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a b s t r a c t

A two-stage planning form of multi-energy supply optimization such as power, cooling, and heating is
presented in this paper as a micro energy grid (MEG) To cover the effect of uncertainty in renewable
energy sources (RES), the scheduling cycle is considered in this paper. Next, the results of the day-
ahead prediction are considered as random variables for the upper-layer model. To realize the random
variables at the lower layer, the revised model of energy storage and the demand response (DR)
planning model are considered. Finally, the modified version of the artificial bee colony (ABC) algorithm
is utilized to find the optimal solution. The improved ABC algorithm is a shape-memory method based
on the collective intelligence and behavior of bees in a colony for finding the best nutrition source.
In the improved ABC algorithm, with information exchange between the bees, based on Newton’s
law of universal gravitation, the full potential of this algorithm is used to find the optimal solution
given the constraints applied to the system. The proposed method is applied to a real system and
the results show that the two-stage optimization algorithm and the proposed intelligent algorithm
obtained the simultaneous optimization of different energy forms. The obtained numerical analysis
results in test cases prove the following points: (1) The optimal synergistic supply of multiple energy
forms has been provided based on the two-stage optimization algorithm and solution approach. (2)
The surplus energy can be converted to natural gas by the power-to-gas converter (P2G) based on
power cascade conversion in a multi-directional mode. (3) To get some revenue, the MEG is flexible
enough to cooperate with the upper-grade energy network. (4) The DR-based price can smooth the
load shape and increase the MEG operation revenue using some supplementary features. Also, P2G
can sequentially develop the flexible multidirectional energy conversion in energy - gas - energy -
cooling as a cascade. When the evaluated P2G energy rises by 450 kW, the total GST output raises
by 1244 kWh. For more economic benefits, MEG can be connected to the upstream energy grid. Load
management also increases the net revenue of the system.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
∗ Correspondence to: Research Center for Microgrid of New Energy,
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niversity, Hubei, Yichang, P.R. China.
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1. Introduction

Considering the worldwide concerns about environmental
emissions, the inflexibility of traditional methods of energy sup-
plement poses some problems in gathering the desires for eco-
nomic and social progress. The energy distribution network sys-
tems, with clean energy as the main energy resource, have re-
ceived more attention recently. In 2011, Jeremy Rifkin, an Ameri-
can researcher, proposed the first view on the Internet of Energy
in the third industrial revolution. As a normal microgrid (MG)
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Nomenclature

MEG Micro energy grid
EP Energy production
WPP Wind power plant
PV Photovoltaic
CGT Convention gas turbine
GB Gas boiler
EC Energy conversion
P2H Power to heating
P2C Power to cooling
P2G Power to gas
H2C Heating to cooling
ES Energy storage
PS Power storage
GS Gas storage
HS Heating storage
CS Cooling storage
PBDR Price-based demand response
IBDR Incentive-based demand response
PSO Particle swarm optimization

Set

s,t Index for time
j Index for probability
e Index for electricity
h Index for heating
c Index for cooling

Parameter

vin Cut-in speed
vout Cut-out speed
vrated Rated speed
ηpv Operation efficiency
SPV Area of photovoltaic panels
ηhr Heating recovery efficiency of CGT
Hng Calorific value of natural gas
QP2H,t Heating output of P2H at time t
QH2C,t Cooling output of H2C at time t
gP2C,t Power consumption of P2H at time t
gP2H,t Power consumption of P2C at time t
QH2C,t Heating consumption of H2C at time t
V P2G
GS,t Natural gas into GS produced by P2G at

time t
ηGB Heating efficiency of GB
ηP2G Conversion efficiency of P2G
ηP2C Efficiency of P2C
ηP2H Efficiency of P2H
ηH2C Efficiency of H2C
SGS,T0 Storage energy of GS at initial time
θh Heating-power conversion coefficient
ai, bi, ci Cost coefficients of CGT power genera-

tion
ϕGT Power consumption rate of CGT
P (e,h,c)0
t Prices of power, heating and cooling

before PBDR at time t
cmin Coefficients under the minimum power

generation output
8913
µ■ Social learning factor of
low-concentration subgroups

Variables

g∗

WPP,t Available power output of WPP at time
t

vt Natural wind speed at time t
g∗

PV ,t Available output of PV at time t
θt Solar radiation intensity at time t
gCGT ,t Power output of CGT at time t
QCGT ,t Heating output of CGT at time t
VCGT ,t Natural gas consumption of CGT at time

t
ηCGT ,t Power generation efficiency of CGT at

time t
Eout
EC,t Energy supply at time t

Pout
EC,t Energy consumption price of EC at time

t
E in
EC,t Energy quantity of EC at time t
ϕout
EC,t Efficiency of outputting energy of EC at

time t
ϕin
EC,t Efficiency of inputting energy of EC at

time t
RES,t Revenue of ES at time t
RPS,t Revenue of power storage at time t
RGS,t Revenue of gas storage at time t
RHS,t Revenue of heating storage at time t
RCS,t Revenue of cooling storage at time t
Pdis
ES,t Energy release price at time t

Pch
ES,t Energy storage price at time t

gUG,t Power supply of public grid at time t
gRE,t Power output of clean energy at time t
Q e
t Load demand of power at time t

Q h
t Load demand of heating at time t

Q c
t Load demand of cooling at time t
∆ Q PB,e t Output of power from PBDR at time t
∆ Q PB,h t Output of heating from PBDR at time t
∆Q PB,c t Output of cooling from PBDR at time t
∆Qs Variations in demand after PBDR at time

t
∆Pt Variations in price after PBDR at time t
∆Q PB,(e,h,c)

t Load variation after PBDR at time t
Q e,h,c t Initial load before PBDR at time t
cmax Coefficients under the maximum power

generation output
Qmax
CGT Maximum heating output

Qmin
CGT Heating output of CGT when the gener-

ating power is minimum
gmin
CGT Minimum power output of CGT under

pure condensation condition
gmax
CGT Maximum power output of CGT under

pure condensation condition
Qmin
CGT ,t Minimum heating output of CGT at time

t
Vmin
P2G,t Minimum gas generation of P2G at time

t
Vmax
P2G,t Maximum gas generation of P2G at time

t
Eout,min
EC,t Minimum energy supply of EC at time t
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Eout,max
EC,t Maximum energy supply of EC at time t

E in,min
EC,t Minimum energy consumption of EC at

time t
E in,max
EC,t Maximum energy consumption of EC at

time t
Q ch,min
ES,t Minimum energy storage power at time

t
Q ch,max
ES,t Maximum energy storage power at time

t
Q dis,min
ES,t Minimum energy release power at time

t
Q dis,max
ES,t Maximum energy release power at time

t
Smin
ES,t Minimum energy storage at time t
Smax
ES,t Maximum energy storage at time t
V P2G,min
GS,t Minimum gas generation of GS at time t

V P2G,max
GS,t Maximum gas generation of GS at time

t
T0 Beginning of the scheduling cycle
T End of the scheduling cycle
gmax
MEG,t Maximum power output of MEG at time

t
gmin
MEG,t Minimum power output of MEG at time

t
re Reserved coefficients of loads
rWPP reserved coefficients of WPP
rPV Reserved coefficients of PV
r Concentration dividing radius, usually

the value is 0.4∼0.6
K Total iterative evolution number of par-

ticles
J Number of low-concentration particle

swarm
k Particle dimension
µ1 social learning factor of whole particle

swarm
ηloss power loss rate
µ2 Social learning factor of

low-concentration subgroup
φ State quantity
QGB,t Heating output of GB at time t
VGB,t Gas consumption of GB at time t
VP2G,t CH4 Generated by P2G at time t
gP2G,t Power consumption by P2G at time t
QP2C,t Cooling output of P2C at time t
ηlossP2G,t Gas loss rate at time t
SGS,t Storage energy of GS at timet
V GB
GS,t Natural gas from GS to GB at time t

VNG
GS,t Natural gas from GS to gas network at

time t
QES,t Net energy output of ES devices at time

t
Q ch
ES,t Energy of ES storing at time t

Q dis
ES,t Energy of ES releasing at time t

uch
ES,t State variables of ES storing

udis
ES,t State variables of ES releasing

SES,t Stored energy at time t
8914
ηlosst Energy loss rate at time t
ϕch
ES,t Energy efficiency of ES storing at time t
ϕdis
ES,t Energy efficiency of ES releasing at time

t
Pe
CGT ,t Prices of power provided by CGT at time

t
Ph
CGT ,t Prices of heating provided by CGT at

time t
Png,t Natural gas price at time t
µu

CHP,t , µ
d
C Operation status of CGT at time t , 0-1

variables
Cu
CGT ,t Start cost of CGT at times t

Cd
CGT ,s+1 Stop cost of CGT at times s + 1

REC,1 Operation revenue of EC at time t
Pout
EC,t Energy supply price at time t
π

IB,(e,h,c)
t Cost of power, heating and cooling of

IBDR at time t
∆Q E

IB,t Output of IBDR in energy scheduling
market at time t

∆Q up
IB,t Upper reserved output of IBDR in re-

served scheduling market at time t .
∆Q dn

IB,t Down reserved output of IBDR in re-
served scheduling market at time t .

∆Qmax
IB,t Maximum output of IBDR at time t

∆Lmin
IB,t Minimum output of IBDR at time t

xki Position vector of the ith particle in the
kth generation

d Concentration dividing distance
pl Fitness of optimal location of low-

concentration particle swarm
f
(
xti
)
i Fitness objective function of particle i

xti,k Chaotic variable of particle i iteration in
the kth dimension of the tth generation

x
′t
i,k New particle generated by particle i

through chaotic search
ωt

i Iterative inertial weight of particle i in
tth

uCGT ,t Start–stop state variable of CGT at time
t

uP2G,t Start–stop status variable of P2G at time
t

uin
EC,t Energy storage of EC at time t

uout
EC,t Release status variables of EC at time t

uch
EC,t Status of energy storing at time t

udis
EC,t Status of energy releasing at time t

uP2G
GS,t Start–stop status of GS at time t

gMEG,t Power output of MEG at time t
R∗

CGT ,t Revenue after revising the output of CGT
at time t

R∗

GB,t Revenue after revising the output of GB
at time t

Pe,h,c
t Prices of power, heating and cooling

after PBDR at time t

extension, the micro energy grid (MEG) being the power supply
system for the internet of energy terminal (Ju et al., 2020).

MGs are power systems located next to the main distribution
network (in the island or connected mode) for power storage
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sing renewable energy sources (RES) and connect to the distri-
ution network when needed for specific purposes. Having high
iversity, the MG is a promising technology that enhances con-
umer reliability and reduces energy costs. MGs have expanded
rom small prototypes to large-scale commercial ones. MG energy
anagement systems are important factors that play a critical

ole in the effectiveness and efficiency of MGs (Hannan et al.,
020). The most important advantages of an MG are summarized
s follows (Ju et al., 2020; Hannan et al., 2020; Li and Xu, 2019;
u et al., 2020):

– Controllable power resources and energy storage (ES) sys-
tems in an MG can manage and control the generation
of renewable sources and, as a result, improve the power
quality.

– An MG can provide a variety of services to all loads; for ex-
ample, it can feed the important loads with reliable power,
while it provides cheaper power with lower reliability for
less important loads.

– In distribution networks, MGs act as a virtual resource or
load. Therefore, the peak load can be corrected through
synchronous control of distributed production and loads.
Furthermore, the adverse effects of distributed generations
can be reduced by MGs, and therefore, help the users of the
distribution network because of its easier management.

– Due to their independent operation, MGs help the distri-
bution networks with self-healing mechanisms after the
faults.

– An MG can consist of consumers, power companies, or in-
dependent third parties. This type of relationship and mul-
tifaceted operation encourages all stakeholders to develop
and expand renewable energy resources and promote fun-
damental changes in the market model and energy mecha-
nisms.

n recent years, the developed MEG has been considered by
esearchers. Some MEGs are based on poly-generation MG (PM).
he European knowledge has proposed ‘‘Smart Grids’’ as a power
rid which can define the measures of all the linked users -
enerators, consumers, and those who do both’’ for efficient,
conomical, and safe electricity supplement (Jadidbonab et al.,
019). The PM project consists of combined heat and power (CHP)
nits along with photovoltaic (PV) panels, solar photothermal
enerators, and different energy storage devices, which can eco-
omically provide electrical and thermal energy. Since not all
f the renewable sources (wind and solar) are distributable, the
uggested energy organization can be used for alternative energy
esources. Moreover, the best possible control plan is proposed
or both thermal and electrical processes in an MG of several
uildings through the CHP, PV panels, electric vehicle, and heat
ump (Kumar et al., 2019). Fuel cells and electricity and heat
torage devices have been considered in both PM and MEG to
llow alternative renewable energy resources.
MEG can convert surplus energy into methane by an electric-

o-gas converter and provide cooling, heating, and gas. The
ower-to-methane conversion is considered as a reverse conver-
ion and cyclic energy. Also, PM focuses on its energy supply
hich is protected by the superior energy grid. MEG emphasizes
ctive participation in the energy trade by the higher energy grid
ith respect to the real prices of electricity, cooling, heating, and
asoline.
In particular, the methane produced by the MEG can be sold

o an upstream grid or be used for power generation or heat-
ng. Therefore, it is a decision-making action for MEG to select
he way of achieving optimal energy. In 2016, China National
evelopment suggested some comments on strengthening the
mart energy of ‘‘Internet +’’; this shows it is very essential to
8915
strengthen the synchronization of multiple energies. MEG can
complement several synchronous energies, and mostly focuses on
the synchronous planning of multiple energies from alternative
renewable energy resources.

Hence, MEG was studied by researchers around the world
from three points of view: system configuration, uncertainty
modeling, and operational strategies. The wind turbine, PV, biogas
plant, and hydropower plant are integrated into an MEG depend-
ing on the system configuration. To optimize equipment capacity
and operational strategy, a combined solar, cooling, and heating
system is designed. To model the uncertainties, the alternative
energy resources should be considered as random variables in
the planning model (Bahramara et al., 2019). For operational
strategies, previous studies have largely synchronized the opti-
mal performance of various energy devices to provide optimal
operating costs and environmental benefits. In Wang et al. (2019),
the optimization performance of MEG and combined alternative
renewable energy resources was discussed. Moreover, smart grid
equipment provided possible conditions for DR to join the power
system. As an optimal alternative resource for fossil fuels, new
energy sources are very important due to their features, such as
sustainability, affordability, and environmental friendliness.

However, as a disadvantage, new energy sources have low re-
liability due to uncertain and random generation patterns. Com-
bining the energy resources with energy storage systems can
reduce the system reliability problem. Therefore, in Moghaddas-
Tafreshi et al. (2019), a hybrid grid that is connected to the
main grid was proposed which consists of wind and solar as
primary energy resources with a hydrogen storage system (fuel
cell and electrolyzer) as a backup source. A new power man-
agement strategy was presented for accurate load distribution
between the MG units. The combined control method (central
and distributed) was considered to achieve the control objec-
tives, such as DC-bus voltage regulation, power factor control,
synchronous connection to the network, and power oscillation
damping. Distributed controllers are responsible for providing lo-
cal objectives, including maximum power point tracking (MPPT)
and storage system control. On the other hand, the central con-
troller is mainly responsible for power management in the MG. In
Leonori et al. (2020), MGs consisting of solar cells, micro-turbines,
storage devices, and loads were studied. Based on the specific
structural analysis of the microgrid and the practical modes of
each micro-source, the energy management program was pre-
sented and designed. The energy management program and its
control strategies were investigated under conditions of network
connection and islanding mode. Several algorithmic examples
were investigated through simulation and the results confirmed
the validity of energy management control strategies.

In recent years, microgrids have emerged as a key compo-
nent to increase the efficiency, reliability, and stability of electri-
cal infrastructure. The micro-distribution systems are combined
modular electrical, local load, and distributed memory renewable
power resources that are used for power exchange with the main
grid in the connected mode. One of the main tasks in microgrid
operation is the dynamic balance of local supply and power
demand for the alternative nature of renewable energy resources
and load demand change. Nonetheless, the power transmission
between the main grid and microgrid is usually dependent on
the cost of power loss in the distribution line. In Li et al. (2020),
a multi-factor distribution system was required for the optimal
synchronization of multiple energy resources. The factors associ-
ated with each microgrid were investigated from a participatory
strategy to minimize the power loss in the distribution line and
to maximize the economic revenue by selling the surplus power
generated to other microgrids belonging to a compound. Most of
the power management systems are generally based on central
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ontrollers. For example, the centralized energy management sys-
em (EMS) is used to manage power converters in the microgrid
onsisting of wind and PV systems, as described in Ambia et al.
2014). In Elsied et al. (2015), a centralized EMS was used to
ynchronize the microcontrollers and the main grid was used
o minimize greenhouse gas emissions (GHG) and energy costs.
t could also maximize the output power of renewable energy
ystems. Moreover, in Wang et al. (2014), a central microgrid con-
roller was used to optimize supply and demand and reduce fuel
osts. The EMS architecture is demonstrated in Fig. 1. The central
onitoring controller was employed to optimize the consump-

ion of distributed energy resources (DER) based on fossil fuels,
enewable DERs, and energy consumption in the microgrids. This
ontroller generally consists of a communication network that
onitors DERs and transmits commands to the local controller to
se the power of uncontrollable resources by the most desirable
conomic method. Regardless of overall success, this method uses
top-down system with problems. Here, there is an error point,
hich means it is safely composed of appropriate plugin struc-
ures. In addition, by increasing the number of generators and
oads, we will have higher communication costs for scheduling
nd online monitoring. Furthermore, after making changes in the
icrogrid structure or at the time of installing new generators or

oads, the central controller is required to be updated. The central
ontrol methods can be applied to find the best control strategy.
owever, a strong computational ability is required, because a
arge amount of data exist in the system that will lead to further
omplexity. Moreover, a network with communication potential
nd a highly distributed control strategy is required (Wang et al.,
017).
In this paper, the MEG problem is considered based on a

idding strategy with the utility network. In Ju et al. (2021),
new multi-level bidding strategy model is presented based

n multi-MEGs, which is developed in various steps, i.e., day-
head/intra-day/real-day in a 3-step solution model. A customer
omfort-aware, demand response-integrated long-term micro-
rid planning optimization model was proposed in Mohseni et al.
2021). The approach (a) uses non-cooperative game theory and
tackelberg leadership principles to recognize and reproduce the
lanned manners of energy utilities, demand response aggrega-
ors, and end-consumers, (b) generates ideal trade-offs among
mported power from the main network and accessible demand
esponse resources, and (c) controls the most cost-effective re-
ource placement for energy organization. (4) Delivers a level
laying field for evolving equipment, as power-to-gas and
ehicle-to-grid involvements (Azeem et al., 2021). The major
omponents and duties of renewable energy resources for the
mart city (such as solar, wind, geothermal, hydropower, ocean,
nd biofuels) were extensively introduced in Hoang and Nguyen
2021). In addition, the technological and economic aspects of
ntegrating renewable energy sources into smart city energy
ystems were carefully examined.
The articles above about MEG focus on scheme pattern, un-

ertainty modeling, and operational plans. Nevertheless, there
re three most important drawbacks: (i) earlier studies have
aken into account the integration of CCHP, PV, WPP, and energy
torage, while there are many other energy resources to consider
n an MG. (ii) the employed methods have limitations in ana-
yzing the impact of uncertainty of alternative renewable energy
esources. On the other hand, earlier studies have only considered
R of energy load, which is accessible for cooling, heating, and
as as well. Another important issue is to use DR to improve
he MEG optimization. The 2-stage optimization theory, unlike
he aforesaid technique, splits the decision-making process into
wo stages: pre-decision and real-time decision that corresponds

o the MEG optimum scheduling decision process. Third, DR can g

8916
help with peak shaving and suppressing new energy fluctua-
tions. Another essential problem is utilizing the DR of electricity,
heating, cooling, and other energy to enhance MEG operating
optimization. In contrast to the above method, the new multi-
level optimization approach with the developed artificial bee
colony algorithm can achieve the best results with significantly
high performance. According to the provided description, the
most important innovations of this article are as follows:

1. A new structure for MEG, consisting of various electricity
production (EP), energy conversion (EC), and ES devices, is
designed considering a different DR from energy. Incentive-
based DR (IBDR) and Price-based DR (PBDR) are used to get
the optimizing effect of the side-energy bond.

2. A synchronous two-stage planning is presented for an MEG
with WPP and PV uncertainties. The upper-layer day-time
synchronized energy model considers the results of the
day-ahead prediction as random variables in order to max-
imize the operating revenue. The planning model of lower-
layer energy includes a modified ES model and the DR
planning model with respect to the real output.

3. An improved artificial bee colony optimization algorithm
is proposed, and its local and global search is signifi-
cantly improved. Next, with respect to different scenarios
of model investigation, the outcome of PBDR and power-to-
gas (P2G) optimization on MEG performance is discussed.

2. The overall view of the MEG

MEG is an integrated micro-energy connection system that
supplies energy requirements using local RES. It is composed of
various sections such as EC, EP, and ES systems. EP consists of
some sections such as solar, wind, gas boilers (GB), and con-
ventional gas turbines (CGT). EC consists of electricity to gas,
power to cooling, energy to heating, and heating to cooling. ES
consists of cooling, heating, electricity, and gasoline storages. DR
can utilize the time-of-use (TOU) price to guide the consumers
to regulate their energy consumption pattern considering load
profile. As a result, DRs of multiple loads have been measured.
In addition, the valley period refers to the period with a low
demand load. For electricity load, mostly at night, P2G and GST
can convert energy into natural gas, which then can be converted
to electrical power or heating. To achieve cascade conversion, the
multi-directional energy can be converted into cooling by P2C and
H2C. The overview of MEG is shown in Fig. 2.

3. MEG problem modeling

3.1. EP model

(A) WPP output model
WPP output power depends on rate of speed of wind. When

the wind speed is less than its minimum value, it makes WPP gen-
erate power. Also, when the wind speed exceeds the maximum
level, the wind turbine is locked for safety. The power generated
by the wind energy is calculated as follows:

g∗

WPP,t =

⎧⎪⎪⎨⎪⎪⎩
0, 0 ≤ vt ≤ vin, vt > vout
vt − vin

vin − vrated
gR, vin ≤ vt ≤ vrated

gR, vrated ≤ vt ≤ vout

(1)

(B) PV output model
PV power generation is mostly related to the intensity of solar

adiation and the area of PV panels. The power generated by the
V system can be calculated as follows:
∗

= η × S × θ (2)
PV ,t PV PV t
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Fig. 1. General concept of a microgrid.
Fig. 2. Basic structure for microgrids based on power, heating, and cooling flow.
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(C) CGT output model can provide the heating system through
he heating system.

gCGT ,t = VCGT ,tHngηCGT ,t (3)

QCGT ,t = VCGT ,t (1 − ηCGT ,t − ηloss)ηhr (4)

(D) GIGABYTE output as supplementary heating is provided by
GB.

QGB,t = VGB,tHngηGB (5)

3.2. EC model

(A) P2G device
P2G uses the limited output of PV and WPP to convert CO2

to CH4, which leads to the connection of the electricity net-
work and the gas network. The exact performance model can be
mathematically expressed by:

VP2G,t = gP2G,tϕP@G/Hng (6)

In addition, the ratio of natural gas supplied using P2G and
inserted into CGT, GB, GST, and natural gas networks is ηCGTP2G,t ,
ηGBP2G,t , η

GST
P2G,t , η

NG
P2G,t . According to Eqs. (3) – (5), the power and heat

increase in CGT generation are∆gP2G
CGT and∆gP2G

CGT , respectively. The
increased GB heating is ∆Q P2G

GB,t .
(B) Additional EC equipment
EC also consists of P2H, P2C, and H2C that can be modeled by:

⎡⎢⎣QP2C,t

QP2H,t

QH2C,t

⎤⎥⎦ =

⎡⎢⎣gP2C,t 0 0

0 gP2H,t 0

0 0 QH2C

⎤⎥⎦
⎡⎢⎣ϕP2CϕP2H

ϕH2C

⎤⎥⎦ (7)

3.3. ES model

(A) GS system can store excess natural gas starting P2G with
respect to the price of gasoline, power, and heating:

VP2G
GS,t = VP2G,t

(
ηGSP2G,t − ηlossP2G,t

)
(8)

SGS,t = SGS,T0 +

T∑
t=1

(
V P2G
GS,t − V CGT

GS,t − V GB
GS,t − VNG

GS,t

)
. (9)

(B) Additional ES equipment
ES also consists of HS, PS, and CS. ES can store energy in the

valley-load periods and discharge energy in the peak times.

QES,t = uch
ES,tQ

ch
ES,t − udis

ES,tQ
dis
ES,t (10)

SES,t =
(
1 − ηlossES,t

)
SES,t−1 +

[
Q ch
ES,tϕ

ch
ES,t − Q dis

ES,t/ϕ
dis
ES,t

]
(11)

. Two-stage synchronized planning plan

.1. Stochastic model

It consists of two aspects, which means the difference between
he predicted value of the day before and the real value, and
scillation over time. Based on Weibull distribution functions, we
ave (Usta et al., 2018):

f (v) =
ϕ

ϑ

( v
ϑ

)ϕ−1
e−(v/c)ϕ (12)

(θ) =

⎧⎪⎨⎪⎩
Γ (ω)Γ (ψ)

Γ (ω)+ Γ (ψ)
θω−1(1 − 0)ψ−1, 0 ≤ θ ≤ 1,

ω ≥ 0, ψ ≥ 0 (13)
0, otherwise

8918
Fig. 3. Flowchart of the ABC algorithm.

where v is the wind speed, parameters ϕ and ϑ are mode and
scale, θ represents solar radiation, ω and ψ are mode parameters.
In the suggested scheme, the time horizons of the day-ahead and
the real-time model are 24 h, but the input data in the lower
and upper layers are dissimilar. The suggested two-step scheme
is mostly employed to resolve the uncertainty of RES, especially
PV and WPP.

During the upper-layer day-time synchronized plan, the out-
puts of RES are regarded as random variables. Based on the
predicted data of the forecasted day, the start–stop status of all
devices is determined, which allows for operational limits of the
various energy and storage equipment of the system.

During the lower-layer real-time planning plan, the real out-
puts of RES are regarded as the random variables, and deviation
of WPP and PV output is investigated using developing the ES
performance. If deviation cannot be corrected, it is called IBDR,
which balances the demand for power, heating, and cooling load.

4.2. Upper-layer synchronized model

Based on the forecasted results of the uncertainty variables,
the upper-layer model performs an operational planning program
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Fig. 4. Model Developed for chaos theory to be used in artificial bee colony algorithm.
u

nd determines the start–stop status of the various units. Maxi-
um operating revenue is considered as the goal of optimization.

axRupper =

Ñ∑
j=1

qj

×

T∑
t=1

⎡⎢⎢⎢⎢⎢⎣
(
RWPP,t + RPV ,t+

RCGT ,t + RGB,t

)
j  

REP,t

+

(
RP2G,t + RP2H,t+

RP2C,t + PH2C,t

)
j  

REC,t

+

(
RPS,t + RGS,t+

RHS,t + RCS,t

)
j  

RES,t

⎤⎥⎥⎥⎥⎥⎦ (14)

or PV and WPP, the cost margin of electricity production is
asically zero. The operating revenue is calculated based on the
rice and quantity. In the CGT, the operating revenue is equal to
he electricity and heating revenue subtracted by energy costs,
hich is formulated as follows:

CGT ,t =
{
Pe
CGT ,tgCGT ,t + Ph

CGT ,tQ
h
CGT ,t

}
−

{
Png,t

[
ai
(
gCGT ,t + θhQ h

CGT ,t

)2
+bi

(
gCGT ,t + θhQ h

CGT ,t

)
+ ci

]}
−
{[
µ

up
CGT ,t

(
1 − µ

up
CGT ,t−1

)]
Cup
CGT ,t

+
[
µdn

CGT ,s

(
1 − µdn

CGT ,s+1

)]
Cdn
CGT ,s+1

}
(15)

The revenue of this operation is equal to the revenue of en-
ergy supply subtracted by energy consumption cost, which is
formulated as follows:

REC,t = Pout
EC,tE

out
EC,tϕ

out
EC,t − P in

EC,tE
in
EC,t/ϕ

in
EC,t (16)

For ES, as shown in the following equation, the operating revenue
is equal to the revenue obtained from the energy storage costs:

RES,t = Pdis
ES,tQ

dis
ES,tϕ

dis
ES,t − Pch

ES,tQ
ch
ES,t/ϕ

dis
ES,t (17)

To ensure optimal MEG performance, energy supply limits, and
demand equilibrium, the performance of EC, EP, and ES devices
must be measured.

(1) Energy supply and balance(
g +∆gP2G

+∆gGS )
1 − ϕ − Q dis
CGT ,t CGT ,t CGT ,t ( CGT ) PS,t

8919
+ gUG,t = Q e
t − gRE,t + gP2C,t + gP2H,t + gP2G,t + Q ch

PS,t +∆Q PB,e
t

(18)

QCGT ,t (1 − ϕCGT )+ QGB,t (1 − ϕGB)+∆Q GS
GB,t

+∆Q P2G
GB,t +∆Q P2g

CGT ,t +∆Q GS
CGT ,t + QP2H,t − Q dis

HS,t

= Q h
t + QH2C,t + Q ch

HS,t +∆Q PB,h
t (19)

QH2C,t + QP2C,t − Q dis
CS,t = Q c

t + Q ch
CS,t +∆Q PB,c

t (20)

Based on the principles of microeconomics, the PBDR can be
expressed by:

Est =
∆Qs/Q 0

s

∆Pt/P0
t

{
Est ≤ 0, s = t

Est ≥ 0, s ̸= t.
(21)

Changes in power load, heating, and cooling after PBDR can be
calculated as follow:

∆Q PB,(e,h,c)
t = Q e,h,c

t ×

⎧⎪⎨⎪⎩Ee,h,c
tt ×

[
Pe,h,c
t − P (e,h,c),0t

]
P (e,h,c),0t

+

24∑
s=1
s̸=t

Ee,h,c
st

×

[
Pe,h,c
s − P (e,h,c),0s

]
P (e,h,c),0s

⎫⎪⎬⎪⎭ (22)

(2) EP performance limits
CGT regulates the output by adjusting the generated con-

densed steam. On the other hand, the larger the extraction capac-
ity, the smaller the steam ratio used for regulation. These limits
are mathematically expressed as follows:

max
{
gmin
CGT − cminQCGT , cm

(
QCGT − Q 0

CGT

)}
≤ gCGT

≤ gmax
CGT − cmaxQCGT (23)

0 ≤ QCGT ≤ Qmax
CGT (24)

CGT ,t
(
gmin
CGT + θhQmin

CGT ,t

)
≤ gCGT ,t + θhQCGT ,t

≤ uCGT ,t
(
gmax
CGT ,t + θhQmax

CGT ,t

)
(25)

(2) EC performance limits
EC should satisfy the minimum and maximum energy limits.

uP2G,tVmin
P2G,t ≤ VP2G,t ≤ uP2G,tVmax

P2G,t (26)

uout
EC,tE

out,min
EC,t ≤ Eout

EC,t ≤ uout
EC,tE

out,max
EC,t (27)

uin
EC,tEC,tE

in,min
EC,t ≤ E in

EC,t ≤ uin
EC,tE

in,max
EC,t (28)

uin
EC,t + uout

EC,t ≤ 1 (29)
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Fig. 5. Flowchart of proposed solution model in Energy management problem
in MEG.

(3) ES performance limits
ES must satisfy the minimum and maximum energy storage

imits.
ch
ES,tQ

ch,min
ES,t ≤ Q ch

ES,t ≤ uch
ES,tQ

ch,max
ES,t (30)

dis
ES,tQ

dis,min
ES,t ≤ Q dis

ES,t ≤ udis
ES,tQ

dis,max
ES,t (31)

min
ES,t ≤ SES,t ≤ Smax

ES,t (32)
P2G
GS,tV

P2G,min
GS,t ≤ V P2G

GS,t ≤ uP2G
GS,tV

P2G,max
GS,t (33)

ES,T0 = SES,T . (34)

(4) The reserve system for MEG must have sufficient capacity.
hus, to deal with WPP and PV uncertainties, a certain capacity
or power is predetermined.
max
MEG,t − gMEG,t + Q dis

PS,t ≥ reQ e
t + rWPPgWPP,t + rPV gPV ,t (35)

− gmin
+ Q ch

≥ r g + r g (36)
MEG,t MEG,t PS,t WPP WPP,t PV PV ,t Q

8920
Fig. 6. Demand for heating, power, and cooling on a normal day.

Fig. 7. Price of electricity, cooling, heating, and gasoline in various periods.

MEG must also meet the reserve system’s limits and rotational
cooling, as in Eq.

4.3. Lower-layer planning model

Since energy planning is a real-time decision-making process,
it is essential to deal with the deviation of RES and load between
the real and predicted values. Therefore, the above ambiguities
are solved in the lower-layer model.

minF ES
lower =

Ñ∑
j=1

qj
T∑

t=1

{ ⏐⏐⏐− [(
gdis
ES,t − gchr

ES,t

)
+ gPV ,t + gWPP,t

]
+

[(
gdis
ES,t − gchr

ES,t

)∗
+ g∗

PV ,t + g∗

WPP,t

]⏐⏐⏐
j

}
(37)

hows the real RES outputs at time t, representing the modified
S efficiency at time t, and does not affect the output programs
fter time t.
After ES activates in the energy release condition:

ES,t ′+1 = QES,t ′ − gdis
ES,t ′

(
1 + ρdis

ES,t ′
)

(38)

fter ES activates in the energy release condition:

′ ′ + gchr (1 − ρchr ) (39)
ES,t +1 = QES,t ES,t ′ ES,t ′
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Fig. 8. Output power in the day before and real-time stages, (a) PV and (b) WPP.
hen ES cannot be revised, IBDR can provide virtual output.

inF IB
lower =

Ñ∑
j=1

qj
T∑

t=1

[
π

IB,(e,h,c)
t +

(
RCGT ,t − R∗

CGT ,t

)
+
(
RGB,t − R∗

GB,t

)
+ Pe,h,c

GC, Q e,h,c
GC,t + Pe,h,c

SP,t Q e,h,c
SP,t

]
j

(40)

The temporary efficiency of CGT and GB is a peak-correction
service that requires higher prices. π IB,(e,h,c)

t denotes the planning
cost, cooling, and heating (IBDR) at time t.

∆Q E
IB,t +∆Q up

IB,t ≤ ∆Qmax
IB,t (41)

∆Q E
IB,t +∆Q dn

IB,t ≥ ∆Qmin
IB,t (42)

After IBDR is implemented to deal with the deviation from load
due to uncertainty, the peak capacity of GB and CGT modification
can be used to make certain load supply.(
g∗

CGT ,t +∆gP2G,∗
CGT ,t +∆gGS,∗

CGT ,t

)
(1 − ϕCGT )− Q dis

PS,t + gUG,t

=

[
Q e
t − gRE,t + gP2C,t + gP2H,t + gP2 g,t + Q ch

PS,t+

∆Q PB,e
t +∆Q IB,e

t

]
(43)[

Q ∗

CGT ,t (1 − ϕCGT )+ Q ∗

GB,t (1 − ϕGB)+∆Q GS,∗
GH,t +

∆Q P2G,∗
GB,t +∆Q P2g

CGT ,t +∆Q GS,∗
CGT ,t + QP2H,t − Q dis

HS,t

]

=

(
Q h
t + QH2C,t + Q ch

HS,t+

∆Q PB,h
t +∆Q IB,h

t

)
(44)

H2C,t + QP2C,t − Q dis
CS,t = Q c

t + Q ch
CS,t +∆Q PB,c

t +∆Q IB,c
t (45)

herefore, the storage capacity must be predetermined:
max
MEG,t − gMEG,t + Q dis

PS,t +∆Q up,e
IB,t ≥ reQ e

t + rWPPgWPP,t + rPV gPV ,t
(46)

MEG,t − gmin
MEG,t + Q ch

PS,t +∆Q dn,e
IB,t ≥ rWPPgWPP,t + rPV gPV ,t (47)

ikewise, the reserved limits and reserved heating must be regu-
ated. While the time horizon of energy organization is calculated
er minute, the predetermined storage capacity should be billed.

. Developed artificial bee colony algorithm

The artificial bee colony (ABC) algorithm reported in the ar-
icles is inspired by the behavior of bees in nature. Similar to a
atural bee colony, this algorithm also consists of three groups,
amely worker, onlooker, and scout bees (Sun et al., 2020).
8921
In this algorithm, first, a set of food sources is randomly
selected. The worker bees move to the source and calculate
their nectar levels. Next, these bees return to the hive and share
their information with other bees (onlookers). Second, after the
information exchange, each worker bee goes to the food sources
that have already been found and may select a new source in
the neighborhood of the previous present one based on visual
information received from the environment. This means that a
bee decides to go to the present source or select a new source.
Third, onlookers choose a range of food sources based on their
nectar with respect to the information received from the worker
bees in the dance area. After reaching the area, they may select a
new source nearby based on visual information. When a source
is depleted or abandoned, it is replaced by a new source that is
randomly found by the scout bees. This cycle will be repeated
until the needs are met. In this model, there is a maximum of
one scout bee per cycle and the numbers of worker and onlooker
bees are equal.

As mentioned, each of the worker and onlooker bees might
make changes to the position of the food source (response) in
their memory and calculate its fitness. If its fitness is higher than
the old one, the new response is selected and the old one is
forgotten. Otherwise, the old response will be left. This selection
process is called greedy selection. These changes are obtained by
the following equation (Sun et al., 2020):

vij = xij + φij(xij − xkj) (48)

i ̸= k, k ∈ {1, 2, . . . Ne}, j ∈ {1, 2, . . . D}, φij ∈ [−11] (49)

where φij is a random number in the range of [−1 1]. This pro-
duction variable controls the position of neighboring food sources
around xij. In this regard, Ne is the number of worker bees, and
the variable k is generated randomly and will be different from i.
According to the equation above, as the difference between xij and
xkj decreases, the deviation from xij will also decrease. In fact, in
this equation, we try to select one of the dimensions of one of the
positions and, considering the value of φ, we move toward it or
in the opposite direction. Similar to particle swarm optimization
algorithm, the difference is that with random selection, we try
to create some variety and prevent the being trapped in a local
optimum. After completing the search process, onlookers evalu-
ate the information of each worker bee and select one of the food
sources with a probability that is proportional to the quality of the
source’s nectar. This probability is obtained from the following
equation (Sun et al., 2020):

pi =
fiti∑Ne

(50)

n=1 fitn
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Fig. 9. Optimization results for the upper-layer synchronized model.

where fit i is the fitness of food source corresponding to the
ith bee and Ne is the number of available solutions (number
of worker bees). If a source runs out or the quality of a food
source is not suitable, the worker bee leaves it and turns into a
scout. This behavior is modeled such that if the fitness of a point
is not improved after several iterations (the number of which
8922
Fig. 10. The optimized results of the lower layer.

is represented by the limit parameter), it is concluded that the
optimization is trapped in a local optimum. Therefore, the point
is deleted and a new point is generated randomly. The schematic
of the ABC algorithm is shown in Fig. 3.

In order to increase the search ability and convergence perfor-
mance of the algorithm, an independent search for the scout bee
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Fig. 11. Planning results of MEG with different models.

phase is considered. This modification can increase the speed of
convergence and follows the following process:

(A) Independent search process: This part is similar to the
scout bee. Each scout bee randomly selects a worker bee and
8923
Fig. 12. Demand load and energy price in different periods after implementation
of PBDR.

follows the equations below. The best solution is returned be-
tween the previous and current solutions, and the weakest is
determined based on the fitness function and greedy selection
strategy:

for i = 1 :Nont

X i,j(t) = Xi,j(t) + ψi,j(t)(Xi,j(t) − Xk,j(t))

Xi,j(t) =

{
X i,j(t), if g(X i(t)) > g(Xi(t))

Xi,j(t), otherwise

If the old solution is updated, then Tri = 0

else Tri = Tri + 1

end

(51)

where ψi,j(t) is a random value between −1 and 1; and Xk,j(t)
jth is after Xk solution that is obtained randomly from the search
space. Nont represents the number of scout bees that are generally
identical to onlooker bees.

(B) Chaos theory: To prevent being caught in a local optimum
and improve the exploration of the proposed method, the chaos-
based search is also suggested. In this step, when a particle is not
improved after the predetermined experiments, it is more likely
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Fig. 13. MEG planning results after PBDR.

o get caught in a local optimum and, therefore, be replaced with

new response. Therefore, to prevent premature convergence

nd improve the algorithm’s exploration capability, a chaos-based
8924
Fig. 14. MEG planning results without P2G.

search method is used. The pseudo-code of this procedure is
shown in Fig. 4.

The proposed solution model’s flowchart is presented in Fig. 5.
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Fig. 15. P2G-GST optimization results with different capacities.

. Simulation results

.1. Data of the studied system

Based on the energy planning form and resolution scheme, the
imulation is performed by MATLAB software version 2011 Ra.
he low carbon park in Longgang, China is selected, to analyze the
pplication of the suggested model. The data of this system can be
btained from Ju et al. (2016) and Ma et al. (2017). Accordingly,
he cost performance of CGT is separated into two parts with rise
oefficients kW/0.5 ¥ and 15/0 kWW. Next, the GS is installed
ith a capacity of 500 m3. The max power of P2G is 150 kW.
able 1 shows the data of the installed energy component in low
arbon park.
To make the analysis possible, the performance efficiencies of

P, EC, and ES are considered 96%. The normal daily loads of elec-
ricity, cooling, and heating are selected based on the planning
ata. The price of electricity, heating, cooling, and gasoline was
etermined (Ma et al., 2017). Fig. 6 shows the normal daily energy
emand load for power, heating, and cooling.
After MEG is linked to the power grids, as shown in Fig. 7,

t relations by means of upper energy grids (UEG) for energy
ales. Based on the scenario production methods and reduction
 n

8925
Fig. 16. The optimal results of MEG linked to the upstream power grid.

entioned in Ju et al. (2019), 10 scenarios are simulated. The sce-

ario with the maximum probability of occurrence is determined
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able 1
he data of the installed energy component.
EP Output/kW Price/(¥/kWh) EC Output/kW ES Capacity/kWh Output/kW

Charge Discharge

WPP 300 0.57 P2H 1000 PS 1000 200 300
PV 800 0.55 P2C 1000 HS 1000 200 300
CGT 2000 0.48 H2C 1500 CS 1000 300 400
GB 1500 0.24 P2G 150 – – – –
Table 2
PBDR and IBDR parameters for different energy forms.
Type PBDR IBDR/(¥/(kW h))

Period Price/(¥/(kW h), ¥/m3) Up Down

Peak Flat Valley Peak Flat Valley

Power 09:00–11:00&18:00–22:00 12:00–17:00&23:00–24:00 01:00–08:00 0.65 0.4 0.25 0.85 0.25
Heating 1:00–8:00&20:00–24:00 17:00–19:00 09:00–16:00 0.45 0.35 0.25 0.55 0.15
Cooling 11:00–15:00 08:00–10:00&16:00–19:00 01:00–07:00&20:00–24:00 0.4 0.35 0.25 0.45 0.15
Gas 09:00–12:00&18:00–22:00 13:00–17:00 01:00–08:00&23:00–24:00 5.2 3.10 3.50 - -
Table 3
MEG planning results in the upper-layer model.

EP/(kW h) EC/(kW h) GST ES/(kW h) Revenue/¥

WPP PV CGT GB P2H P2G P2C H2C PS HS CS

Power 2725 5311 35010 – – −5037 – – 793 ±2000 – – 8635
Heating – – 53985 783 3289 – – – – – ±2000 – 19658
Cooling – – – – – – 199 29001 – – – 2200,−1800 2696
as the planning data of the day before and the scenario with
the most extreme oscillation is determined as real-time planning
data. Fig. 8 shows the WPP and PV output in the day before and
real-time periods.

Given the demand load distribution, the flat, peak, and valley
eriods are separated. The elasticity of energy demand price is
etermined based on Usta et al. (2018). If PBDR is regulated, the
eating price change is the same as the price of electricity in
ifferent periods. The heating load is reduced by 20% during the
eak period. In the other periods, it is increased by 15% and 5%. In
able 2, the PBDR and IBDR parameters are presented for different
nergy forms.

.2. Planning results

(A) Scheduled results for the upper layer
This model contains the prediction outputs of day-ahead as

nput data to maximize the operating revenue. Table 3 shows the
EG planning results in the upper-layer model.
According to the table above, PV, WPP, and CGT are employed

o supply energy load. PS and GST are generally used to provide
eak-correction services. CGT and P2H are employed to supply
eating load. HS is employed to provide heating correction ser-
ices. The cooling load is met by H2C because the power supply
evenue is higher than the P2C revenue. The heating costs are
elatively low and the main concern is known to H2C to make
he most of revenue. Fig. 9 shows the optimization results of the
pper-layer synchronized model.
As shown in Fig. 8, P2G, P2H, and P2C exchange power keen

n natural gas, heating, and cooling, respectively, in the valley
eriod, whereas PS supplies electricity in the valley time and
ischarges it in the peak time. P2H and H2C simultaneously
onvert power into heating and cooling, respectively, in the peak
ime.

(B) Planning results for the lower-layer model
The lower-level model essentially consists of two

ub-processes from the modified ES and DR planning models. In
able 4, the planning results of different models are presented.
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According to Table 4, the efficiencies of PS and HS vary in
the range of 400 kWh and CS oscillations vary from 600 kW
to 200 kW. ES must bear the cost of energy consumption in
the valley period. Therefore, the total revenue is reduced by
479.85. IBDR has been implemented to provide peak-correction
services. Compared to the modified ES model, the WPP and PV
outputs have increased by 83 kWh and 171 kWh, respectively.
The operating revenue increases. Fig. 10 presents the optimized
results of the lower layer.

Based on Fig. 10, in the lower layer, IBDR is only planned
to provide the positive output power from 6 pm to 9 pm and
negative output power at other times. IBDR provides positive
or negative heat output with respect to load distribution at the
peak valley. IBDR increases demand load by meeting negative
cooling output and most of the electricity (usually WPP and PV) is
converted into cooling in order to increase operational efficiency.
Fig. 11 shows the planning results of MEG with different models.

Based on Fig. 10, when output deviation occurs in the real-
time model, WPP and PV outputs should be decreased, especially
when the demand load is low such as in the valley time. On the
other hand, ES and IBDR can somehow handle this by means
of output deviations. In the valley period, the output deviation
can be improved by increasing the load, which can flatten the
load profile and reduce the extent of changes in the operation
efficiency curve.

6.3. Effect of PBDR optimization

PBDR can convert a piece of the peak demand to the valley
demand with respect to the cost of time used. The price demand
flexibility of different energy forms, and power, cooling, and
heating demand after implementation of PBDR can be computed.
Fig. 12 presents the demand load and energy cost in different
periods after the implementation of PBDR.

Based on Figs. 7 and 12, there are supplementary features
surrounded by various models of energy prices, such as cooling
and heating supplements. Compared to the load profile before the
implementation of PBDR, the energy load graphs of the different

models have become flatter due to the increased energy prices
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able 4
lanning results of different models.

WPP/(kWh) PV/(kWh) CGT/(kWh) ES/(kWh) IBDR/(kWh) Revenue/¥

Power Heating Power Heating Cooling Power Heating Cooling

Upper-layer model 2721 5401 35011 53921 ±2000 ±2000 2200–1800 - - - 33954.74
Modified ES model 2439 4898 35102 53911 ±2400 ±2400 ±2400 – – – 30468.44
DR planningmodel 2528 5124 35318 54568 ±2400 ±2400 ±2400 400–1878 900–1500 100–2300 33398.87
Table 5
Demand load and operating revenue before and after PBDR.
Scenario Power Heating Cooling Peak-to-valley ratio

Revenue Cost Revenue Cost Revenue Cost Power Heating Cooling

Before PBDR 29479 20393 22700 1943 12234 8686 1.80 2.61 3.21
After PBDR 29510 14508 22728 861 12222 9014 1.63 2.22 2.74
Table 6
Planning results before and after PBDR (kWh).
Scenario WPP PV GST CGT IBDR

Power Heating Power Heating Cooling

Before PBDR 2534 5162 674 35514 54610 400, –1896 900, –1500 100, –2300
After PBDR 2614 5329 1042 36437 54011 1140, –1200 100, –2310 –2400
Scenario P2H GB HS PS P2G P2C H2C CS
Before PBDR 3109 1957 ±2400 ±2400 –3313 1193 30217 ±2400
After PBDR 7485 35 ±2150 ±2200 –1537 652 30865 ±2150
in the peak periods and decreased energy prices in the valley
periods. Table 5 shows the demand load and operation efficiency
before and after implementation of PBDR.

Based on Table 5, if PBDR is evaluated, the peak-to-valley ratio
f demand for power, cooling, and heating is decreased signifi-
antly. Compared to the results of before the implementation of
BDR, the price of electricity has increased by 135 yuan, while the
peration cost has decreased by 5875 yuan. To fully use all parts
f the peak, MEG saves energy in the valley time and releases it
n the peak time. Cooling is sometimes provided by P2C and H2C.
ncreasing the price of energy has also increased its fixed price.
igure 13 presents the results of MEG planning after PBDR.
Based on Fig. 13, if PBDR is evaluated, the output of CGT

ill keep a constant value and PBDR indicates the reduction
f the peak load service from CGT. PS and IBDR can provide
ufficient services for peak correction. In the valley period, a part
f the energy is converted into gas for higher efficiency. P2H
mployed in the peak time is to eliminate the heating load. In
able 6, P2H notes the planning results before and after the PBDR
mplementation.

According to the table, if PBDR is evaluated, the PV, WPP, and
ST output will increase, but PG energy usage will be reduced.
iven the large output of PV and WPP, the heating from P2H will
ncrease, whereas cooling from P2C will decrease. IBDR is imple-
ented for more load cooling. In general, PBDR reduces the need

or peak correction, therefore, ES output is reduced. Additionally,
BDR uses energy, heating, and cooling for the uniformity of the
emand load curve, so that it could be optimized for the operation
f overwhelming energy.

.4. P2G optimization effect

P2G can convert energy into natural gas which can be used by
GT or GB as a source of energy and heating or sold to the natural
as network. Fig. 14 shows the output of MEG scheduling without
2G.
As shown in Fig. 14, if P2G is not implemented, the power that

ould have been converted to natural gas will now be converted
o heat. Compared to P2G, WPP and PV output are reduced. In
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Table 7, the MEG planning results with various P2G capacities are
presented.

Based on Table 7, P2G can increase the energy transferred
into natural gas by P2G. When the evaluated energy from P2G is
increased by 442 kW, the total GST output is increased by 1211
kW. On the other hand, a higher capacity of P2G is not necessarily
better. When P2G capacity is 145 kW or 280 kW, an increase in
P2G output is generally steady. When the P2G capacity is 450 kW,
the increase in P2G output is smaller. Fig. 15 shows the optimized
P2G-GST outputs with different capacities.

Based on Fig. 15, when the capacity is less than 150 kW, some
natural gas is unswervingly sold to the gas network. When the
capacity is more than 150 kW, the natural gas produced by P2G is
stored in GST and when the value of natural gas is increased, it is
given to the natural gas network. When the P2G capacity is more
than 300 kW, the energy curves are uniform, which suggests that
the P2G capacity has reached its maximum value. When MEG is
connected to an upstream grid, the surplus energy can be sold
to the upstream grid for economic benefits. Fig. 16 presents the
optimal results of MEG connected to the upstream energy grid.

7. Conclusion

To deal with the effect of wind and PV uncertainties on the
MEG optimized by the two-stage optimization scheme, the wind
and PV energies are used as random variables in order to prepare
a high-layer planning model. Moreover, the real output of wind
and PV is employed as recognition for random variables to create
a planning model for the lower layers. Finally, the artificial bee
colony optimization algorithm is developed and proposed to solve
the proposed two-stage model. It can be seen that the MEG
can use wind and solar energy and natural gas to supply the
demand load for power, cooling, and heating. The renewable en-
ergy source (RES) power must overcome uncertainty by dividing
the scheduled periods on a daily basis at a certain time. After
the implementation of PBDR, the peak demand is significantly
reduced compared to the valley demand for power, heating, and
cooling. The supplementary features for various models of energy
prices are employed to make the maximum possible operating
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EG planning results with various P2G capacities.
Capacity/kW WPP/kW h PV/kW h CGT/kW h GST/kW h GB/kW h P2G/kW h P2H/kW h P2C/kW h H2C/kW h Gas/m3

Power Heating P2G CGT EG

0 2456 5042 34111 48355 – 1525 – 7301 570 30244 – – –
75 2456 5042 33585 53111 485 351 3985 3464 1045 30185 324 54 261
150 2523 5161 33417 53865 755 400 4975 4954 1064 30174 405 88 301
300 2585 5252 33427 53488 1009 532 5704 2639 1104 30301 465 128 324
450 2668 5436 33562 53289 1232 361 5817 2754 1215 29955 464 147 315
revenue. Following PBDR, only IBDR and PS are employed to
supply the peak reduction service and notice a constant value of
energy and heating source in the CGT.
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