2020 as shown in Figure 2 below. This is a representative day of an average
market day and the weather was mild. The currency of the real-time electricity price is
converted to U.S. dollars ($/MW) based on real-time exchange rates. Simulation and
optimisation are completed by MATLAB.

Figure 2 above shows that at 4 a.m., the electricity price reached a trough value, which
was 14.73 $/MW. and there were two peak electricity prices at 3.00 p.m. and 8.00 p.m. In
the following analysis, the fluctuation of electricity prices will be combined to explain the
charging behavior of EV users and the impact on the profit of aggregators.

4.2. Application of a BASIC Bi-Level Service Scheduling Method

Based on the electricity market price shown in Figure 2, this paper conducts a bi-level
model case study on three different brands of cars, in which the profit of electric vehicle
owners needs to be considered. The result of the preferred operating point is shown in
Figure 3.
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Figure 3. Result of different operating point under 3 different kinds of electric vehicle (EV) in
bi-level model.

In the first and second valleys of market prices, electric vehicles will be limited by
battery capacity and maximum charge/discharge rates. According to the simulation results
shown in Figure 3, if a bi-level model is adopted, the profit of electric vehicle owners
must be considered. From midnight to 7 a.m., the load generated by the three types of car
charging is similar, which means that the charging behavior of the three different types
of cars during this period is similar. However, as time goes by, a large number of EVs
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migrate from residential areas to workplaces when they arrive at work. From 9.00 a.m. to
11.00 a.m., these three types of cars all participated in the V2G mode, which means that
the EV is used as an energy storage device to reverse charge. This eased the grid load
during this period. The changes in electricity market prices lead to changes in charging
behavior, which resulting in different power draws. These changes are gradually reflected
after 12.00 p.m. in Figure 4.
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4.3. Uncertainties of EV Charging Behavior

The time when an electric vehicle is connected to the power grid and when it leaves
the grid is random [9]. Due to uncertainty in the driving habits of EV owners, many studies
have adopted truncated Gaussian distributions as input. The following equation describes
the probability of occurrence of each EV behavior. Table 1 lists the probability distribution
of electric vehicle behavior.

Electric car owners tend to charge during the low market price, the charging behavior
of EV owners to Nissan Leaf (2011 model), Tesla Model 3 (long range) and Audi e-tron are
similar according to the results, so a case will be presented on the Audi e-tron model only.

It can be seen from Figure 5 that the time for the EV to leave the original location and
arrive at the second location is around 9 a.m., and the market price reaches the first peak at
10.30 a.m. within a day. As market prices rise, aggregators will decide to start V2G and sell
energy at high prices. By contrast, around 8 p.m., although the market price reached the
second peak on the day, the electric cars are usually still in a charging state.

The figure above shows the results of regulation up, regulation down and responsive
reserve power scheduling. Since only a few electric vehicles choose to park overnight, the
sensitivity is high at night. The overall trend is a negative correlation between market
prices and liquidation behavior. By contrast, the relationship between charging behavior
and market price is positively correlated.
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4.4. The Different Result of Peak Time and Workdays

The market price of Figure 6 comes from EPEX SPOT. This paper uses data from
11 February 2020 and 4 April 2020 (Easter). The average market price is greater than the
working day. However, most families prefer to travel during weekends, which means
more electric cars will be parked in the international airport parking lot. Therefore, the
aggregator has more dispatchable electric vehicles during the holidays or weekends.
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Figure 7 presents the simulation results for the impact of the number of EVs and
market prices on the charging behavior of electric vehicles. The workday profit is $8947
approximately and $52,334 in weekends.
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At the same time, Figure 8 shows the proportion of regulation down, regulation up and
responsive reserve on weekdays and weekends. Compared to working days, the proportion
of response reserves has increased by approximately 5%. The basic trend of electric vehicle
behavior is the same as before. However, as passenger traffic increases during the weekends,
aggregators can arrange more dispatchable electric vehicles. Therefore, the average power
consumption is greater than the working day. When the number of electric vehicles reaches
a certain level, the percentage of battery deregulation costs in total profits will decrease. In
other words, aggregators will earn more profits during holidays than workdays.
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4.5. Conditional Risk Sensitivity Analysis

Figure 9 shows the influence of risk aversion parameters on the optimal project.
Change the risk aversion parameter from 0.1 to 2.0 in the objective function of the upper-
level model.
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The daily profit of the parking lot is $7329 when the risk aversion parameter is equal
to 0.1. As the risk aversion parameters decrease, the profit of the aggregator will decrease.
The daily profit of the parking lot is only about $1536 when the risk aversion parameter is
equal to 2.0. Aggregators can obtain more profits through lower risk aversion parameters.
Therefore, it is recommended that the aggregator operate under lower risk aversion.

5. Conclusions

This paper addresses the challenges in risk mitigation of EV charging available and
battery degradation via CVaR. EV users have different behaviors of using electric vehicles
on weekdays and weekends, which leads to uncertainty in the charging behavior of EVs.
The proposed model has considered the risk of loss of revenue due to lack of vehicle
charging capacity to provide service and EV battery degradation. A bi-level optimisation
was formulated to determine a preferred operating point of charging for an individual
EV with consideration of the uncertainties. The KKT method was used to decompose
the problem and the impact of risk aversion was also analyzed. The performance of the
proposed method has been evaluated through a case study on the Birmingham International
Airport parking lot with onsite renewable generation.

From the results of the case study, the profit of the aggregator on weekends is 5%
greater than that on weekdays. According to different charging behaviors on weekdays
and weekends, the aggregator can provide different modes of operation, such as providing
incentives to encourage all electric cars parked in the parking lot and participate in ancillary
services. Uncertainty research is an extension of the basic model that can make research
more precise. As the risk aversion parameters decrease, the profit of the aggregator
will decrease, which means that the profit of the aggregator is proportional to the risk
coefficient. Therefore, finding a suitable risk coefficient for any aggregator can balance the
profit and risk.
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