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The lognormal distribution is more extensively used in the domain of reliability analysis for modeling the life-failure patterns of
numerous devices. In this paper, a generic form of the lognormal distribution is presented that can be applied to model many
engineering problems involving indeterminacies in reliability studies. The suggested distribution is especially effective for
modeling data that are roughly symmetric or skewed to the right. In this paper, the key mathematical properties of the
proposed neutrosophic lognormal distribution (NLD) have been derived. Throughout the study, detailed examples from life-
test data are used to confirm the mathematical development of the proposed neutrosophic model. The core ideas of the
reliability terms, including the neutrosophic mean time failure, neutrosophic hazard rate, neutrosophic cumulative failure rate,
and neutrosophic reliability function, are addressed with examples. In addition, the estimation of two typical parameters of the
NLD by mean of maximum likelihood (ML) approach under the neutrosophic environment is described. A simulation
experiment is run to determine the performance of the estimated parameters. Simulated findings suggest that ML estimators
effectively estimate the unknown parameters with a large sample size. Finally, a real dataset on ball bearings failure times has
been considered an application of the proposed model.

1. Introduction

In anticipating the long-term reliability of electronic compo-
nents and devices, identifying failure distribution and asses-
sing the failure mechanism is always critical in reliability
analysis. To characterize the behavior of the products, many
lifespanmodels have been proposed [1]. These lifetimemodels
have been categorized according to increasing, decreasing, and
constant failure patterns [2, 3]. The lognormal distribution has
also been called the most often utilized life distribution model
in reliability domains [4]. This distribution effectively fits data
that is roughly symmetric or skewed to the right [5]. The log-
normal model is equally well at fitting a specific set of lifetime

data [6]. The lognormal model is commonly employed to
model the failure time of components that fail due to stress
or fatigue, such as failure caused by chemical reactions or dete-
rioration, for example, diffusion, corrosion, or migration [7].
The lognormal model also provides several advantages over
previous models in software reliability [8, 9]. From a statistical
viewpoint, a lognormal model is a particular form of the
Gaussian family; most traditional texts on reliability and statis-
tical distributions include a complete description of its features
in terms of assumed precise data and characteristics parame-
ters [10–13]. In reality, we encounter circumstances when
the lifespan data acquired from studies do not fit any com-
monly used lifetime models. As a result, there is always the
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possibility of considering alternative statistical distributions to
model the failure mechanism of different products.

A novel extension of the lognormal distribution is pro-
posed in this paper to broaden its utility in applied statistical
research. This extension is sparked by Smarandache’s work
on the concept of neutrosophy [14]. A neutrosophic logic
is used to assist the investigation of assertions that are either
false or true but are also indeterminate, neutral, inconsistent,
or anything in between [15–19]. On the mathematical side,
every field has a neutrosophic component which is called
indeterminacy. Smarandache pioneered the applications of
the neutrosophic methods in statistics, precalculus, and
calculus to account for inaccuracy in studied variables [20].
In a view of neutrosophic statistics (NS), indeterminacy in
statistical modeling has become a study area of interest for
many researchers. The neutrosophic concept of statistical
modeling has only come to be described in some recent
publications [21–23]. Describing data using neutrosophic
descriptive methods and neutrosophic probability are dis-
cussed in [24, 25]. Applications of neutrosophy in decision-
making in quality control are appeared to be quite efficient
[26]. The neutrosophic algebraic structures of probability
models were first initiated by Salama et al. [27]. The efforts
on NS have always mainly concentrated on the applications
side of neutrosophy, rarely addressing the algebraic structures
of probability distributions in detail.

With the primary objective of integrating ambiguous
knowledge about the study variables, the concept of the
NLD has been explained in this work. Study parameters that
are ambiguous cannot be ignored for practical analysis and
must be incorporated into the model used to represent a
data-generating process. The neutrosophic structure of the
lognormal model has never been addressed in earlier studies
to the best of our knowledge.

The remaining part of the work is presented as follows:
in Section 2, the neutrosophic extension of the lognormal
distribution is developed. The notion of NLD has been dem-
onstrated with some examples in Section 3. The mathemat-
ical treatment for the unknown parameters of the NLD is
explained in Section 4. In this section, a simulation analysis
for indicating the performance of the neutrosophic parame-
ters is also conducted. An expression for the quantile func-
tion under the neutrosophic environment is established in
Section 5. An application of the proposed model is described
in Section 6. Finally, Section 7 summarizes the main
research findings.

2. Proposed Neutrosophic Model with Some
Useful Reliability Characteristics

If ~X = ln ~T follows a neutrosophic normal distribution, a
random variable ~T > 0 is said to follow the NLD with the
density function:

ωn
~t
� �

= 1ffiffiffiffiffiffi
2π

p eσntˇ exp −
ln ~t − μn
� �2

2σ2n

 !
I 0,∞ð Þ ~t

� �
; μn, σn > 0,

ð1Þ

where μn = ½μl, μu� is the neutrosophic location, σn = ½
σl, σu� is the neutrosophic shape parameters on the log scale,
and ~T denotes the failure time of a system or a component in
a reliability context. For the selected values of μn and σn, the

neutrosophic density ðgPDFÞ is sketched in Figure 1.
Figure 1 shows the general statistical pattern of the gPDF

when it is assumed that indeterminacy, respectively, exists in
the scale and shape parameters of the distribution. The
shaded part in Figure 1 indicates the neutrosophic region
due to imprecision in the defined parameters of the distribu-
tion. Figure 1 area under the neutrosophic curve, say from t1
to t2, provides the failure probability of a system that is
assumed to follow the statistical pattern of the NLD.

Likewise, the other important function of the NLD is the
neutrosophic cumulative function ðgCDFÞ. This gCDF is used
to estimate the probability that how many operational
objects have failure time less than or equal to the prescribed
time, say t1. The gCDF of the NLD is given by

Ψ ~t
� �

= F
ln ~t
� �

− μn
σn

 !
: ð2Þ

Note that NLD convert to the existing lognormal distri-
bution when μl = μu = μ and σl = σu = σ, where the Fð:Þ rep-
resents the distribution function of the neutrosophic
standardized normal model. The derivation of (2) under
the neutrosophic environment will be discussed later in this
section. However, the curve of gCDF for imprecise values of
μn and σn is given in Figure 2.

In Figure 2(a), σn is crisp value but μnis given in neutro-
sophic interval, whereas in Figure 2(b), μn is crisp value
while σn is given in the uncertain form.

All essential features of the proposed NLD, such as
moments, shape coefficients, and the moment generating
function, are based on the algebraic framework of the neu-
trosophic numbers [28].

If we assume the two bounded real intervals T1 = ½p1, q1 �
and T2 = ½p2, q2 � and Δ denotes the basic arithmetic opera-
tions, then

p1, q1½ �Δ p2, q2½ � = γ1, γ2½ �, ð3Þ

where

γ1, γ2½ � = pΔq ∣ p1 ≤ p ≤ q1, p2 ≤ q ≤ q2f g: ð4Þ

We further assume that zero is not included in the inter-
val ½p2, q2 � and if Δ denotes the division operation, then (4)
further can be expressed as

T1 + T2 = p1 + p2, q1 + q2½ �,
T1 − T2 = p1 − q2, q1 − p2½ �,

T1
T2

= p1
q2

, q1
p2

� �
,

T1 ∗ T2 = ϑ1, ϑ2½ �,

ð5Þ

2 Journal of Function Spaces



where ϑ1 = min fp1p2, p1q2, q1p2, q1q2g and ϑ2 = max fp1p2
, p1q2, q1p2, q1q2g.

Numerical results of the proposed NLD have been
obtained by using interval arithmetic.

Definition 1. Neutrosophic data extends the classic data that
contain some imprecise, vague, or indeterminacy in some or
all values. In general terms, it can be represented as

x = constant + I, ð6Þ

where I ∈ ½u, l�; for example, 7 + I where I ∈ ½3, 3:5�.

In addition to specific patterns of the components or sys-
tem reliability that are best described by the NLD in form ofgPDF and gCDF curves, a practitioner may take interest to
know some other beneficial distributional properties of the
NLD, which can be established in the theorems.

Theorem 2. The reliability function of the NLD is ½1 − Fðln
ð~tÞ – μl/σlÞ, 1 − Fðln ð~tÞ – μu/σuÞ�:

Proof. The reliability function of NLD is defined as

ξ ~t
� �

= P ~T >~t
h i

= 1 − P ~T <~t
h i

= 1 −
ð~t
0
ωN

~t
� �

d~t = 1 −
ð~t
0
ωl

~t
� �

, ωu
~t
� �� �

d~t

= 1 −
ð~t
0
ωl

~t
� �

d~t, 1 −
ð~t
0
ωu

~t
� �

d~t

" #
= ξl, ξu½ �,

ð7Þ

where ξl = 1 − Ð t0ωlð~tÞd~t = 1 − Fðln ð~tÞ − μl/σlÞ and ξu= 1
−
Ð t
0ωuð~tÞd~t = 1 − Fðln ð~tÞ − μu/σuÞ, hence proved.

The function ξð~tÞ is particularly helpful in reliability
studies, which connects a unit’s age to its chance of living
to that age. In the presence of indeterminacy in parameters,
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Figure 1: The density function of NLD with neutrosophic parameters (a) σn = ½0:3, 0:6� and (b) μn = ½0, 0:3�:
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Figure 2: The gCDF curve for the vague parameter values (a) σn = ½0:3, 0:6� and (b) μn = ½0, 0:3�.
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the function ξð~tÞ of the NLD would be displayed as shown in
Figure 3. This function may be used to determine the failure
rate function, the conditional function, and the gPDF.
Corollary 3. The hazard function Rð~tÞ of the NLD is F½ln
ð~tÞ − μn/σn�/~tσn ð1 − F½ln ð~tÞ − μn/σn�Þ:

Proof. The ratio of the ωð~tÞ to ξð~tÞ results in the desired
Rð~tÞ.

Corollary 4. The distribution function ðgCDFÞ of the NLD
is Fðln ð~tÞ − μn/σnÞ.

Proof. The gCDF can be yielded by solving the following
expression:

Ψ ~t
� �

=
ð~t
0
ω ~t
� �

d~t: ð8Þ

By assuming ~T = exp ðZσn + μnÞ, we can write

= P Ζ ≤
ln ~t
� �

− μn
σn

 !
,

Ψ ~t
� �

= F
ln ~t
� �

− μn
σn

 !
:

ð9Þ

Consequently, the hazard rate of components with a spe-
cific age ~t is described by an interval rate of death in neutro-
sophy philosophical terms.

Theorem 5. The median of the NLD is ½ exp ðμlÞ, exp ðμuÞ�.

Proof. The median ð ~MÞ of NLD can be found as

ð ~M

0
Ψ ~t
� �

d~t = 1
2 ,

1
2

� �
, ð10Þ

ð ~M

0
Ψl

~t
� �

d~t,
ð ~M

0
Ψu

~t
� �

d~t

" #
= 1

2 ,
1
2

� �
, ð11Þ

where Ψlð~tÞ = Fðln ð~tÞ − μl/σlÞ and Ψuð~tÞ = Fðln ð~tÞ − μu/
σuÞ.

Analytical simplification of (11) implies

ln ~M
	 


− μl

σl
= 0,

ln ~M
	 


− μu

σu
= 0:

ð12Þ

Implying thereby

~M = exp μlð Þ, exp μuð Þ½ �: ð13Þ

Corollary 6. First quantile ðfQ1Þ and the third quantile

ðfQ3Þ of the NLD are ½exp ðμl + σl F
−1ð1/4ÞÞ, exp ðμu + σuF

−1

ð1/4ÞÞ� and ½exp ðμl + σl F
−1ð3/4ÞÞ, exp ðμu + σuF

−1ð3/4ÞÞ�,
respectively.
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Figure 3: Reliability function of the NLD with neutrosophic parameters (a) σn = ½0:3, 0:6� and (b) μn = ½0, 0:3�.
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Proof. By definitionfQ1 andfQ3 correspond to solutions of the
following expressions,

ð eQ1

0
Ψ ~t
� �

d~t = 1
4 ,

1
4

� �
,

ð eQ3

0
Ψ ~t
� �

d~t = 3
4 ,

3
4

� �
:

ð14Þ

Following theorem 5 implies

fQ1 = exp μl + σl F
−1 1

4

� �� �
, exp μu + σuF

−1 1
4

� �� �� �
,

fQ3 = exp μl + σl F
−1 3

4

� �� �
, exp μu + σuF

−1 3
4

� �� �� �
,

ð15Þ

where F−1ð:Þ is the quantile point of the standard normal
variate.

Theorem 7. The neutrosophic average time to failure of the
NLD is exp ðμn + ðσ2n/2ÞÞ

=
ð∞
0

~tωu
~t
� �

,~tωl
~t
� �� �

d~t see Figure 2ð Þ,

=
ð∞
0
tˇ

1ffiffiffiffiffiffi
2π

p
σltˇ

exp −
ln ~t − μl
� �2

2σ2l

 !
d~t,

"
ð∞
0
tˇ

1ffiffiffiffiffiffi
2π

p
σutˇ

exp −
ln ~t − μu
� �2

2σ2u

 !
d~t

#
:

ð16Þ

The transformation ~Z = ln ~T yields

= exp σl
2 + μl

� �2−μl2
2σl2

 !ð∞
−∞

1
σl√2π

exp −
~z − σl

2 + μl
� �� �2
2σl2

( )"

� d~z, exp σu
2 + μu

� �2−μu2
2σu2

 !ð∞
−∞

1
σu√2π

� exp −
~z − σu

2 + μu
� �� �2
2σu2

( )#
,

= exp μl +
σl

2

2

� �
, exp μu +

σu
2

2

� �� �
,

= exp μn +
σ2
n

2

� �
: ð17Þ

Theorem 8. The variance of the NLD is ðeσ2n − 1Þe2μn+σ2n :

Proof. By definition, variance is

ϑ ~t
� �

= E ~t2
	 


− Ωð Þ2, ð18Þ

where ϑð~tÞ stands for neutrosophic variance
Now,

E ~t2
	 


=
ð∞
0
~t2ωn

~t
� �

d~t: ð19Þ

It follows

E ~t2
	 


=
ð∞
0
tˇ

1ffiffiffiffiffiffi
2π

p
σl

exp −
ln ~t − μl
� �2

2σ2 l

 !
d~t,

"
ð∞
0
tˇ

1ffiffiffiffiffiffi
2π

p
σu

exp −
ln ~t − μu
� �2

2σ2u

 !
d~t

#
:

ð20Þ

Consider the transformation ~Z = ln ð~TÞ − μn/σn.
Thus, (20) yields

= exp 2σl2+2μl
� �ð∞

−∞

1ffiffiffiffiffiffi
2π

p exp − ~z − 2σlð Þ2
2

 !
d~z,

"

exp 2σu2+2μu
� �ð∞

−∞

1ffiffiffiffiffiffi
2π

p exp − ~z − 2σuð Þ2
2

 !
d~z

#
:

ð21Þ

Simplifying further provides

= exp 2σl
2 + 2μl

� �
, exp 2σu2 + 2μu

� �� �
,

= exp 2σn2 + 2μn
� �

:
ð22Þ

Thus, from (18), we can write the variance as

ϑ ~t
� �

= eσ
2
n − 1

	 

e2μn+σ

2
n , ð23Þ

where ϑð~tÞ ∈ ½ðeσ2l − 1Þe2μl+σ2l , ðeσ2u − 1Þe2μu+σ2u �.

In a neutrosophy context, it is also possible to establish
the other characteristics of the NLD. To further comprehend
the underlying notion of the NLD, several examples of the
proposed model are provided.

3. Illustrative Examples

The concept of NLD has been illustrated in this section using
some examples from the field of reliability research.

Example 9. Failure time (in months) of a bearing used in the
washing machine is adequately followed by a neutrosophic
lognormal random variable with parameters μn = ½2:1, 2:9�
and σn = ½0:85, 0:99�. What is the probability that the life-
span will exceed 14 months?
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Solution From the gCDF
P ~T >~t
	 


= 1 −Ψ ~t
� �

,

= 1 −Ψ:

ð24Þ

Consequently,

= 1 − F
ln 14ð Þ − 2:1, 2:9½ �

0:85, 0:99½ �
� �

,

= 1 − F −0:307, 0:544½ �ð Þ,
= 0:293, 0:620½ �:

ð25Þ

Thus, the failure probability that bearing lifetime exceeds
14 months with given neutrosophic parameters is approxi-
mately ½29, 62�%.

Example 10. The time to failure of a semiconductor laser (in
hours) is modeled as an NLD, with [9000, 15000] hours and
[20000, 23000] hours being the neutrosophic mean and
standard deviation, respectively. Find the parameters μn
and σ2n of the NLD.

Solution given that

exp μn +
σ2n
2

� �
= 9000, 12000½ �, ð26Þ

eσ
2
n − 1

	 

e2μn+σ

2
n = 200002, 230002
� �

: ð27Þ

Using the transformation,

xn = exp μnð Þ,
yn = exp σ2n

� �
:

ð28Þ

Equations (26) and (27) can be written as

xn
ffiffiffiffiffi
yn

p = 9000, 12000½ �, ð29Þ

xn
2yn yn − 1ð Þ = 200002, 230002

� �
: ð30Þ

Squaring (29) and substituting into (30) provides the
solution for yn as

yn = 4:67, 5:94½ �: ð31Þ

Thus,

exp σ2n
� �

= 4:67, 5:94½ �: ð32Þ

Further simplification of (32) provides

σ2
n = 1:54, 1:78½ �: ð33Þ

Using (30) into (29) provides the following solution:

xn = 4164:70, 4923:66½ �,
exp μnð Þ = 4164:70, 4923:66½ �:

ð34Þ

Thus, from (32), we can write

μn = 8:33, 8:52½ �: ð35Þ

4. Estimation Procedure

In this section, the neutrosophic maximum likelihood esti-
mate ðfMLÞ technique has been developed for estimating
the distributional parameters of NLD. Assume a sample of
values fT j, i = 1, 2, ::ng taken from the NLD. Which neutro-
sophic parameter values for an observed sample should be
used? To answer this, we have to determine these unknown
values by the likelihood function of the proposed distribu-
tion. Therefore, fML the function of the NLD is characterized
by

Yn μn, σ2n ∣~t
� �

=
Yn
j=1

ωn
~t j
� �

: ð36Þ

For the series ~t jðj = 1, 2; ;⋯nÞ, the log-likelihood of (36)
is given by

Yn μn, σ2n ∣~t
� �

= 〠
n

j=1
ln ~t j
� �

−
n ln 2πσ2

n

� �
2 −

nμn
2

2σ2n

+
∑n

j=1ln ~t j
� �

σ2n
−
∑n

j=1ln ~t j
2	 


2σ2n
:

ð37Þ

To maximize Ynð:Þ, the gradient concerning unknown
quantities μn and σ2

n is given by

∂Yn μn, σ2n ∣~t
� �
∂μn

=
∑n

j=1ln ~t j
� �

σ2n
−
2nμn
2σ2n

, ð38Þ

∂Yn μn, σ2n ∣~t
� �
∂σ2n

= −
n

2σ2n
+
∑n

j=1 ln ~t j
� �

− μn
� �2
2 σ2nð Þ2

: ð39Þ

Setting the gradian (38) and (39) equal to zero provides
the simultaneous solution as

bμn =
∑n

j=1ln ~t j
� �

n
,

σ∧2
n =

∑n
j=1 ln ~t j

� �
−∑n

j=1ln ~t j
� �

/n
	 
2

n
,

ð40Þ

where bμn = ½bμ l, bμu� and σ∧2
n = ½σ∧2

l, σ∧2
u� are the required

estimators of the parameters μn and σ2n, respectively.

Note that the fML method has been developed here to
estimate the parameters of the NLD; however, other
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estimation approaches may also be implemented similarly.
The performance of fML estimators is evaluated in terms of
the neutrosophic average biased ðfABÞ and neutrosophic root
mean square error ðgRMSÞ as defined below [5]:

fAB =
∑N

j=1
bθ j − θN
	 

N

,

gRMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

j=1 θ∧j − θN
� �2

N
,

s ð41Þ

where bθ j represents the estimators bμn or bσn in the
repeated runs.

Using the R programming language, a Monte Carlo sim-
ulation is carried out with varied sample sizes and fixed
values of the parameters.μn = ½1:5, 2� and σn = ½1, 1�. An
uncertain dataset is originated from the NLD with the
parameters as mentioned earlier, and simulation analysis is
replicated for a total of N = 105 times with sample sizes of
n = 5, 10, 20, 50, 150, and 300, respectively. The performance
measures of fML estimators are then computed and given in
Table 1

We can see from the results given in Table 1 that as the
sample size n grows, the fAB and gRMS decrease. This demon-
strates that neutrosophic estimators provide better reliability
and efficiency in estimating moderate or more extensive
sample sizes.

5. Quantile Function

The quantile function ðfQFÞ of NLD may be obtained by
solving the equation for Y shown below:

Y j = F−1 ϑj
� �

, ð42Þ

where ϑj is distributed uniformly with parameters 0 and
1, i.e., ϑj ~U ½0, 1�.

In the case of NLD,

Y j =
ln ~T j

	 

− μn

σn
, j = 1, 2,⋯: ð43Þ

Statistical speaking, the ðfQFÞ is employed to generate
and extend quantile analogs of conventional moment-
based descriptive metrics. This function fQF may be used to
generate random data that corresponds to the density spec-
ified in (1). Analytical properties of NLD can be validated
by utilizing the simulated data from (24).

In R software, the NLD can be easily simulated to view
the validity of theory-based derived results. We set μn = ½
1:5, 2� and σn = ½1, 1� in the NLD and produce 10000 sam-
ples at random from U ½0, 1�. The neutrosophic random sam-
ples are then generated for NLD with the aid of (42). The
exact findings for distributional properties of NLD and the
simulated outcomes at the above-specified values of param-
eters are shown in Table 2

Thus, simulated results in Table 2 are in great agreement
with those obtained from the analytical properties of the
NLD.

6. Illustrative Application

Manufactured items that are vulnerable to wear and tear are
typically evaluated for durability with a view to determining
their useful failure times. This lifetime data is essential in
various fields, including engineering, biomedical, and social
sciences. For the real application of NLD, data used for anal-
ysis are taken from Lawless [29]. This data represents the
number of million spins for each of the 23 bearing balls
before failure had resulted. The lognormal and Weibull
models have been applied to this life test data. However,
the lognormal model is slightly appropriate than the Weibull
model with fitting estimates bμ = 4:16 and bσ = 0:533. The
histogram and essential quantile plot of the original data
are depicted in Figures 4 and 5, respectively.

Table 1: Performance of fML estimators for simulated data.

Sample size
bμn bσ2

nfAB gRMS fAB gRMS
5 [0.072, 0.119] [4.352, 7.176] [2.848, 4.696] [7.285, 12.011]

10 [0.019, 0.032] [3.035, 5.003] [2.017, 3.326] [6.096, 10.051]

20 [0.009, 0.0164] [2.177, 3.590] [1.398, 2.305] [5.347, 8.816]

50 [0.009, 0.015] [1.371, 2.259] [0.774, 1.276] [4.073, 6.715]

150 [0.006, 0.011] [0.787, 1.299] [0.415, 0.685] [2.807, 4.628]

300 [0.004, 0.007] [0.556, 0.917] [0.238, 0.393] [2.176, 3.589]

Table 2: Comparisons of the simulated results with analytical
results of the NLD.

Distributional properties Exact results Simulated results

Mean Ωð Þ [7.38, 12.17] [7.38, 12.18]

Standard deviation
ffiffiffiffiffiffiffiffiffi
ϑ ~t
� �q	 


[9.72, 16.02] [9.68, 15.98]

First quartile QINð Þ [2.28, 3.75] [2.20, 3.81]

Median ~M
	 


[4.47, 7.37] [4.48, 7.38]

Third quartile Q3Nð Þ [8.78, 14.48] [8.80, 14.46]
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Clearly, Figure 4 shows that data are skewed to the right,
whereas Figure 5 indicates how well the lognormal model
fitted the failure time measurements. Figure 6 also supports
the best fitting of the lognormal distribution.

At first, data are the precise measurements; but, for illus-
trative purposes, we interpret them as indeterminate sample
values for certain bearing balls, as shown in Table 3.

Table 3 indicates that failure times on certain bearing
balls such as [33.00, 40.6], [48, 52], and [105.40, 112] are
not accurately recorded to precise values but are given in
intervals. Indeed, vague or incomplete information in the
sample leads to the inappropriateness of the existing lognor-
mal model. On the other hand, the proposed distribution
can easily be employed to analyze neutrosophic set of mea-
surements. The descriptive measures of the proposed NLD
are given in Table 4.

From Table 4, it can be viewed that the essential numer-
ical characteristics of ball bearings data are in intervals on
account of certain indeterminacies in the sample. Thus, the

proposed model can be applied to analyze the data, which
follows the NLD.

7. Conclusions

The NLD as a new generic version of the lognormal distribu-
tion has been suggested in this study. The structural features
of the proposed model have been elaborately discussed. The
analytical results for the neutrosophic descriptive measures
and the other associated properties are obtained. The NLD
precisely reflects the failure trends of many inservice compo-
nents. The estimation technique has been developed and
described with examples under vague information in the
observed data. Furthermore, the notion of the neutrosophic
quantile function is introduced that can be used to validate
the analytical results of the proposed NLD. To verify the
performance of the calculated neutrosophic parameters, a
simulation analysis has been carried out. The results of the
simulations show that imprecisely defined sample data with
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Figure 5: The quantile plot of the bearing balls data.
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Table 3: Imprecise data on failure times of 23 bearing balls.

Failure time data

17.88, 28.92, [33.00, 40.6], 41.52, 42.12, 45.60,

[48, 52.2], 51.84, 51.96, 54.12, 55.56, 67.80, 68.64,

68.64, 68.88, 84.12, 93.12, 98.64, 104.12,

[105.4,112], 127.92, 128.04, 173.40

Table 4: Neutrosophic summary of the bearing balls dataset.

Descriptive measures

Mean Ωð Þ [4.141, 4.180]

Standard deviation
ffiffiffiffiffiffiffiffiffi
ϑ ~t
� �q	 


[0.513, 0.521]

First quantile fQ1
	 


[44.610, 45.550]

Median ~M
	 


[63.423, 64.390]

Third quantile fQ3
	 


[90.172, 91.0048]
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Figure 4: Histogram of the bearing balls data.
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a considerable size can be employed in order to accurately
predict an unknown parameter. The illustrative application
also validates the practicality of the NLD in applied statisti-
cal problems.

We believe that by broadening the scope of NLD in reli-
ability research, this neutrosophic generalization of the clas-
sical model can be extended for other statistical models.
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