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Abstract
Sparse signals can be possibly reconstructed by an algorithm which merges a tradi-
tional nonlinear optimization method and a certain thresholding technique. Different
from existing thresholding methods, a novel thresholding technique referred to as the
optimal k-thresholding was recently proposed by Zhao (SIAM J Optim 30(1):31–55,
2020). This technique simultaneously performs theminimization of an error metric for
the problem and thresholding of the iterates generated by the classic gradient method.
In this paper, we propose the so-called Newton-type optimal k-thresholding (NTOT)
algorithm which is motivated by the appreciable performance of both Newton-type
methods and the optimal k-thresholding technique for signal recovery. The guaranteed
performance (including convergence) of the proposed algorithms is shown in terms
of suitable choices of the algorithmic parameters and the restricted isometry property
(RIP) of the sensing matrix which has been widely used in the analysis of compressive
sensing algorithms. The simulation results based on synthetic signals indicate that the
proposed algorithms are stable and efficient for signal recovery.

Keywords Compressed sensing · Sparse optimization · Newton-type methods ·
Optimal k-thresholding · Restricted isometry property
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1 Introduction

The sparse optimization problem arises naturally from awide range of practical sce-
narios such as compressed sensing [1–4], signal and image processing [5–7], pattern
recognition [8], andwireless communications [9]. The typical problemof signal recov-
ery via compressed sensing can be formulated as the following sparse optimization
problem:

min
x

{
‖y − Ax‖22 : ‖x‖0 � k

}
, (1)

where k is a given integer number reflecting the sparsity level of the target signal x∗,
A ∈ R

m×n is a measurement matrix with m � n, ‖x‖0 is the so-called �0-norm
counting the nonzeros of the vector x, and y is the acquired measurements of the
signal x∗ to recover. The vector y is usually represented as y = Ax∗ + η, where η

denotes a noise vector.
Developing effective algorithms for the model (1) is fundamentally important in

signal recovery. At the current stage of development, the main algorithms for solv-
ing sparse optimization problems can be categorized into several classes: convex
optimization, heuristic algorithms, thresholding algorithms, and Bayes methods. The
typical convex optimization methods include �1-minimization [10,11], reweighted �1-
minimization [12,13], and dual-density-based reweighted �1-minimization [4,14,15].
The widely used heuristic algorithms include orthogonal matching pursuit (OMP)
[16,17], subspace pursuit (SP) [18], and compressive sampling matching pursuit
(CoSaMP) [19,20]. Depending on thresholding strategies, the thresholding methods
can be roughly classified as soft thresholding [21,22], hard thresholding (e.g., [23–27]),
and the so-called optimal thresholding methods [28,29].

The hard thresholding is the simplest thresholding approachused to generate iterates
satisfying the constraint of the problem (1). Throughout the paper, we use Hk(·) to
denote the hard thresholding operatorwhich retains the largest kmagnitudes of a vector
and zeroes out the others. The following iterative hard thresholding (IHT) scheme

x p+1 = Hk

(
x p + λA� (

y − Ax p)) ,

where λ > 0 is a stepsize, was first studied in [23,30]. Incorporating a pursuit step
(least-squares step) into IHT yields the hard thresholding pursuit (HTP) [26,31], and
when λ is replaced by an adaptive stepsize similar to the one used in traditional
conjugate methods, it leads to the so-called normalized iterative hard thresholding
(NIHT) algorithms in [24,32]. The theoretical performance of these algorithms can be
analyzed in terms of the restricted isometry property (RIP) (see, e.g., [3,23,30]).

On the other hand, the search direction A�(y − Ax p) of the above-mentioned
algorithm is the negative gradient of the objective function of the problem (1). Such
a search direction can be replaced by another direction provided that it is a descent
direction of the objective function. Thus, an Newton-type direction was studied in
[27,33,34]. The following iterative method is proposed and referred to as Newton-
step-based iterative hard thresholding (NSIHT) in [27]:
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x p+1 = Hk

(
x p + λ

(
A�A + ε I

)−1
A� (

y − Ax p)
)

, (2)

where ε > 0 is a parameter and λ > 0 is the stepsize.
However, as pointed out in [28,29], the weakness of the hard thresholding operator

Hk(·) is that when applied to a non-sparse iterate generated by the classic gradient
method, it may cause an ascending value of the objective of (1) at the thresholded
vector, compared to the objective value at its unthresholded counterpart. As a result,
direct use of the hard thresholding operator to a non-sparse or non-compressible vec-
tor in the course of an algorithm may lead to significant numerical oscillation and
divergence of the algorithm. To overcome such a drawback of hard thresholding oper-
ator, Zhao [28] proposed an optimal k-thresholding technique which makes it possible
to perform thresholding and objective-value reduction simultaneously. The optimal
k-thresholding iterative scheme in [28] can be simply stated as

x p+1 = Z#
k

(
x p + λA� (

y − Ax p)) ,

where λ remains a stepsize, andZ#
k (·) is the so-called optimal k-thresholding operator.

Given a vector u, the thresholded vector Z#
k (u) = u ⊗ w∗ (the Hadamard product of

two vectors) where the vector w∗ is the optimal solution to the following quadratic
0-1 optimization problem:

w∗ := argmin
w

{
‖y − A(u ⊗ w)‖22 : e�w = k, w ∈ {0, 1}n

}
,

where e = (1, · · · , 1)� ∈ R
n is the vector of ones, and {0, 1}n denotes the set of

n-dimensional 0-1 vectors. To avoid solving such a binary optimization problem, an
alternative approach is to solve its convex relaxation which, as pointed out in [28,29],
is the tightest convex relaxation of the above problem:

ŵ := argmin
w

{
‖y − A(u ⊗ w)‖22 : e�w = k, 0 � w � e

}
. (3)

Based on the convex relaxation of the operator Z#
k (·), efficient algorithms called

relaxed optimal k-thresholding algorithms (ROT) and its variants have been pro-
posed and investigated in [28,29]. Simulations demonstrate that this new framework
of thresholding methods works efficiently, and it overcomes the drawback of the tra-
ditional hard thresholding operator.

Due to the aforementioned weakness ofHk which appears in the Newton-type iter-
ative method (2), it makes sense to consider a further improvement of the performance
of such a method. The purpose of this paper is to combine the optimal k-thresholding
and Newton-type search direction in order to develop an algorithm that may alleviate
or eliminate the drawback of hard thresholding operator and hence enhance the numer-
ical performance of the Newton-type method (2). The proposed algorithms are called
the Newton-type optimal k-thresholding (NTOT). The convex relaxation versions of
this algorithm are also studied in this paper, which are referred to as Newton-type
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relaxed optimal thresholding (NTROT) algorithms, and its enhanced version with a
pursuit step (NTROTP for short). The guaranteed performance and convergence of
these algorithms are shown under the RIP assumption as well as suitable conditions
imposed on the algorithmic parameters.

The paper is organized as follows. The algorithms are described in Sect. 2. The
theoretical performances of the proposed algorithms in noisy settings are shown in
Sect. 3. The empirical results are demonstrated in Sect. 4, which indicate that under
appropriate choices of the parameter and stepsize the proposed algorithms are efficient
for signal reconstruction and their performances are comparable to a few existing
methods.

2 Algorithms

Some notations will be used throughout the paper. LetRn denote the n-dimensional
Euclidean space and R

m×n denote the set of m × n matrices. For a vector x ∈ R
n ,

the �2-norm is defined as ‖x‖2 :=
√∑n

i x
2
i . We use [N ] to denote the set {1, · · · , n}.

Given a set Ω ⊆ [N ], Ω := [N ]\Ω denotes the complement set of Ω . xΩ denotes
the vector obtained from x by retaining the entries of x indexed by Ω and zeroing out
the ones indexed by Ω . A� denotes the transpose of the matrix A. Give a vector u,
Lk(u) denotes the index set of the largest k magnitudes of u. Throughout the paper, a
vector x is said to be k-sparse if ‖x‖0 � k.

Note that the gradient and Hessian of the function f (x) = 1
2‖y − Ax‖22 are given

as

∇ f (x) = −A�(y − Ax), ∇2 f (x) = A�A.

For the problem (1), the Hessian A�A is singular, and thus, the classic Newton’s
method cannot be applied to the function f (x) directly. Modifying the matrix by
adding ε I leads to the non-singular matrix A�A+ ε I , where ε is a positive parameter
and I ∈ R

n×n is the identity matrix. Then, we immediately obtain the following
Newton-type iterative method for the minimization of f (x) :

x p+1 = x p + λ
(
A�A + ε I

)−1
A�(y − Ax p),

where λ is a stepsize. Different from the approach (2), we utilize the optimal k-
thresholding operator instead of the hard thresholding operator to develop a Newton-
type iterative algorithm, which is described as Algorithm 1.

Solving the 0-1 problem (P1) is generally expensive, and Zhao [28] suggested
solving its tightest convex relaxation, i.e., the problem (3). This results in the Newton-
type relaxed optimal k-thresholding algorithm, which is described as Algorithm 2.

If the step (P2) generates a 0-1 solution w p, i.e., w p is exactly a k-sparse vector,
then u p ⊗w p is exactly k-sparse, in which case the operatorHk in (P3) is superfluous.
However, as the vector w p may not necessarily be k-sparse, Hk is used in (P3) to
truncate the iterate so that it satisfies the constraint of the problem (1). This is quite
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Algorithm 1 Newton-Type Optimal k-Thresholding (NTOT)
Input: measurement matrix A, measurement vector y, sparsity level k, parameter ε > 0, stepsize λ, and
initial point x0 ∈ R

n .

Iteration:

u p = x p + λ(A�A + ε I )−1A�(y − Ax p), (P1)

w p = argmin
w

{‖y − A(u p ⊗ w)‖22 : e�w = k, w ∈ {0, 1}n},
x p+1 = u p ⊗ w p .

Output: k-sparse vector x̂ .

Algorithm 2 Newton-Type Relaxed Optimal k-Thresholding (NTROT)
Input: measurement matrix A, measurement vector y, sparsity level k, parameter ε > 0, stepsize λ, and
initial point x0 ∈ R

n .

Iteration:

u p = x p + λ(A�A + ε I )−1A�(y − Ax p), (P2)

w p = argmin
w

{‖y − A(u p ⊗ w)‖22 : e�w = k, 0 � w � e},

x p+1 = Hk (u
p ⊗ w p). (P3)

Output: k-sparse vector x̂ .

different fromHk(u p) that directly performs hard thresholding on u p which may not
be sparse at all. The vector w p is either k-sparse or admits a compressible feature in
which case performing hard thresholding on the resulting vector u p ⊗ w p can avoid
significant oscillation of the objective value of (1).

To further stabilize the NTROT, a pursuit step can be performed after solving the
optimization problem (P2). This leads to the algorithm called NTROTP, which is the
main algorithm concerned in this paper.

Algorithm 3 Newton-Type Relaxed Optimal k-Thresholding Pursuit (NTROTP)
Input: measurement matrix A, measurement vector y, sparsity level k, parameter ε > 0, stepsize λ, and
initial point x0 ∈ R

n .

Iteration:

u p = x p + λ(A�A + ε I )−1A�(y − Ax p), (P4)

w p = argmin
w

{‖y − A(u p ⊗ w)‖22 : e�w = k, 0 � w � e},
S p+1 = Lk (u

p ⊗ w p),

x p+1 = argminz{‖y − Az‖2 : supp(z) ⊆ S p+1}. (P5)

Output: k-sparse vector x̂ .
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The step (P5) is a pursuit step at which a least-squares problem is solved on the
support of the largest k magnitudes of the vector u p ⊗ w p. In the next section, we
establish sufficient conditions for the guaranteed performance and convergence of the
algorithms NTOT, NTROT, and NTROTP.

3 Theoretical Analysis

Before going ahead, let us first recall the definition of restricted isometry constant
(RIC).

Definition 1 [11] The q-th order RIC δq of a matrix A ∈ R
m×n is the smallest number

δq � 0 such that

(
1 − δq

) ‖x‖22 � ‖Ax‖22 �
(
1 + δq

) ‖x‖22
for all q-sparse vectors x , where q is an integer number.

If δq < 1, we say that the matrix A satisfies the q-th order restricted isometry property
(RIP). It is well known that the random matrices including Bernoulli, Gaussian and
more general sub-Gaussian matrices may satisfy the RIP of a certain order with an
overwhelming probability [1,3,11].

3.1 Analysis of NTOT in Noisy Scenarios

The following two lemmas are very helpful to show the main result in this section.
The first one was taken from [27], and the second one can be found in [28].

Lemma 1 [27] Let A ∈ R
m×n with m � n be a measurement matrix. Given a vector

u ∈ R
n and an index setΩ ⊂ [N ], if (ε, λ) is chosen such that ε > σ 2

1 and λ � ε+σ 2
m,

where σ1, σm are the largest and smallest singular values of the matrix A, respectively,
then one has

∥∥∥
[
(I − λ(A�A + ε I )−1A�A)u

]
Ω

∥∥∥
2

� (δt + σ 2
1 − λσ 2

1

ε + σ 2
1

)‖u‖2

provided that |Ω ∪ supp(u)| � t , where t is a certain integer number.

Lemma 2 [28] Let y = Ax̂ + η be the measurements of the k-sparse vector x̂ ∈ R
n,

and let u ∈ R
n be an arbitrary vector. LetZ#

k (u) be the optimal k-thresholding vector
of u. Then, for any k-sparse binary vector ŵ ∈ {0, 1}n satisfying supp(x̂) ⊆ supp(ŵ),
one has

‖Z#
k (u) − x̂‖2 �

√
1 + δk

1 − δ2k
‖(x̂ − u) ⊗ ŵ‖2 + 2√

1 − δ2k
‖η‖2. (4)
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The bound (4) follows directly from the proof of Theorem 4.3 in [28]. In fact, the
inequality (4) is obtained by combining the inequality (4.5) and the first inequality of
(4.7) in [28].

We now state and show the sufficient condition for the guaranteed performance of
NTOT in noisy settings.

Theorem 1 Let y = Ax + η be the measurements of the signal x ∈ R
n with measure-

ment error η. Let S = Lk(x) and σ1 and σm be, respectively, the largest and smallest
singular values of the matrix A ∈ R

m×n. Suppose that the restricted isometry constant
of A satisfies

δ2k < 0.534 9,

and that ε is a given parameter satisfying

ε > max

⎧
⎨
⎩σ 2

1 ,

⎛
⎝ σ 2

1 − σ 2
m√

1−δ2k
1+δk

− δ2k

− 1

⎞
⎠ σ 2

1

⎫
⎬
⎭ . (5)

If the parameter λ in NTOT is chosen such that

ε + σ 2
1 +

(
δ2k −

√
1 − δ2k

1 + δk

)
ε + σ 2

1

σ 2
1

< λ � ε + σ 2
m, (6)

then the sequence {x p} generated by the NTOT satisfies that

∥∥∥x p+1 − xS
∥∥∥
2

� ρ
∥∥x p − xS

∥∥
2 + τ

∥∥AxS + η
∥∥
2 , (7)

where

ρ =
√

1 + δk

1 − δ2k

(
δ2k + σ 2

1 − λσ 2
1

ε + σ 2
1

)

and

τ = 1√
1 − δ2k

(
λσ 2

1

√
1 + δk

ε + σ 2
1

+ 2

)
.

In particular, when x is k-sparse and η = 0, then the sequence {x p} converges to x.

Proof Let ŵ be a k-sparse binary vector such that S ⊆ supp(ŵ), which implies xS =
xS ⊗ ŵ. From the structure of NTOT, Z#

k (u p) = u p ⊗ w p where w p is the optimal

123



N. Meng, Y.-B. Zhao

solution to the problem (P1). Note that y = Ax + η = AxS + η′ where η′ = AxS + η.
By Lemma 2, we immediately have

‖u p ⊗ w p − xS‖2 �
√

1 + δk

1 − δ2k
‖(u p − xS) ⊗ ŵ‖2 + 2√

1 − δ2k
‖η′‖2. (8)

By the definition of u p in NTOT, we see that

u p − xS = x p − xS + λ
(
A�A + ε I

)−1
A� (

y − Ax p)

=
(
I − λ

(
A�A + ε I

)−1
A�A

) (
x p − xS

) + λ
(
A�A + ε I

)−1
A�η′.

(9)

By the singular value decomposition of A, for any vector u ∈ R
n , it is very easy to

verify that

∥∥∥∥
(
A�A + ε I

)−1
A�u

∥∥∥∥
2

� σ1

ε + σ 2
1

‖u‖2. (10)

From the choices of (ε, λ), we see that λ � ε + σ 2
m and ε > σ 2

1 . Thus, it follows from
(9) and (10) that

‖(u p − xS) ⊗ ŵ‖2 =‖(u p − xS)supp(ŵ)‖2
�‖

[
(I − λ(A�A + ε I )−1A�A)(x p − xS)

]
supp(ŵ)

‖2

+
∥∥∥∥∥
(

λ
(
A�A + ε I

)−1
A�η′

)

supp(ŵ)

∥∥∥∥∥
2

�
(

δ2k + σ 2
1 − λσ 2

1

ε + σ 2
1

)
‖xS − x p‖2 + λσ1

ε + σ 2
1

∥∥η′∥∥
2 , (11)

where the first term of the right-hand side follows from Lemma 1 with the fact
| supp(ŵ) ∪ supp(x p − xS)| � | supp(ŵ) ∪ S ∪ S p| � 2k since S ⊆ supp(ŵ).
Combining (8) and (11) leads to

∥∥∥x p+1 − xS
∥∥∥
2

= ‖u p ⊗ w p − xS‖2 � ρ
∥∥x p − xS

∥∥
2 + τ

∥∥η′∥∥
2 , (12)

where

ρ =
√

1 + δk

1 − δ2k
(δ2k + σ 2

1 − λσ 2
1

ε + σ 2
1

), τ = 1√
1 − δ2k

(
λσ1

√
1 + δk

ε + σ 2
1

+ 2

)
.
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From (12), to guarantee the recovery of xS by the NTOT, it is sufficient to ensure that
ρ < 1, which is equivalent to

λ > ε + σ 2
1 +

(
δ2k −

√
1 − δ2k

1 + δk

)
ε + σ 2

1

σ 2
1

.

This is guaranteed under the choice of λ given in (6). The remaining proof is to show
that the range in (6) exists. In fact, if the following two conditions are satisfied, the
existence of such a range is guaranteed:

δ2k −
√
1 − δ2k

1 + δk
< 0 (13)

and

ε + σ 2
1 +

(
δ2k −

√
1 − δ2k

1 + δk

)
ε + σ 2

1

σ 2
1

< ε + σ 2
m . (14)

By noting that δk � δ2k , it is straightforward to verify that the inequality (13) is
guaranteed under the condition δ2k < 0.534 9. The inequality (14) can be written as

ε >

⎛
⎝ σ 2

1 − σ 2
m√

1−δ2k
1+δk

− δ2k

− 1

⎞
⎠ σ 2

1 ,

which is also guaranteed under the choice of ε given in (5). Thus, the desired result
follows. In particular, if η = 0 and x is k-sparse, the relation (7) is reduced to

∥∥∥x p+1 − x
∥∥∥
2

� ρ
∥∥x p − x

∥∥
2 � ρ p

∥∥∥x0 − x
∥∥∥
2
,

which implies that {x p} converges to x as p → ∞.

3.2 Analysis of NTROT in Noisy Scenarios

Still we denote by S = Lk(x) the index set of the largest k magnitudes of x . The
measurements are given as y = Ax + η, where η ∈ R

m is a noise vector. We first
recall some useful technical results which have been shown in [28,29]. Lemma 3 is a
property of the hard thresholding operatorHk, whereas the second one is property of
the solution of the optimization problem (P2) in NTROT and (P4) in NTROTP.

Lemma 3 [28] Let z ∈ R
n be a given vector and v ∈ R

n be a k-sparse vector with
Φ = supp(v). Denote Ω = Lk(z). Then, one has

‖v − Hk(z)‖2 � ‖(v − z)Ω∪Φ‖2 + ‖(v − z)Ω\Φ‖2.
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Lemma 4 [29] Let Λ ⊆ {1, · · · , n} be any given index set, and let w ∈ R
n be any

given vector satisfying e�w = k and 0 � w � e. Decompose the vector wΛ as

wΛ = wΛ1 + · · · + wΛq−1 + wΛq ,

where q is a nonnegative integer number such that |Λ| = (q − 1)k + α where 0 �
α < k, wΛ1 is the first k largest magnitudes in {wi : i ∈ Λ}, wΛ2 is the second k
largest magnitudes in {wi : i ∈ Λ}, and so on. Then one has

∥∥wΛ1

∥∥∞ + · · · + ∥∥wΛq−1

∥∥∞ + ∥∥wΛq

∥∥∞ � 2.

The next result is actually implied from the proof of Theorem 4.8 in [28]. Item
(i) in the lemma below is immediately obtained by combining two inequalities in the
proof of Theorem 4.8 in [28]. So we only outline a simple proof of the Item (ii) for
this lemma.

Lemma 5 Let y = Ax + η be the measurements of x and ŵ ∈ {0, 1}n be a k-sparse
binary vector such that S = Lk(x) ⊆ supp(ŵ). Let S p+1 = supp(x p+1), u p and w p

be defined in NTROT. One has

(i)
∥∥(xS − u p ⊗ w p)

S∪S p+1

∥∥
2

�
√

1 + δk

1 − δ2k

∥∥(xS − u p) ⊗ ŵ
∥∥
2 + 2√

1 − δ2k

∥∥η′∥∥
2

+ 1√
1 − δ2k

∥∥∥A
[(
xS − u p ⊗ w p)

S∪S p+1

]∥∥∥
2
,

(ii)
∥∥∥A

[(
xS − u p ⊗ w p)

S∪S p+1

]∥∥∥
2

� 2
√
1 + δk‖Hk(u

p − xS)‖2.

Proof By setting Λ := S ∪ S p+1 and w := w p in Lemma 4, decompose the vector
(w p)

S∪S p+1 into

(w p)
S∪S p+1 = (w p)Λ1 + · · · + (w p)Λq−1 + (w p)Λq

in the way described in Lemma 4. Since (xS)S∪S p+1 = 0, we have

(
xS − u p ⊗ w p)

S∪S p+1 = (
(xS − u p) ⊗ w p)

S∪S p+1

= (
(xS − u p) ⊗ w p)

Λ1
+ · · · + (

(xS − u p) ⊗ w p)
Λq

= v(1) + v(2) + · · · + v(q),

where v(i) = ((xS − u p) ⊗ w p)Λi
, i = 1, · · · , q. Thus,

∥∥∥A
[(
xS − u p ⊗ w p)

S∪S p+1

]∥∥∥
2

�
q∑

i=1

∥∥∥Av(i)
∥∥∥
2

�
√
1 + δk

q∑
i=1

∥∥∥v(i)
∥∥∥
2
,
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where the last inequality follows from the definition of δk and the fact | supp(v(i))| � k.
We also have that

q∑
i=1

∥∥∥v(i)
∥∥∥
2

=
q∑

i=1

∥∥∥[(u p − xS
) ⊗ w p]

Λi

∥∥∥
2

�
q∑

i=1

∥∥(w p)Λi

∥∥∞ ‖(u p − xS)Λi ‖2

�2
∥∥Hk

(
u p − xS

)∥∥
2 ,

where the last inequality follows from the fact ‖(u p − xS)Λi ‖2 � ‖Hk (u p − xS)‖2
and Lemma 4 which claims that

∑q
i=1

∥∥(w p)Λi

∥∥∞ < 2. Combining the above two
inequalities yields

∥∥∥A
[(
xS − u p ⊗ w p)

S∪S p+1

]∥∥∥
2

� 2
√
1 + δk

∥∥Hk
(
u p − xS

)∥∥
2 ,

which is exactly the relation given in Item (ii) of the lemma.

The main result in this section is stated as follows.

Theorem 2 Let y = Ax + η be the measurements of x ∈ R
n with measurement error

η. Let S = Lk(x), and let σ1 and σm denote, respectively, the largest and smallest
singular values of the matrix A ∈ R

m×n. Suppose that the restricted isometry constant
of A satisfies that

δ3k < 0.211 9.

Let ε be a given parameter satisfying

ε > max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2
1 ,

⎛
⎜⎜⎜⎝

σ 2
1 − σ 2

m
1

3

√
1+δ3k
1−δ3k

+1
− δ3k

− 1

⎞
⎟⎟⎟⎠ σ 2

1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (15)

If the parameter λ in NTROT satisfies

ε + σ 2
1 +

⎛
⎝δ3k − 1

3
√

1+δ3k
1−δ3k

+ 1

⎞
⎠ ε + σ 2

1

σ 2
1

< λ � ε + σ 2
m, (16)

then the sequence {x p} generated by the NTROT satisfies that

‖x p+1 − xS‖2 � ρ
∥∥x p − xS

∥∥
2 + τ

∥∥AxS + η
∥∥
2 , (17)
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where

ρ =
√

1 + δk

1 − δ2k

(
δ2k + 2δ3k + 3σ 2

1 − 3
λσ 2

1

ε + σ 2
1

)
+ δ3k + σ 2

1 − λσ 2
1

ε + σ 2
1

(18)

and

τ = 1√
1 − δ2k

(
3λσ1

√
1 + δk

ε + σ 2
1

+ 2

)
+ λσ1

ε + σ 2
1

. (19)

In particular, when x is k-sparse and η = 0, then the sequence {x p} converges to x.

Proof Let S, σ1, σm be defined as in the theorem. Note that y := Ax + η = AxS + η′
where η′ = AxS + η. Denote by S p+1 = supp(x p+1). Applying Lemma 3, we
immediately have

‖xS − x p+1‖2 = ‖xS − Hk(u
p ⊗ w p)‖2

� ‖(u p ⊗ w p − xS)S p+1∪S‖2 + ‖(u p ⊗ w p − xS)S p+1\S‖2. (20)

In what follows, we bound each of the terms on the right-hand side of the above
inequality. By the definition of u p in NTROT, we have

u p − xS =
(
I − λ

(
A�A + ε I

)−1
A�A

) (
x p − xS

) + λ(A�A + ε I )−1A�η′.

Noting that (xS)S p+1\S = (xS ⊗ w p)S p+1\S = 0, we have

‖(u p ⊗ w p − xS)S p+1\S‖2
= ‖((u p − xS) ⊗ w p)S p+1\S‖2
� ‖(u p − xS)S p+1\S‖2 (since 0 � w p � e)

=
∥∥∥∥∥
[(

I − λ
(
A�A + ε I

)−1
A�A

) (
x p − xS

) + λ(A�A + ε I )−1A�η′
]

S p+1\S

∥∥∥∥∥
2

�
∥∥∥∥∥
[(

I − λ
(
A�A + ε I

)−1
A�A

) (
x p − xS

)]

S p+1\S

∥∥∥∥∥
2

+ λ

∥∥∥∥
[
(A�A + ε I )−1A�η′]

S p+1\S

∥∥∥∥
2

�
(

δ3k + σ 2
1 − λσ 2

1

ε + σ 2
1

)
‖x p − xS‖2 + λσ1

ε + σ 2
1

‖η′‖2, (21)

where the last inequality follows from Lemma 1 (with the fact | supp(x p − xS) ∪
(S p+1\S)| � 3k) and (10). We now provide an upper bound for the first term of the
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right-hand side of (20). Let ŵ be a k-sparse binary vector satisfying S ⊆ supp(ŵ). By
Lemma 5, we have

∥∥(xS − u p ⊗ w p)
S∪S p+1

∥∥
2

�
√

1 + δk

1 − δ2k

∥∥(xS − u p) ⊗ ŵ
∥∥
2 + 2√

1 − δ2k

∥∥η′∥∥
2

+ 1√
1 − δ2k

∥∥∥A
[(
xS − u p ⊗ w p)

S∪S p+1

]∥∥∥
2

(22)

and

∥∥∥A
[(
xS − u p ⊗ w p)

S∪S p+1

]∥∥∥
2

� 2
√
1 + δk‖Hk(u

p − xS)‖2. (23)

Applying Lemma 1 (with ε > σ 2
1 , λ � ε +σ 2

m and | supp(x p − xS)∪ supp(ŵ)| � 2k)
and (10), we have

‖(xS − u p) ⊗ ŵ‖2
� ‖

[
(I−λ(A�A+ε I )−1A�A)(x p−xS)

]
⊗ ŵ‖2+‖(λ(A�A+ε I )−1A�η′) ⊗ ŵ‖2

�
(

δ2k + σ 2
1 − λσ 2

1

ε + σ 2
1

)
‖xS − x p‖2 + λσ1

ε + σ 2
1

‖η′‖2. (24)

Denote by Φ = Lk(xS − u p). As | supp(x p − xS) ∪ Φ| � 3k, by a proof similar to
(24), we also have

‖Hk(xS − u p)‖2 =‖(xS − u p)Φ‖2
�

(
δ3k + σ 2

1 − λσ 2
1

ε + σ 2
1

)∥∥x p − xS
∥∥
2 + λσ1

ε + σ 2
1

‖η′‖2. (25)

Combining (22)–(25), we have

∥∥(xS − u p ⊗ w p)
S∪S p+1

∥∥
2

� ρ′ ∥∥xS − x p
∥∥
2 + τ ′ ∥∥η′∥∥

2 , (26)

where

ρ′:=
√

1 + δk

1 − δ2k

(
δ2k + 2δ3k + 3σ 2

1 − 3λσ 2
1

ε + σ 2
1

)

and

τ ′ = 1√
1 − δ2k

(
3λσ1

√
1 + δk

ε + σ 2
1

+ 2

)
.
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Substituting (26) and (21) into (20) yields (17) with constants ρ and τ given in (18)
and (19), respectively. Due to the fact δk � δ2k � δ3k , we see from (18) that

ρ �
(
3

√
1 + δ3k

1 − δ3k
+ 1

)(
δ3k + σ 2

1 − λσ 2
1

ε + σ 2
1

)
.

Thus, to ensure ρ < 1, it is sufficient to require that

(
3

√
1 + δ3k

1 − δ3k
+ 1

)(
δ3k + σ 2

1 − λσ 2
1

ε + σ 2
1

)
< 1,

which can be written as

λ > ε + σ 2
1 +

⎛
⎝δ3k − 1

3
√

1+δ3k
1−δ3k

+ 1

⎞
⎠ ε + σ 2

1

σ 2
1

.

This together with λ � ε + σ 2
m implies that if the range of λ is given as (16), then it

guarantees that ρ < 1. To ensure the existence of the interval in (16), it is sufficient to
choose ε such that

ε + σ 2
1 +

⎛
⎝δ3k − 1

3
√

1+δ3k
1−δ3k

+ 1

⎞
⎠ ε + σ 2

1

σ 2
1

< ε + σ 2
m,

which is equivalent to

δ3k − 1

3
√

1+δ3k
1−δ3k

+ 1
< 0, ε >

⎛
⎜⎜⎜⎝

σ 2
1 − σ 2

m
1

3

√
1+δ3k
1−δ3k

+1
− δ3k

− 1

⎞
⎟⎟⎟⎠ σ 2

1 .

The first condition is ensured by δ3k < 0.211 9, and the second condition is ensured
by the choice of ε given in (15). The proof of the theorem is complete. In particular,
if η = 0 and x is k-sparse, the relation (17) is reduced to

∥∥∥x p+1 − x
∥∥∥
2

� ρ
∥∥x p − x

∥∥
2 � ρ p

∥∥∥x0 − x
∥∥∥
2
,

which implies that {x p} converges to x as p → ∞.

3.3 Analysis of NTROTP in Noisy Scenarios

Before showing the main result, we introduce a lemma concerning a property of the
pursuit step.
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Lemma 6 [28] Let y = Ax̂ + ν be the noisy measurements of the k-sparse signal
x̂ ∈ R

n, and let u ∈ R
n be an arbitrary k-sparse vector. Then, the optimal solution of

the pursuit step

z∗ = argmin
z

{
‖y − Az‖22 : supp(z) ⊆ supp(u)

}

satisfies that

∥∥z∗ − x̂
∥∥
2 � 1√

1 − (δ2k)
2
‖x̂ − u‖2 +

√
1 + δk

1 − δ2k
‖ν‖2.

Theorem 3 Let y = Ax + η be the measurements of the signal x ∈ R
n with mea-

surement error η. Let S = Lk(x) and σ1 and σm denote, respectively, the largest and
smallest singular values of the matrix A ∈ R

m×n. Suppose that the restricted isometry
constant of A satisfies that

δ3k < 0.2,

and ε is a given parameter satisfying

ε > max

⎧⎪⎪⎨
⎪⎪⎩

σ 2
1 ,

⎛
⎜⎜⎝

σ 2
1 − σ 2

m
1

3
1−δ3k

+ 1√
1−(δ3k )

2

− δ3k
− 1

⎞
⎟⎟⎠ σ 2

1

⎫⎪⎪⎬
⎪⎪⎭

. (27)

If the parameter λ in NTROTP satisfies

ε + σ 2
1 +

⎛
⎝δ3k − 1

3
1−δ3k

+ 1√
1−(δ3k )

2

⎞
⎠ ε + σ 2

1

σ 2
1

< λ � ε + σ 2
m, (28)

then the sequence {x p} generated by the NTROTP satisfies that

∥∥∥x p+1 − xS
∥∥∥
2

� ρ̃
∥∥x p − xS

∥∥
2 + τ̃

∥∥AxS + η
∥∥
2 , (29)

where

ρ̃ =
(

3

1 − δ3k
+ 1√

1 − (δ3k)
2

)(
δ3k + σ 2

1 − λσ 2
1

ε + σ 2
1

)
, (30)

and
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τ̃ =
√
1 + δk

1 − δ2k
+ 1

(1 − δ2k)
√
1 + δ2k

(
3λσ1

√
1 + δk

ε + σ 2
1

+ 2

)
+ λσ1

(ε + σ 2
1 )

√
1 − (δ2k)

2
.

(31)

In particular, when x is k-sparse and η = 0, then the sequence {x p} converges to x.

Proof NTROTP comprises of NTROT and a pursuit step. From the proof of Theorem
2, we see that

∥∥xS − Hk(u
p ⊗ w p)

∥∥
2 � ρ

∥∥x p − xS
∥∥
2 + τ

∥∥η′∥∥
2 , (32)

where the constants ρ and τ are given by (18) and (19), respectively. From the step
(P5), x p+1 is the solution to the pursuit step. By Lemma 6, we have

∥∥∥xS − x p+1
∥∥∥
2

� 1√
1 − (δ2k)

2

∥∥xS − Hk(u
p ⊗ w p)

∥∥
2 +

√
1 + δk

1 − δ2k
‖η′‖2, (33)

where η′ = AxS + η. Using δk � δ2k � δ3k and combining (32) and (33) lead to

∥∥∥xS − x p+1
∥∥∥
2

� ρ̃
∥∥x p − xS

∥∥
2 + τ̃

∥∥η′∥∥
2 ,

where ρ̃ and τ̃ are defined as (30) and (31), respectively. Note that ρ̃ < 1 is equivalent
to

λ > ε + σ 2
1 +

⎛
⎝δ3k − 1

3
1−δ3k

+ 1√
1−(δ3k )

2

⎞
⎠ ε + σ 2

1

σ 2
1

.

This is ensured by the choice of λ given in (28). This means the choice of λ in (28)
ensures that ρ̃ < 1. To guarantee the existence of the range (28), it is sufficient to
require that

ε + σ 2
1 +

⎛
⎝δ3k − 1

3
1−δ3k

+ 1√
1−(δ3k )

2

⎞
⎠ ε + σ 2

1

σ 2
1

< ε + σ 2
m, (34)

which is equivalent to

δ3k − 1
3

1−δ3k
+ 1√

1−(δ3k )
2

< 0, ε >

⎛
⎜⎜⎝

σ 2
1 − σ 2

m
1

3
1−δ3k

+ 1√
1−(δ3k)

2

− δ3k
− 1

⎞
⎟⎟⎠ σ 2

1 . (35)

Note that 1√
1−(δ3k )

2
< 1

1−δ3k
. The first condition in (35) is satisfied when δ3k < 0.2.

The second condition (35) is also satisfied provided ε is chosen large enough, i.e.,
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satisfying (27). In particular, if η = 0 and x is k-sparse, the relation (29) is reduced to

∥∥∥x p+1 − x
∥∥∥
2

� ρ̃
∥∥x p − x

∥∥
2 � ρ̃ p

∥∥∥x0 − x
∥∥∥
2
,

which implies that {x p} converges to x as p → ∞.

Remark 1 The bound for δ3k in Theorems 2 and 3 can be replaced by the one for δ2k
either through a more subtle analysis (we believe), or through the relation δ3k < 3δ2k
which is shown in Proposition 6.6 in [3]. In fact, from δ3k < 3δ2k, it is evident that
δ2k < 0.070 6 implies δ3k < 0.211 9, and that δ2k < 0.066 6 implies δ3k < 0.2.
Therefore, we may use the bound δ2k < 0.070 6 in Theorem 2 and δ2k < 0.066 6 in
Theorem 3 without any damage of the results in these theorems.

Remark 2 By the structure of the proposed algorithm, we only need to compute the
matrix (A�A + ε I )−1 once. This inverse can be obtained by using singular value
decomposition (SVD) of the matrix A, since it also provides information for the
choice of the parameters (ε, λ) in the algorithms.

4 Numerical Experiments

Simulations were performed to test the performance of the proposed algorithms
with respect to residual reduction, average number of iterations needed for con-
vergence and success frequency for signal recovery. Without specified statement,
the measurement matrices generated for experiments are Gaussian random matri-
ces, whose entries are independent and identically distributed and follow the standard
normal distribution N (0, 1). Nonzero entries of realized sparse signals also follow
the N (0, 1), and their position follows a uniform distribution. We will compare the
performances of the proposedPGROTPalgorithmand several existingmethods includ-
ing �1-minimization [10,11], orthogonal matching pursuit (OMP) [16,17], subspace
pursuit (SP) [18], Newton-step-based hard thresholding pursuit (NSHTP) [27], quasi-
Newton iterative projection (QNIP) [35], and quasi-Newton projection pursuit (QNPP)
[36]. All involved optimization problems in algorithmswere solved by the CVXwhich
is developed by Grant and Boyd [37] with solver ‘Mosek’.

4.1 Residual Reduction

The experiment was carried out to compare the residual-reduction performance of
the algorithms with given (ε, λ). In this experiment, we set A ∈ R

256×512, y = Ax∗,
‖x∗‖0 = 70 and x0 = 0. The stepsize λ and parameter ε are set, respectively, as

λ = 5, ε = max{σ 2
1 + 1, λ − σ 2

m}, (36)

which guarantees that ε > σ 2
1 and λ � ε + σ 2

m , where σ1 and σm denote the largest
and the smallest singular value of the matrix. Figure 1 demonstrates the change of
the residual value, i.e., ‖y − Ax‖2, in the course of iterations of the algorithms. From
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(a) (b)

Fig. 1 (a) Comparison of residual-reduction performances of several algorithms; (b) residual change in the
course of iterations using different thresholding operators

Fig. 1(a), it can be seen that the NTROTP is more powerful than other algorithms in
residual reduction. In the same experiment environment, we also compare the residual
change in the course ofNSIHTandNTROTwhich use different thresholding operators.
Figure 1(b) shows that the algorithm with optimal thresholding operator can reduce
the residual more efficiently than the one with hard thresholding operator.

The performance of NTROT and NTROTP is clearly related to the choice of (ε, λ).
Thus, we test the residual-reduction performance of the proposed algorithms in terms
of different values of parameter ε and stepsize λ. The results are shown in Figs. 2 and
3, respectively. In Fig. 2, the stepsize λ is fixed as λ = 10, and ε = ε∗, 1.1ε∗, 1.5ε∗
and 2ε∗, where ε∗ = σ 2

1 + 1. In Fig. 3, the parameter ε is fixed as ε = σ 2
1 + 1, and

stepsize λ is taken as λ = 1, 2, 5, 10, respectively. Such choices of (ε, λ) satisfy that
ε > σ 2

1 and λ � ε +σ 2
m . It can be seen that the NTROT is more sensitive to the change

of ε and λ than the NTROTP which is generally insensitive to the change of (ε, λ).
This indicates that NTROTP is a stable algorithm.

Fig. 2 Residual reduction by NTROT and NTROTP with λ = 10 and different parameters ε: ε1 = ε∗,
ε2 = 1.1ε∗, ε3 = 1.5ε∗, ε4 = 2ε∗
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Fig. 3 Residual reduction by NTROT and NTROTP with ε = σ 2
1 +1 and different stepsizes λ = 1, 2, 5, 10

4.2 Number of Iterations

The simulations were also performed to examine the impact of sparsity levels and
measurement levels on the average number of iterations needed for signal reconstruc-
tion via Newton-type iterative algorithms. In this experiment, all algorithms start from
x0 = 0 and terminate either when r := ‖x p − x∗‖2 / ‖x∗‖2 � 10−3 is met or when
the maximum number of iterations (i.e., 50 iterations) is reached.

Figure 4(a) demonstrates the influence of sparsity levels on the number of iterations
needed by NSIHT, NSHTP, NTROT, and NTROTP to reconstruct a signal. In this
experiment, the size ofmeasurementmatrices is still 256×512, and the ratio k/n varies
from 0.01 to 0.35. The average number of iterations is calculated based on 50 random
examples for each sparsity level k/n. A common feature of these algorithms is thatwith
increase in the sparsity levels, the required iterations for the algorithms to reconstruct
signals also increase. We also observe that both the optimal thresholding and pursuit
step help reduce the required number of iterations of algorithms to reconstruct a signal.

Fig. 4 Comparison of the average number of iterations required by different algorithms
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Figure 4(b) compares the average number of iterations required by several algo-
rithms applying to differentmeasurement levels. The target signal is fixed as x∗ ∈ R

500

with ‖x∗‖0 = 50, and the length of observed vector y = Ax∗, i.e., the number of
measurements, varies from 50 to 300. When m/n < 0.25, we see that no algorithm
could recover the target 50-sparse signal within 50 iterations, due to the fact that the
measurement levels are too low for signal reconstruction. The more measurements
obtained for the target signal x∗, the less number of iterations needed for reconstruc-
tion, as shown in Fig. 4(b). Both NSHTP and NTROTP could recover the signal by
using relatively a small number of iterations when the ratio m/n � 0.35, and the
NTROTP needs less iterations than NSIHT, NSHTP, and NTROT.

4.3 Performance of Signal Recovery

Simulations were carried out to compare the signal reconstruction performance
of the NTROTP algorithm and several existing ones with both exact and inexact
measurements. In this experiment, the size of matrices is still 256× 512. All iterative
algorithms start at x0 = 0. The ratio k/n increases from 0.01 to 0.35.We first compare
our algorithm with several heuristic algorithms including �1-minimization, OMP, SP,
NSHTP, andNTROTP. The results are given in Fig. 5. Then, we compare our algorithm
with two existing Newton-Type methods for which the results are summarized in Fig.
6. The vertical axes in Figs. 5 and 6 represent the reconstruction success rates which
is calculated based on 50 random examples.

In the experiments producing the results in Fig. 5, the measurements of x∗ are set
as y = Ax∗ + 0.001θ , where θ ∈ R

256 is a standard Gaussian random vector. The
iterative algorithms terminate after 20 iterations except for the OMP which stops after
k iterations owing to the its structure, where k = ‖x∗‖0. The choice of (ε, λ) is the
same as (36). The condition ‖x p−x∗‖2/‖x∗‖2 � 10−3 is set as the recovery criterion.
Figure 5 indicates that the NTROTP is stable and robust for sparse signal recovery
compared with other algorithms used in this experiments.

Fig. 5 Comparison of success frequencies of signal recovery via different algorithms
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Fig. 6 ComparisonbetweenQNIP,QNPP, andNTROTPwith ε = 10−5 anddifferent parametersλ = 1, 2, 5

The entries of Gaussian random matrices used in the experiment that generates
Fig. 6 follow the normal distribution N (0, 1/m), where m denotes the number of
measurements, i.e., m = 256. In such an experiment, the noisy measurements of x∗
are set as y = Ax∗ + 10−5θ , where θ ∈ R

256 is a standard Gaussian random vector;
all algorithms terminate when either the criterion ‖x p − x∗‖2 / ‖x∗‖2 � 10−3 is met
or a total of 50 iterations are performed for QNIP and NTROTP and 300 iterations are
performed for QNIP (which works slowly and thus we allow this algorithm to perform
much more iterations than the other two). For NTROTP algorithm, we set ε = 10−5

to slightly perturb the singular Hessian A�A such that A�A + ε I is positive definite.
The parameter λ is set as λ = 1, 2, and 5, respectively. As indicated in Fig. 6, QNPP
and NTROTP algorithms are comparable, and they outperform QNIP even if we allow
the QNIP to perform much more iterations than the other two algorithms. Figure 6
also indicates that the NTROTP with a small value of ε is also efficient and robust
for signal recovery, although this has not been shown rigorously from a theoretical
viewpoint.

5 Conclusion

A class of Newton-type optimal k-thresholding algorithms is proposed in this
paper. Under the restricted isometry property (RIP), we have proved that the NTOT,
NTROT, and NTROTP algorithms are guaranteed to reconstruct sparse signals with
proper choices of the algorithmic parameters. Simulations indicate that the NTROTP
algorithm proposed in this paper is a very stable and robust algorithm for signal recon-
struction.
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