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Occurrence of crop pests and diseases has largely increased in China since 1970 1 
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Abstract 27 

Crop pests and diseases (CPD) are emerging threats to global food security, but trends 28 

in the occurrence of pests and diseases remain largely unknown due to the lack of 29 

observations for major crop producers. Here, based on a unique historical dataset with 30 

more than 5,500 statistical records, we found an increased occurrence of CPD in 31 

every province of China, with the national average rate of CPD occurrence increased 32 

by a factor of four (from 53% to 218%) during 1970-2016. Historical climate change 33 

is responsible for more than one-fifth of the observed increment of CPD occurrence 34 

(22% ±17%), ranging from 2% to 79% in different provinces. Among the climatic 35 

factors considered, warmer night-time temperature contributes most to the increasing 36 

occurrence of CPD (11% ± 9%). Projections of future CPD show that, at the end of 37 

this century, climate change will lead to increasing CPD occurrence to 243% ± 110% 38 

(SSP126) and 460% ± 213% (SSP585), whose magnitude largely depends on the 39 

impacts of warmer nighttime temperature and decreasing frost days. This 40 

observation-based evidence highlights the urgent need to accurately account for the 41 

increasing risk of CPD in mitigating the impacts of climate change on food 42 

production. 43 

 44 

Main 45 

Narrowing yield gaps is considered to be an effective strategy to feed the planet 46 

facing growing food demand and climate change
1, 2, 3

. While much attention has been 47 

paid to closing the yield gap through employing efficient irrigation
4
 and improving 48 

nutrient managements
4, 5

, the risk of crop pests and diseases (CPD), which may reduce 49 

the attainable yield by more than 50% 
6, 7

, has not been well assessed for major crop 50 

producers. Although the threat of CPD could be more severe under climate change
8,9

, 51 

our understanding on CPD dynamics remains insufficient to address the challenge, 52 

partly because the occurrence of CPD, which largely determine the cost of CPD 53 

management 
10, 11

, is difficult to predict under diverse circumstances due to its 54 

complex interactions with climate and agronomic practices
12

. Understanding the 55 

change in CPD occurrence has become an urgency for sustaining food security
13

.  56 

Previous data-based assessments on CPD occurrence had to rely on controlled 57 

growth chambers or small-scale field experiments
14, 15

 for single species of CPD. 58 

However, impact assessment for major food producers must consider the integrated 59 
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impacts of different CPD species across broad production regions, ranging from ~10 60 

Mha (like France) to more than 100 Mha (like China). This scale and extent cannot be 61 

well represented by few field/laboratory experiments. In addition, the magnitude of 62 

the dissemination and spread of CPD ranges from hundreds of kilometers to nearly 63 

tens of thousands of kilometers, e.g., the spread of the fall armyworm (Spodoptera 64 

frugiperda) across Africa and Asia from 2016 to 2019
16

. This scale of CPD dispersal 65 

cannot be studied with field/laboratory experiments alone. Models provide an 66 

alternative approach in understanding large-scale behaviors of CPD impacts
17

. 67 

Current models are more skillful in representing CPD damage through 68 

eco-physiological processes 
18

, but only have simplified representation of CPD 69 

occurrence, leaving it a critical knowledge gap
19

. The limitations of both experiments 70 

and models thus highlight the crucial need to study the CPD occurrence with 71 

observational data for major global crop producers 
20, 21

.  72 

China is the world’s largest producer of major cereals (rice, wheat and maize) 73 

feeding nearly 20% of the global population and has been increasingly suffering from 74 

CPD risks
22

. The occurrence area of CPD was assumed to have imposed a major 75 

threat to China’s crop production
21

. For example, in 2019 the fall armyworm 76 

(Spodoptera frugiperda) alone spread over 26 provinces of China and infested more 77 

than 112 Mha of cropland
23

, and is expected to cause larger damage in the coming 78 

years. Deustch et al. projected that both of rice and wheat production in China will 79 

suffer a lot from pests in the future
9
, which highlights the need to better understand 80 

the changing CPD occurrence over China and its relationship with climate change. 81 

Here, we harmonized a unique dataset of long-term national statistical records about 82 

CPD occurrence in China. This dataset was based on more than 5000 surveying 83 

records of CPD occurrence since 1970 reported by the National Agricultural 84 

Technology Extension and Service Center (details see Methods). Applying this dataset, 85 

we further analyzed the impact of climate change on CPD occurrence over the past 86 

five decades in China. 87 

 88 

CPD occurrence has increased fourfold since the 1970s 89 

At the national scale, we found the average CPD occurrence area in China is 234 Mha 90 

(69 Mha - 378 Mha) during 1970-2016 (Supplementary Fig. 1). To minimize the 91 

effects of expanding crop planting area since 1970 over China
24

 on investigating the 92 

change of CPD occurrence, in this study, we focused on the ratio of CPD occurring 93 



 4 / 23 

 

area to that of crop planting area (Or) (see Methods section for further details). As Fig. 94 

1 shows, Or increased from 53%±33% in 1970 to 218%±103% in 2016, with an 95 

average increasing rate of 3.1% per year (Fig.1a). Spatially, Or is higher in the North 96 

China Plains and the Middle-Lower Yangtze Plains, the two major crop production 97 

regions of China. Meanwhile, Or is low in northern and southwest China. The trend of 98 

Or is high (more than 4% yr
-1

) in the northwestern and the southern regions but 99 

relatively slow (less than 2.5% yr
-1

) in the northern and the southwestern regions.  100 

The substantial increase in the CPD occurrence ratio is driven by a simultaneous 101 

increase in occurrence ratios of crop pests (𝑂𝑟
𝑃) and diseases (𝑂𝑟

𝐷) across different 102 

crops. Fig.2a,b compare the 𝑂𝑟
𝑃  and 𝑂𝑟

D  between two periods (1970-1979 and 103 

2010-2016) respectively. Specifically, the mean 𝑂𝑟
𝑃 of three stable crops of China 104 

(wheat, rice, maize) increased from 8.4%, 17.7%, 24.4% in the 1970s to 34.4%, 105 

62.0%, 35.2% in the 2010s respectively. For diseases, the overall 𝑂𝑟
𝐷 was lower than 106 

that for pests, but there was also an evident increase of 𝑂𝑟
𝐷 for all crops from 107 

the1970s to the 2010s. The mean 𝑂𝑟
𝐷 of wheat, rice and maize increased from 2.2%, 108 

9.8%, and 6.1% in the 1970s to 23.1%, 40.8%, and 20.1% in the 2010s, respectively. 109 

Reflecting the increasing rates of both 𝑂𝑟
𝑃 and 𝑂𝑟

𝐷 of different crops, we find 110 

significant positive trends in 𝑂𝑟
𝑃 and 𝑂𝑟

𝐷 at the national scale (Fig. 2-c) with steeper 111 

slopes of 𝑂𝑟
𝑃 (1.34±0.17 % yr

-1
, 0.75±0.06 % yr

-1
) than of 𝑂𝑟

𝐷  (0.71±0.09 % 112 

yr
-1

,0.61±0.08% yr
-1

) for both rice and wheat, while maize has steeper trends in 𝑂𝑟
𝐷 113 

(0.29±0.08%yr
-1

 vs 0.50±0.2 %yr
-1

). The Fig. 2d summarizes the major CPD 114 

occurrence over the past five decades, separated by CPD species groups and host 115 

crops at national scale. It is evident that the three stable crops (rice, wheat and maize) 116 

are the main hosts of CPD in China. Lepidoptera and Homoptera pests as well as 117 

fungus each account for substantial proportions of CPD occurrence. 118 

 119 

Increasing CPD occurrence is partly attributed to changing climate 120 

Next, we explored the relationship between Or and potential driving factors. The 121 

occurrence of CPD is affected by numerous factors, including both climatic factors 122 

and cultural agronomic practices 
6, 21

. Hence, we consider 12 factors including six 123 

climatic factors (daytime temperature (Tmax), nighttime temperature (Tmin), frost day 124 

frequency, precipitation, relative humidity and cloud cover condition), six 125 

management-related factors (fertilizer application rate, irrigation area, pesticide 126 
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application rate, crop planting diversity, multiple cropping index, and GDP per capita) 127 

(See supplementary Table. 1 for details of these factors).  128 

Fig. 3 shows correlations between detrend Or and detrended potential driving 129 

factors. We found the correlations are statistically significant (P<0.05) for 9 of the 12 130 

factors. The correlations between detrended anomalies of Or and management related 131 

factors are generally weaker than that between detrended anomalies of Or and climate 132 

variables, which also holds true if variables are not detrended (Supplementary table 2). 133 

The strongest correlations are found between detrended anomalies of Or and 134 

nighttime temperature (Tmin). The correlation coefficient between Tmin and Or is nearly 135 

0.3 nationally (R=0.29, P<0.01) and positive for all provinces. The second strongest 136 

correlation was found between detrended anomalies of Or and frost day frequency 137 

(FDF), which were consistently negative across all provinces but one (national 138 

coefficient is -0.23, P<0.01). Daytime temperature (Tmax) is positively correlated with 139 

Or nationally (R=0.19, P<0.01), but spatially divergent, with nearly 40% of provinces 140 

showing negative correlations (inset histogram of Fig. 3a). This spatial heterogeneous 141 

pattern highlights the need to further understand the relationship between Or and Tmax. 142 

Compared with temperature factors, the correlation coefficient of precipitation is 143 

smaller (national mean value is -0.13), which is also reflected by the large spatial 144 

variations in precipitation impacts
25

.   145 

Based on the correlation analysis, we found Or significantly correlated with 146 

three temperature relevant factors (Tmin, Tmax and FDF) and precipitation. In order to 147 

test robustness of these relationships, we further calculated separate correlations 148 

between 𝑂𝑟
𝐷, 𝑂𝑟

𝑃 and these four climate factors. As Supplementary Fig. 2a shows, 149 

the average of correlation coefficients between detrended occurrence ratios (𝑂𝑟
𝐷 or 150 

𝑂𝑟
𝑃) and detrended nighttime temperature are all positive, while the mean values of 151 

the correlation coefficients with frost frequency are all negative. Cold nights and frost 152 

events are thus equally detrimental to both pests and disease, while frost events are 153 

only significantly correlated with wheat disease occurrence ratios, they are highly 154 

significantly correlated with pest occurrence ratios of all three crops considered here. 155 

Even though standard deviation of correlations of Tmax is larger than that of Tmin, the 156 

average correlation between daytime temperature and 𝑂𝑟
𝐷 and 𝑂𝑟

𝑃 are all positive. 157 
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This may also explain the lower correlation between Tmax and Or in Fig.2. 158 

To account for spatial variations in quantifying the response of Or to its climatic 159 

driving factors, we applied the Hierarchical Bayesian Model (see Methods), which 160 

allowed us to account for the spatial structure of CPD response to climatic factors, as 161 

well as its uncertainties, and proved to be effective in understanding the climate 162 

change impacts
26

. Moreover, the evident spatial heterogeneity of Or and its correlation 163 

with climatic factors means that the statistical distribution of response of Or to climate 164 

factors is not identical across provinces and Bayesian models do not require this. In 165 

this study, we applied the four climate factors and detrended Or to build a statistical 166 

model that describes the heterogeneous response of Or to changes in climatic factors. 167 

We found the responses of Or to Tmin and Tmax are more sensitive than that to frost day 168 

and precipitation. The sensitivity of Or to Tmin (𝑆𝑇𝑚𝑖𝑛) is positive in most provinces, 169 

the positive 𝑆𝑇𝑚𝑖𝑛 ranging between 0.08 %/
o
C and 0.77 %/

o
C. Results also show the 170 

magnitude of 𝑆𝑇𝑚𝑖𝑛 is larger in the North China Plain (NCP) and Huai river basin 171 

(Supplementary Fig. 3a) both of which are main crop producing regions in China. On 172 

the contrary, the sensitivity of Or to Tmax (𝑆𝑇𝑚𝑎𝑥) and to frost day frequency (𝑆𝐹𝐷𝐹) 173 

exhibit a more heterogenous spatial pattern (Supplementary Fig. 3b, c). 𝑆𝑇𝑚𝑎𝑥 , 174 

ranging from -0.63 %/
o
C to 0.55 %/

o
C, is negative in northern and southern provinces 175 

but positive in central provinces, especially those provinces located in the Yangtze 176 

river basin (Supplementary Fig. 3b). The strong positive relationship between 177 

night-time temperature and Or could result from the high proportion of nightly insects 178 

in categories of crop pests and disease in China 
27

 like lepidopterans, which accounts 179 

for 37% of the infected croplands (Fig. 2). The correlation analyses of 𝑂𝑟
𝑃  for 180 

different crops (Supplementary Fig.2-b) also supported this finding: The correlations 181 

between nighttime temperature and 𝑂𝑟
𝑃 of rice and maize pests are highly significant, 182 

and most of pests hosting these two crops belong to Lepidoptera (Fig.2-d). 183 

Compared with the widespread negative impacts of warmer night-time 184 

temperature, the impacts of Tmax on Or are more complex and spatially divergent. We 185 

suggested that the variations of the optimal temperature of pests and diseases could 186 

explain the spatial heterogeneity. Crop pests and diseases threatening wheat and maize 187 

generally have lower optimal temperatures than those threatening paddy field crops 188 
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(Supplementary Fig. 4) and the negative correlation between wheat pest occurrence 189 

ratios and Tmax in Supplementary Fig.2-b also supports this interpretation. The 190 

provinces having sizable percentage of paddy fields (Supplementary Fig. 5) tends to 191 

show positive 𝑆𝑇𝑚𝑎𝑥  (provinces along Yangtze river basin and a northeastern 192 

province, Heilongjiang). There are, however, exceptions in the southernmost 193 

provinces with sub-tropical climate (namely Guangdong, Guangxi Hainan and 194 

Yunnan; Supplementary Fig. 3b) show negative 𝑆𝑇𝑚𝑎𝑥. This is probably due to higher 195 

growing season Tmax over these provinces (Supplementary Table 3), which is close to 196 

or surpassed the optimal temperature of pests and diseases and increasing Tmax thus 197 

may reduce pest occurrence.  198 

We also tested the sensitivity of 𝑂𝑟
𝑃 and 𝑂𝑟

𝐷 across different crops to climate 199 

factors through Bayesian models. For wheat, the sensitivities of 𝑂𝑟
𝐷 and 𝑂𝑟

𝑃 to the 200 

four climate factors are similar, with mean values close to the 1:1 line and similar 201 

variance (Supplementary Fig.6-a). For both maize and rice, we observed the mean 202 

responses of 𝑂𝑟
𝑃  to nighttime temperature (𝑆𝑇𝑚𝑖𝑛

𝑃 ) are stronger than that of 𝑂𝑟
𝐷 203 

(Supplementary Fig.6-b,c). The strong responses of 𝑂𝑟
𝑃  for these two crops to 204 

nocturnal temperature are consistent with above correlation analysis on Or. 205 

Lepidoptera pests have a distinct circadian rhythm and most of their activity is at 206 

night thus elevated nighttime temperatures may have a more pronounced effect than 207 

daytime temperatures on their physiological processes and behavior pattern. 208 

Based on the above observation-derived relationship between climate factors 209 

and Or, we estimated the contribution of climate change to the change of Or since 210 

1970 (Fig. 4). Overall, climate change contributes more than one fifth (mean value 211 

with one standard deviation: 22%±17%) to the change of Or in China. This 212 

contribution shows large spatial heterogeneity ranging from 3% to 79% in different 213 

provinces (we excluded Shanghai, where crop land is very limited): it is generally 214 

higher in northern and southwest China (more than 20%) while lower in southeastern 215 

China (less than 20%) (Fig.4b). Among all climate variables considered, changes of 216 

temperature-related factors (Tmin, Tmax, FDF) account for more than 95% of the total 217 

climate change contribution (Fig.4a and Fig.4c). The positive contribution of warmer 218 

night-time temperature accounts the most (10.8%±9.7%), while day-time temperature 219 
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has spatially heterogeneous contribution that account for 6.8%±6.1% of the total 220 

climate change contribution. The contribution of day and night temperature to the 221 

CPD occurring (Fig. 4a and fig. 4b) are strongest in the mid-latitude China (nearly 222 

north of 35°north latitude), which coincides with the top global wheat and maize 223 

producing region. This further highlights the alerting message from simple 224 

bioclimatic projection that the middle and high latitude regions are prone to 225 

intensification of CPD occurrence
28

.  226 

 227 

Climate-driven CPD occurrence change till the end of this century 228 

Applying the same model to bias-corrected climate change projection under two 229 

different scenarios (SSP126 and SSP585, see Methods), we projected the 230 

climate-driven change of Or from 2020 to 2100. The two scenarios considered 231 

represent the sustainable development pathway and high emission development 232 

pathway respectively, which means these two scenarios represent the ‘best’ and the 233 

‘worst’ warming future. We found the Or of China is projected to increase from 213% 234 

±99% in 2020 to 243%±109% at the end of this century under the SSP 126 scenario 235 

and increase from 245%± 114% to 460%± 213% during the same period under the 236 

SSP 585 scenario (Fig. 5). Under the SSP 126 scenario, the increasing trend of 237 

projected Or is relatively small (0.5%/year) and the Or at the end of this century 238 

presents limited difference compared with the actual Or in the 2016. On the contrary, 239 

Or increases much faster under SSP 585 (2.9%/year) and at the end of century it will 240 

grow up to two-fold compared with current condition. Box plots in Fig. 5a represent 241 

projected changes of Or under different time periods. The difference between the 242 

projected changes of Or under SSP 585 and SSP 126 seems not evident at the near 243 

future (2020-2039) period while the gap between the box charts become wider since 244 

the mid-century (2040-2069) and the change of Or under SSP 585 outclass that under 245 

SSP 126 at the end of this century obviously. This temporal distinction of the 246 

projected changes under these two scenarios reveals that, before the middle of this 247 

century, adopting the necessary strategy to alleviate the warming trend can favor 248 

reducing the risk of the rapid increase of CPD emergence of the end of this century. 249 

We further explored the spatial pattern of the increase of Or comparing the 250 
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projected Or (2054-2100) to the historical condition (1970-2016) (Fig. 5b and Fig. 5c). 251 

Spatial heterogeneity of change of Or under these two scenarios is evident: under the 252 

SSP 126 scenario, the projected Or increases more rapidly in the lower reaches of the 253 

Yangtze River and southwest China but under the SSP 585 scenario, the projected Or 254 

shows a more obvious increase in northern and northwest China, especially provinces 255 

located in the Loess Plateau region, where agriculture is very sensitive to climate 256 

condition. Additionally, we found the spatial pattern of the increasing projected Or 257 

under SSP 126 is similar to a continuation of the historical trends of Or in many 258 

provinces. But even under SSP126, Fig 5 b show that projected Or of southwestern 259 

provinces (Guangxi and Yunnan) are more intense than historical Or implying that 260 

even in the ‘best’ future, the CPD occurrence of China could be worse regionally. As 261 

our Bayesian models are built on observed heterogeneous responses for Or to climate 262 

drivers across the different provinces, projections take non-linear responses to 263 

changes in temperatures and precipitation into account. Still, the fact that CPD data is 264 

available only at a relatively high aggregation level in terms of spatial resolution and 265 

little distinction of specific pests and diseases, future works on more mechanical 266 

understanding of lifecycles, activities, and proliferation of multiple pest and diseases 267 

are desirable.  268 

 269 

Admittedly, assessing crop yield reductions from the occurrence of CPD is not 270 

straightforward. A general framework to quantify crop yield loss risk has to combine 271 

CPD occurrence information with the crop damage intensity
29, 30

. A better 272 

understanding of the occurrence of CPD is thus the most direct warning signal to 273 

inform pest control strategies. Consequently, understanding the historical impacts of 274 

climate change on the CPD occurrence is fundamental for assessing the risk of crop 275 

yield reduction due to CPD in the warming future, providing additional perspective to 276 

previous studies on CPD effects through physiological activities, demography and 277 

dispersal for both crop pest
9, 31

 and disease
32

.  278 

It should be noted that most previous studies often investigated the warming 279 

impacts using daily mean temperature as a proxy. This could be biased due to 280 

asymmetrical impacts of daytime versus night-time temperature on CPD occurrence 281 
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that we find here, which responds stronger to nocturnal temperature. And this 282 

asymmetrical impact may amplify the extent of CPD occurrence in the high emission 283 

scenario, because of the faster warming trend of the nighttime temperature. We 284 

mapped the difference between the trend of nighttime temperature under these two 285 

scenarios (Supplementary Fig.7). The spatial heterogeneity of trend difference under 286 

the SSP 585 shows that the faster nighttime temperature warming is very distinct in 287 

the mid-and high latitude regions which can also explain the increase projected Or in 288 

the northern China in Fig 5-b.  289 

The impact of frost day on CPD occurrence is non-negligible. A direct evidence 290 

for this is all 𝑂𝑟
𝑃 across three main crops show significant negative correlations with 291 

frost days in China (Supplementary Fig.2-b). We also found the reduced frost day 292 

frequency may significantly contribute to the increasing Or under the SSP 585 293 

scenario, which is probably due to its strong association with the overwintering 294 

survival of many crop pests
9
. The higher overwintering survival means the larger 295 

population of the first generation of pest in the next year. Given the most of global 296 

breadbasket located in the temperate zones, the lowering frost day per year of this 297 

region in a warming future can exacerbate CPD occurrence in main crop producing 298 

regions, which may affect the global crop supply and international agricultural trade. 299 

A considerable factor incurring uncertainties in our estimates is farmers’ 300 

autonomous adaptations and agronomic practices, which may interact with climate 301 

change to affect CPD occurrence. For example, the practice of returning straw 302 

residues to the field is a policy promoted by the government to improved soil carbon 303 

content and fertility, but it can increase the risk of the CPD occurrence
33

. Additionally, 304 

modern agriculture is a combination of diversified agronomic practices so that its 305 

influence on CPD occurrence is difficult to evaluate. For example, agricultural 306 

intensification may favor increasing CPD occurrence but if the new anti-CPD 307 

cultivars are popularly used, this may decrease the risk of crop exposure to CPD
12

. 308 

Likewise, in our research, it could be observed that there is a leveling-off of Or in 309 

recent years (Supplementary Fig. 8) and interestingly, the turning point of downturn in 310 

time-series Or was just after a national crop protection policy implemented. This can 311 

also partly explain why climate change was found to be responsible for only one-fifth 312 
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of the increasing trend of Or. 313 

Here, we compiled a long-term observational dataset on the occurrence of CPD 314 

and its climatic controls over China during the past five decades, filling a critical 315 

knowledge-gap
13

. Given the global reach of many of the pests considered, our results 316 

could have some representativeness over sub-tropical and temperate environments 317 

globally. The dataset consists of partially aggregated data in terms of geographic and 318 

species, so that the analysis is hampered by lack of details in some cases – such as in 319 

the question of which pests and diseases show which response across a temperature 320 

trajectory. Still, our findings highlight the major challenge posed by global warming, 321 

especially the rising nighttime temperature, for CPD occurrence. Assuming no 322 

fundamental changes in the diversity of pests and diseases under climate change, 323 

future climate warming could lead to more than 2-fold increment of CPD occurrence 324 

at the end of 21st century under the business-as-usual scenario, when asymmetrical 325 

impacts of warmer daytime and nighttime temperature, as well as the variability of 326 

frost day frequency, largely determine the magnitude of increment. Therefore,  with 327 

the projected increasing risk of CPD occurrence, the next priority would be 328 

developing adaptive CPD management considering the integrated 329 

‘Crop-Environment-Pest and disease’ system
34

 in order to close the yield gap and feed 330 

the ever-rising population without damaging the environment and human health.  331 

 332 

Methods 333 

Datasets. We built the crop pests and disease (CPD) dataset of China based on the 334 

statistical records from the National Agricultural Technology Extension and Service 335 

Center, an institution directly subordinated to the Ministry of Agriculture and Rural 336 

Affairs of China. This institution manages and operates a bottom-up network that 337 

takes responsibility of crop protection and their specific work includes observing, 338 

surveying the CPD condition, guiding indigenous famers to control CPD and 339 

processing the statistics of crop protect condition.   340 

This national network includes more than 2400 crop protection sites at the 341 

county level, more than 330 sites at the city level, which is an administrative unit 342 

between country and province in China, and 32 at the province level. The bottom-up 343 
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workflow of CPD statistical records collecting is shown in Supplementary Fig.9. Each 344 

year, staffs of each county crop protection site observe the CPD condition regularly 345 

and when the CPD outbreaks they will survey the CPD emergence condition 346 

following the corresponding CPD surveying both of national standards and provincial 347 

standards because types of CPD may be different among different provinces sometime. 348 

Notably, only those CPD species that cause crop yield losses or failure will be 349 

surveyed of for staffs of crop protection sites. Thus, the most staff would follow the 350 

application manual of technical specifications for CPD surveying, which listed the 351 

major types of pests and diseases threating local crop yield based on historical records. 352 

At the end of each year, staffs serving at the county sites should collect the CPD 353 

surveying data of the whole county and process the statistics work and finally upload 354 

the results to the superior crop protection sites.   355 

Thus, we used the statistical records at the province level, which can be 356 

considered reliable and homogenous, to reflect the emergence and impact of CPD at 357 

regional level. We collected more than 5500 records of CPD from 1970 to 2016 in 358 

China based on the long-time statistical data from the National Agricultural 359 

Technology Extension and Service Center. In this study, we used area of CPD 360 

occurrence  361 

Agricultural data we used in this research includes yearly provincial crop 362 

planting area data (kilo ha), applying fertilizer quantity(ton), effective irrigation area 363 

(kilo ha), applying pesticide quantity(ton) and arable area (kilo ha) from 1970-2016, 364 

which we obtained from the National Bureau of Statistics of China. For 365 

socioeconomic data, we collected the per capita GDP from the same institution. 366 

We also applied a crop distribution dataset to calculate weighted climate 367 

variables. The dataset used fine-resolution remote sensing imagery to obtain 368 

land-cover classifications and included the extent and location of cropland area in 369 

China
35

. 370 

Climate variables used in this study are based on the monthly CRUTS 4.01 371 

climate data sets (http://doi.org/10/gcmcz3), covering the crop pest and disease time 372 

series period (1970-2016). The CRU TS 4.01 is a 0.5° x 0.5° resolution dataset of 373 

monthly climate variables derived from archives of more than 4000 climate station 374 
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records
36

. Based on previous studies
31, 37, 38, 39

, we selected 6 climate variables from 375 

the dataset that have potential impact on crop pest and disease: precipitation, 376 

minimum and maximum temperature, frost days frequency, vapor pressure and cloud 377 

cover percentage. 378 

In this study, the climate factors we used to predict Or are generated from 379 

Coupled Model Intercomparison Project Phase 6(CMIP 6) models in projections
40

. 380 

Compared with CMIP5, the future scenarios in CMIP6 have combined scenarios of 381 

the Shared Socioeconomic Pathways (SSPs)
41

 and the Representative Concentration 382 

Pathways (RCPs)
42

. For example, SSP1-2.6 represents the future scenario 383 

incorporating SSP1-based socioeconomic development into the RCP 2.6-based 384 

energy‐emissions‐land use scenarios. Here, we used the daily output data including 385 

Tmax, Tmin and precipitation from 5 Earth system models (ESMs) under two scenarios 386 

SSP1-2.6(SSP126) and SSP5-8.5(SSP585) (Supplementary Table 4). These two 387 

scenarios represent low-emission scenario and high-emission scenario respectively. 388 

The dataset we used in the projecting 𝑂𝑟
𝑝𝑑

 was the latest version released by the 389 

Inter-Sectoral Impact Model Intercomparison Project Phase 3b. The bias of the dataset 390 

has been corrected and horizontal resolution has been statistically downscaled to 391 

0.5-degree
43

.  392 

A limitation of data here is that the datasets we used for the analysis are not 393 

perfectly matched on the time scale. Previous researches proved that precipitation and 394 

humidity can affect the dissemination and infection of CPD. The sensitivity of CPD to 395 

these two factors may have an inner-annual variability because water demand is 396 

different during different growth stage of CPD for a specific specie and may be more 397 

different among different species
54

 but the statistical records of provincial CPD 398 

condition are aggregated reports annually. Thus, we argued that the more detailed 399 

statistics with finer temporal resolution is more favorable to assess the influence of 400 

humidity and precipitation on the CPD. 401 

 402 

Data processing. To ensure the spatial-temporal match of the CPD datasets with the 403 

climate records, we firstly removed provinces in which the time-series data cannot 404 

cover the period from 1970 to 2016. Additionally, considering the change of 405 
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administrative regions of some provinces in China, we combined the provincial data 406 

to ensure the temporal uniformity. For example, Chongqing was not a provincial 407 

administrative region and belonged to Sichuan Province before 1997, thus we 408 

summed up the data of Chongqing and Sichuan of the period from 1998 to 2016 and 409 

treated them as one provincial region. Finally, we obtained data about the occurrence 410 

of CPD of 27 provincial regions (Supplementary Table 5). 411 

We used the ratio of occurrence area of CPD (Or) to offset the increasing crop 412 

planting area of China. The yearly Or of each province is calculated as follows and its 413 

distribution is shown in Supplementary Fig. 10. 414 

𝑂𝑟 =
𝑎𝑛𝑛𝑢𝑎𝑙 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐶𝑃𝐷

𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑟𝑜𝑝 𝑝𝑙𝑎𝑛𝑡𝑖𝑛𝑔 𝑎𝑟𝑒𝑎
       (1) 415 

Notably, the Or index is a comprehensive concept because it contains all crop 416 

pests and diseases emergence in whole year, which means it can exceed 100%. For 417 

example, consider a 100-ha wheat cropping field. In March, we find Specie A disease 418 

emergence in a 40-ha area of this field. In May, a 50-ha area suffers from Specie B 419 

disease and in September, Specie C pest invades a 30-ha area. In this scene, the Or is 420 

120%. 421 

We converted the vapor pressure to the relative humidity based on the FAO 422 

methods
44

. To match with the yearly statistical record of CPD, we averaged the 423 

monthly climate variables and obtained the yearly data, including minimum 424 

temperature (Tmin), maximum temperature (Tmax), frost days frequency (Fdf), relative 425 

humidity (Rh), cloud cover percentage (Clc) and we summed up the monthly 426 

precipitation to get the annual amount of precipitation(P). We used the ratio of 427 

planting areas of each 0.5-degree grid as the weight then adjusted the climate 428 

variables to reflect the actual agricultural climate condition. 429 

To prepare the climate future Or, we also applied the same approach as we 430 

processed the historical climate factors to daily output data of 5 ESMs and obtained 431 

projected yearly climate factors (Supplementary Fig.11 and Supplementary Fig. 12). 432 

Notably, due to the lack of projected ground frost frequency, we converted the 433 

projected Tmin to the projected Fdf with the same method as used in CRU TS 4.01 434 

dataset45. 435 

Several studies pointed out that crop planting structure can enhance the 436 
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robustness of agroecosystem and weaken the negative impact of disturbance on crop 437 

growth
46, 47, 48

. Thus, in this study, we also used the Shannon Diversity Index (SI) to 438 

quantify the crop diversity and the multiple crop index (MCI) to quantify the cropping 439 

system condition, which were viewed as potential factors influencing the CPD 440 

occurrence. The SI of each province can be calculated as follows: 441 

  SI = − ∑ 𝑃𝑖 ∗ (ln 𝑃𝑖)3
𝑖=1     (2) 442 

  𝑃𝑖 =
𝑆𝑎𝑟𝑒𝑎

𝐶𝑟𝑜𝑝𝑎𝑟𝑒𝑎
         (3) 443 

The MCI of each province can be calculated as follows: 444 

              MCI =
𝐶𝑟𝑜𝑝 𝑝𝑙𝑎𝑛𝑡 𝑎𝑟𝑒𝑎

𝐴𝑟𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎
            (4) 445 

The cropped area includes the three major crops (rice, wheat and maize) in 446 

China (Supplementary Fig.13 shows time series of three major crops production 447 

condition in China).  448 

Analysis. Six climate variables (Tmax, Tmin, Fdf, Rh, P and Clc), five agricultural 449 

management variables (fertilizer quantity, irrigation area, pesticide quantity, crop 450 

diversity and MCI) and a socioeconomic factor, per capita GDP are regarded as the 451 

potential factors that can account for the occurrence of CPD (Supplementary Table.1).  452 

Firstly, we applied a correlation analysis to investigate whether there is a relationship 453 

between a potential factor and the Or (Supplementary Table.2). To test the robustness 454 

of these correlations, we detrended variables if they have a significant trend from 455 

1970 to 2016 or else we subtracted the mean value. Then we applied the correlation 456 

analysis in the anomaly of each factor and Or. Fig. 3 shows the national correlation 457 

coefficient of different factors. Moreover, at provincial scale, we also analyzed the 458 

correlation between anomaly of factors and anomaly the Or and plotted the histograms 459 

(Fig.2). The analyzed data met the assumptions of the statistical tests. 460 

We further applied Bayesian hierarchical method to model the relationship 461 

between Or and correlative variables. A hierarchical model is more flexible than a 462 

fixed model and its hierarchical structure can make the fitting more robust and easier 463 

to explain
26, 49, 50

. In this study, to avoid the illusory relationship caused by the trend of 464 

potential factors and the Or, we also used the detrended factors and Or to build the 465 

model. Correlation coefficient between Or anomalies and these factors anomalies over 466 
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0.1 are deemed as they have correlated relationships. Thus we took Tmax,Tmin, Fdf and 467 

P into this model based on the Fig.2. The relationship between Or and the four 468 

potential climate factors which hold a robust correlation with Or is modeled as 469 

follows: 470 

 (Or)𝑖,𝑡~𝑁𝑜𝑟𝑚(𝜇𝑖,𝑡 , 𝜎𝑖
2)               (5) 471 

   𝜇𝑖,𝑡~𝑁𝑜𝑟𝑚 (𝛼0𝑖 + 𝛼1𝑖𝑇𝑚𝑎𝑥𝑖,𝑡 + 𝛼2𝑖𝑇𝑚𝑖𝑛𝑖,𝑡 + 𝛼3𝑖𝐹𝑑𝑓𝑖,𝑡 + 𝛼4𝑖𝑃𝑖,𝑡, 𝜎𝑢𝑖,𝑡
2 ) (6) 472 

In the formula, i represents the i-th province, t represents the t-th year. The tilde 473 

(~) indicates ‘distributed as’, Tmin is the yearly minimum temperature, Tmax is the 474 

yearly maximum temperature, Fdf represents the yearly frost day frequency and the P 475 

indicates the annual total precipitation. The prior distribution of 𝜎𝑖
2 and 𝜎𝑢𝑖,𝑡

2  follow 476 

an inverse Gamma distribution. 477 

We assumed that the prior distribution of coefficients of covariables 478 

α𝑘,k=0, … ,4 as normal distribution: 479 

α𝑘~𝑁𝑜𝑟𝑚(𝛽0, 𝜎𝛼𝑘
2 )  (7) 480 

The β0 is an initial constant (here we set it as zero) and we also assumed the 481 

hyper-prior distribution of 𝜎𝛼𝑘
2  is inverse Gamma distribution.  482 

The posterior distribution of each parameter was estimated by the MCMC 483 

(Markov Chain Monte Carlo) method and this process was conducted through Open 484 

BUGS
51, 52

 and R (v 3.5.2). We run all models until convergence was reached, which 485 

was evaluated through both trace plot graphs and Gelman–Rubin convergence 486 

diagnostic values
53

.With this method, we estimated all coefficients of covariables 487 

(α𝑘,k=0, … ,4 and γk, k=0, … ,4) and Supplementary Fig.14- Fig.17 show the 488 

posterior distribution of α1-α4, which represent the sensitivity of Or to corresponding 489 

factors. 490 

The contribution of climate change to the change of 𝑂𝑟 at province scale is 491 

calculated as follows: 492 

Climate contribution to O𝑟 =
𝑇𝑟𝑐

𝑇𝑟𝑂
 ∗ 100%   (8) 

The 𝑇𝑟𝑐  represents the sum of the trend of climate factors product by 493 

corresponding sensitivity coefficient and the 𝑇𝑟𝑂 represent the actual trend of Or. 494 

Projection analysis in the future. Based on the historical climate-CPD relationship, 495 

we applied the projected climate factors to predict the yearly Or of each province 496 



 17 / 23 

 

under the two scenarios at first. For each scenario, we obtained five sets of projected 497 

Or from climate data output of 5 ESMs and we calculated their mean value and 498 

standard deviation. Then we calculated the change of national projected Or to the 499 

national historical result at different time periods as equation 9 shows.  500 

The change of 𝑂𝑟
𝑝𝑑

=
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑂𝑟 − ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑂𝑟  

ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑂𝑟
 ∗ 100%    (9) 

The time slice of projected 𝑂𝑟 includes near future (2020-2039), mid-century 501 

future (2040-2069) and end of century (2070-2100). At last, we compared the 502 

provincial change of mean projected 𝑂𝑟 to the mean historical 𝑂𝑟. To ensure the 503 

comparability principle, we selected the period from 2054 to 2100. 504 

 505 

Data availability  506 

The CRUTS 4.01 climate data set is publicly available at 507 

https://catalogue.ceda.ac.uk/uuid/58a8802721c94c66ae45c3baa4d814d0 ; 508 

Two future scenarios datasets in CMIP6 is publicly available at 509 

https://www.isimip.org/gettingstarted/input-data-bias-correction/ ; 510 

Agricultural data at provincial scale is publicly open at  511 

https://data.stats.gov.cn/english/; The crop pests and diseases dataset is available at 512 

https://doi.org/10.6084/m9.figshare.16866736.v2 513 

 514 
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Code availability 516 

All data were processed using MATLAB v2018b. Most of statistical analysis was 517 

carried out in MATLAB v2018b. The Bayesian hierarchical analysis was carried out 518 

in R studio (based on R v3.5.2) with the Open BUGS API. The figures were produced 519 

in Origin Pro 2020b and ArcGIS 10.7. Figure 2 was produced with MATLAB code 520 

(https://www.mathworks.com/matlabcentral/fileexchange/45639-hexscatter-m). Other 521 

codes are available upon request. 522 
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Figure Captions 538 

Fig. 1 Spatial and temporal pattern of Or. a. Time series of Or from 1970 to 2016 539 

and the distribution of the trend of each province: the dark blue line is the mean value 540 

of the time-series Or at the country level and the blue fill area refers to the one 541 

standard deviation of time-series Or. The histogram in the upper left is the distribution 542 

of provincial trend of Or and the red dash line represents the mean trend b. Spatial 543 

pattern of the mean Or from 1970 to 2016; c. Spatial pattern of the trend of Or from 544 

1970 to 2016. 545 

 546 

Fig.2 National occurrence condition of different crop pests and diseases from 547 

1970-2016. a. The comparison of pest occurrence ratios (𝑂𝑟
𝑃) between the 1970s and 548 

the 2010s across different hosts. The box chart reflects the distribution of 𝑂𝑟
𝑃 across 549 

different crops. Light green represents the 𝑂𝑟
𝑃  in the 1970s and the dark green 550 

represent values in the 2010s. b. The comparison of diseases occurrence ratios (𝑂𝑟
𝐷) 551 

between the 1970s and the 2010s.The box chart reflects the distribution of 𝑂𝑟
𝐷 across 552 

different crops. Light purple represents the 𝑂𝑟
𝐷  in the 1970s and dark purple 553 

represent that in the 2010s. c. Rising trend of 𝑂𝑟
𝑃 and 𝑂𝑟

𝐷 across different crops 554 

from 1970 to 2016. The column height represents the mean trend and the error bar 555 

represents one standard deviation. d. Sankey diagram summarizing major CPD 556 
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occurring hosts and species from the 1970s to the 2010s at national scale. The 557 

percentages given in this figure represent the share of occurrence area of a specific 558 

type in total CPD occurrence area but the colors of different flows did not represent 559 

the degree of occurrence.  560 

 561 

Fig. 3 Correlations between anomaly of factors and anomaly of Or. In each 562 

subplot, the scatter represents the relationship between the anomaly of factor and the 563 

anomaly of Or of all provinces and the correlation coefficient is labeled in the plot. 564 

The black line indicates the regression fitting results. The upper left histogram in 565 

subplot is the probability frequency distribution of the correlation coefficient of each 566 

province. A~I subplots represent the daytime temperature, nighttime temperature, 567 

frost day frequency, precipitation, relative humidity, cloud cover percentage, applying 568 

fertilizer quantity, irrigation area, applying pesticide quantity, crop diversity condition, 569 

multiple crop index and per capita GDP respectively. 570 

 571 

Fig. 4 Contribution of climate change to change of Or from 1970 to 2016. a. The 572 

contribution of different components to the change of Or of each province. Upper 573 

panel shows the contribution of the four climate factors to the change of Or of all 574 

provinces. Because several provinces in the upper panel is not clear enough to 575 

distinguish contribution of each climate factor, we marked them (provincial 576 

contributions of climate change to the corresponding change of Or below 30%) with 577 

dash lines and mapped them in the lower panel. b. Spatial pattern of contribution of 578 

climatic change to the change of Or from 1970 to 2016. The black labels represent the 579 

abbreviation of province names and supplementary table 5 shows the full names of all 580 

administrative units. c. Distribution of provincial absolute contribution of climate 581 

factors to the change of Or. This half-violin figure shows the information of absolute 582 

contribution of four climate factors. The right part of the violin figure represents 583 

probability density distribution and the points with error bars represent the mean with 584 

one standard deviation. The left part of the violin figure applying the scatter to 585 

represent the specific distribution of the data.  586 

 587 



 20 / 23 

 

Fig. 5 Change of Or projection from 2020 to 2100 under two scenarios. a. The 588 

projected changes in Or at different time periods. The box plots show the projected 589 

changes in Or compared with historical result at different time periods. NF represents 590 

near future (2020-2039), MC represents mid-century (2040-2069), EC represents end 591 

of century (2070-2100). Red box and dark blue box also represent the projected 592 

changes under SSP 585 and SSP 126 respectively. b and c show spatial pattern of the 593 

increasing Or between the historical result (mean Or in 1970-2016) and projection 594 

(mean Or in 2054-2100) under the SSP 126 and SSP 585 respectively. 595 

 596 
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