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Fragments of Quasi-Nelson: The
Algebraizable Core

UMBERTO RIVIECCIO∗, Departamento de Informática e Matemática Aplicada,
Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa
Nova 59072-970, Natal (RN), Brazil.

Abstract
This is the second of a series of papers that investigate fragments of quasi-Nelson logic (QNL) from an algebraic logic
standpoint. QNL, recently introduced as a common generalization of intuitionistic and Nelson’s constructive logic with strong
negation, is the axiomatic extension of the substructural logic FLew (full Lambek calculus with exchange and weakening) by
the Nelson axiom. The algebraic counterpart of QNL (quasi-Nelson algebras) is a class of commutative integral residuated
lattices (a.k.a. FLew-algebras) that includes both Heyting and Nelson algebras and can be characterized algebraically in several
alternative ways. The present paper focuses on the algebraic counterpart (a class we dub quasi-Nelson implication algebras,
QNI-algebras) of the implication–negation fragment of QNL, corresponding to the connectives that witness the algebraizabil-
ity of QNL. We recall the main known results on QNI-algebras and establish a number of new ones. Among these, we show
that QNI-algebras form a congruence-distributive variety (Cor. 3.15) that enjoys equationally definable principal congruences
and the strong congruence extension property (Prop. 3.16); we also characterize the subdirectly irreducible QNI-algebras in
terms of the underlying poset structure (Thm. 4.23). Most of these results are obtained thanks to twist representations for
QNI-algebras, which generalize the known ones for Nelson and quasi-Nelson algebras; we further introduce a Hilbert-style
calculus that is algebraizable and has the variety of QNI-algebras as its equivalent algebraic semantics.

Keywords: (Quasi-)Nelson, twist-structure, constructive logic, negation, implication, subreducts

1 Introduction

Quasi-Nelson logic (QNL) may be introduced in a number of equivalent ways, among which the
following three are at least worth mentioning: (i) as a non-contractive generalization of intuitionistic
logic, (ii) as a non-involutive weakening of Nelson’s constructive logic with strong negation [15] and
(iii) as the extension of the full Lambek calculus with exchange and weakening (FLew) by the Nelson
axiom:

((ϕ ⇒ (ϕ ⇒ ψ)) ∧ (∼ ψ ⇒ (∼ ψ ⇒ ∼ ϕ))) ⇒ (ϕ ⇒ ψ). (Nelson)

Accordingly, the algebraic counterpart of QNL (known as quasi-Nelson algebras since [22])
may be studied as a common generalization of Heyting and Nelson algebras or as a subclass
of (commutative, integral, bounded, distributive, 3-potent) residuated lattices, the latter being the
standard algebraic semantics of FL [8].

The above perspectives on QNL and quasi-Nelson algebras are discussed at length in the following
papers [22, 23, 24], while the more recent papers [17, 18, 20] focus on the issue of characterizing
logics/algebras that correspond to some fragments of the language of QNL. Because of the richness
of the alternative logico-algebraic signatures in which QNL can be presented and of the weaker
interactions among the connectives (in comparison, e.g. to intuitionistic or Nelson logic), the
landscape of the fragments of quasi-Nelson logic/algebras appears to be complex. On the other hand,
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2 Fragments of Quasi-Nelson: The Algebraizable Core

the twist representation of quasi-Nelson algebras introduced in [22, 23] (see Section 2) has proved
to be a very effective tool in the study of such fragments [17, 18, 21].

In the present paper, which may be viewed as a continuation of [20], we will show that twist
constructions can also be successfully employed in the study of the {→, ∼}-fragment of quasi-Nelson
algebras, corresponding to what may be called the ‘algebraizable core’ of QNL. In order to justify
the interest in this particular fragment, let us introduce and brief ly discuss QNL and its language.

One of the most distinctive features of Nelson’s constructive logic with strong negation is that
it may be equivalently introduced either as an axiomatic strengthening of the full Lambek calculus
with exchange and weakening (i.e. a logic in the substructural family) or as a conservative expansion
of intuitionistic logic by a new involutive negation. In the former alternative, Nelson’s logic is
presented in the language of FLew {∧, ∨, ∗, ⇒, 0, 1}, consisting of the additive conjunction (∧)

and disjunction (∨), the multiplicative or monoid conjunction (∗) together with the corresponding
residuated implication (⇒) and the truth constants (0, 1). The negation (∼) is defined in the standard
way as ∼ p := p⇒0. In the latter, one uses the language {∧, ∨, →, ∼} consisting of the intuitionistic
(additive) conjunction (∧), disjunction (∨) and implication (→) expanded with a new involutive
negation (∼). The truth constants can be defined by 1 := p → p and 0 := ∼ 1, and a second
negation (¬) can be obtained by letting ¬p := p → 0.

In the literature on Nelson’s logic, the residuated implication ⇒ is usually called the strong
implication, while → is known as the weak one; accordingly, the connective ∼ is known as the
strong negation, while ¬ is sometimes called the intuitionistic negation (but the term ‘intuitionistic’
may be misleading and is no longer meaningful in the more general setting of QNL). The equivalence
between both languages works as follows: within {∧, ∨, ∗, ⇒}, one can define the weak implication
by p → q := p ⇒ (p ⇒ q), and within {∧, ∨, →, ∼}, one may let p ⇒ q := (p → q) ∧ (∼ q → ∼ p)

and p ∗ q := p ∧ q ∧ ∼(p ⇒ ∼ q).
The dual nature of Nelson’s logic is shared by QNL as introduced (via its algebraic semantics) in

[22], and the above-mentioned equivalences among connectives are still valid. However, since the
negation ∼ is no longer required to be involutive, other equivalences that hold for Nelson’s logic are
lost: e.g. the conjunction (∧) can no longer be defined as p ∧ q := ∼(∼ p ∨ ∼ q), and similarly the
disjunction is not necessarily given by p ∨ q := ∼(∼ p ∧ ∼ q); the strong implication (⇒) is not
definable by p ⇒ q := ∼(p ∗ ∼ q), and so on.1 These observations suggest that the number of non-
equivalent fragments of QNL is much larger than in the Nelson case. In fact, as far as we are aware,
even the latter problem (a classification of fragments of Nelson’s logic) has never been tackled in a
systematic fashion; this may indeed turn out to be a fruitful direction for future research.

The main features that distinguish (quasi-)Nelson logics among the extensions of FLew arise from
the interplay between the implication(s) and the strong negation; this is very compactly expressed
by the Nelson axiom

((p ⇒ (p ⇒ q)) ∧ (∼ q ⇒ (∼ q ⇒ ∼ p))) ⇒ (p ⇒ q)

whose algebraic alter ego is the identity (Nelson) shown in Definition 2.1. The meaning and
implications of the Nelsion axiom/identity are discussed at length in the following papers [22, 23,
24]. In particular, it is shown in [23, Prop. 14] that (Nelson) is equivalent (in the setting of 3-potent
residuated lattices) to the following quasi-equational property:

if x → y = ∼ y → ∼ x = 1, then x ≤ y.

1For the sake of completeness of information, we may add that the definition p ∗ q := p ∧ q ∧ ∼(p ⇒ ∼ q) works both for
Nelson’s logic and QNL, while the more usual p ∗ q := ∼(p ⇒ ∼ q) is only suitable in the involutive setting.
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Fragments of Quasi-Nelson: The Algebraizable Core 3

The latter formulation shows that the property of ‘being Nelson’ may be expressed using only the
weak implication, the negation and the lattice order. These considerations, as well as past research
experience, suggest that the {⇒, ∼}- and {→, ∼}-fragments lie ‘at the core’ of (quasi-)Nelson logics;
of the two, the former is the more general one, in the sense that the weak implication is definable
from the strong, but not the other way round.

Coming to the question of algebraizability, we recall that both Nelson’s logic and QNL (as
extensions of FLew) are obviously algebraizable; for QNL presented in the language {∧, ∨, →, ∼}
this has been first shown in [11]. The translations that witness the algebraizability (the same for
Nelson’s logic and QNL) can be defined using different choices of connectives. For the defining
equation, one can let E(ϕ) := {ϕ ≈ ϕ → ϕ}, or E(ϕ) := {ϕ ≈ 1}, or E(ϕ) := {ϕ ≈ ϕ ⇒ ϕ}, or
E(ϕ) := {ϕ ≈ ϕ ↔ ϕ}, or E(ϕ) := {ϕ ≈ ϕ ⇔ ϕ}, where ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ) and
ϕ ⇔ ψ := (ϕ→ψ)∗ (ψ →ϕ), etc. For the equivalence formulas, one has for instance the following
options: Δ(ϕ, ψ) := {ϕ ⇔ ψ}, Δ(ϕ, ψ) := {ϕ⇒ψ , ψ ⇒ϕ}, Δ(ϕ, ψ) := {ϕ → ψ , ψ → ϕ, ∼ ϕ →
∼ ψ , ∼ ψ → ∼ ϕ}, etc. Indeed, one can show that every fragment of QNL containing either {⇒} or
{⇔} or {→, ∼} is algebraizable.

Each of the above-mentioned fragments may thus be considered an algebraizable core of QNL.
Here we shall focus on the {→, ∼}-fragment, the main reasons motivating this choice being the
following. On the one hand, the {→, ∼}-fragment is a minimal one, in the sense that the {∼}-
fragment is (obviously) not algebraizable, and the {→}-fragment coincides with the well-known
implication fragment of intuitionistic logic.2 On the other hand, despite the seemingly poor language,
the {→, ∼}-subreducts of quasi-Nelson algebras (dubbed QNI-algebras in [20]) form a rather well-
behaved class from a universal algebraic point of view, to which many results from the theory
of (quasi-)Nelson algebras may be extended. In particular, we are going to show that a suitable
adaptation of the twist construction used to represent quasi-Nelson algebras in [22] yields a
representation for QNI-algebras too (regrettably, the purely implicational fragment {⇒} seems to lie
beyond the reach of our current techniques). This representation, in turn, is useful both for obtaining
further information on QNI-algebras and for a more general exploration of the boundaries of twist-
type constructions. We thus both hope and believe that the techniques developed in the present paper
may be applied without major difficulties to a number of other fragments of (quasi-)Nelson (and
to related classes of algebras), perhaps eventually leading to the systematic classification that is
currently lacking.

The paper is organized as follows. In Section 2 we provide the necessary background on the main
classes of algebras involved. Section 3 focusses on the {→, ∼}-subreducts of quasi-Nelson algebras,
summarizing the known results (in particular, the twist representation) on this class of algebras.
Aside from these, the section also establishes a previously unpublished result, namely that QNI-
algebras form a variety (Corollary 3.15). Section 4 introduces an alternative twist representation
for QNI-algebras. In comparison with the one discussed in Section 3, the new representation has
the advantage of establishing a connection between QNI-algebras and a (single-sorted) variety of
modal-like algebras (dubbed nuclear Hilbert semigroups); we note that our construction is also
formally very close to other known representations of non-classical algebras via the so-called
nuclei operators (see e.g. [7, 9]). More importantly, the new representation allows us to show that
our equational axiomatization of QNI-algebras does indeed characterize the {→, ∼}-subreducts
of quasi-Nelson algebras (Corollary 4.20). In Section 4 we also obtain further information on the

2The {→}-fragment of intuitionistic logic is well known to be algebraizable, and its algebraic counterpart is the variety
of Hilbert algebras. By the way, it is easy to show that the same holds for the {↔}-fragment of QNL: it is algebraizable and
coincides with the intuitionistic one (on the latter, see e.g. [8, p. 118]).
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4 Fragments of Quasi-Nelson: The Algebraizable Core

structure of subdirectly irreducible QNI-algebras (Theorem 4.23) and on the lattice of subvarieties
of QNI-algebras (Proposition 4.26); for the latter result the twist representation plays again a key
role. In Section 5 we introduce a Hilbert-style calculus that axiomatizes the {→, ∼}-fragment of
QNL. As anticipated, this calculus is algebraizable and has the variety of QNI-algebras as its
equivalent algebraic semantics (Theorems 5.2 and 5.3). Section 6 closes the paper with concluding
considerations and suggestions for future research.

2 Quasi-Nelson Algebras as Twist-Algebras

This section contains definitions of classes of algebras that we shall need in the subsequent ones. We
begin by introducing the algebraic counterpart of QNL. We assume familiarity with standard results
on universal algebra [2] and (residuated) lattices [8].

DEFINITION 2.1.
A commutative integral bounded residuated lattice (CIBRL) is an algebra A = 〈A; ∧, ∨, ∗, →, 0, 1〉
of type 〈2, 2, 2, 2, 0, 0〉 such that

(i) 〈A; ∗, 1〉 is commutative monoid, (Mon)
(ii) 〈A; ∧, ∨, 0, 1〉 is a bounded lattice (with order ≤), (Lat)

(iii) a ∗ b ≤ c iff a ≤ b ⇒ c for all a, b, c ∈ A. (Res)

On any CIBRL A, the presence of the 0 constant allows us to define a negation operation (∼)
given by ∼ a := a ⇒ 0 for all a ∈ A. Every Heyting algebra H can be viewed as a CIBRL on which
the ∧ and ∗ operation coincide (hence, the implication ⇒ is the residuum of the meet ∧).

DEFINITION 2.2. [22]
A quasi-Nelson algebra (QN-algebra) is a CIBRL that satisfies the Nelson identity:

(x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼ x)) ≈ x ⇒ y (Nelson)

A Nelson algebra is a quasi-Nelson algebra that satisfies the involutive identity x ≈ ∼∼ x.

QN-algebras have been introduced only recently but are the subject of a rapidly growing literature
[17, 19, 21–23]; Nelson algebras, on the other hand, have been around for more than four decades.3

Every Heyting algebra satisfies the identity (Nelson) and is therefore an example of a QN-algebra
on which the operations ∧ and ∗ coincide (on the other hand, the only Heyting algebras that are also
Nelson algebras are the Boolean algebras). The class of quasi-Nelson algebras can thus be viewed
as a common generalization of Heyting algebras and Nelson algebras.

We note that the identity x ∗ y ≈ x ∧ y ∧ ∼(x ⇒ ∼ y) is valid on every QN-algebra, suggesting
that QN-algebras may be equivalently presented in a language that does not include a primitive
symbol for the monoid operation. An alternative language in which (quasi-)Nelson algebras have
been traditionally considered is {∧, ∨, →, ∼, 0, 1}, which replaces the residuated implication ⇒ (in
this context known as the strong implication) by the weak implication → and defines x⇒y := (x →
y) ∧ (∼ y → ∼ x). On every QN-algebra A, a second negation ¬ can then be defined by the term

3In the papers [22, 23], QN-algebras are also called quasi-Nelson residuated lattices: the two terms refer to the two
presentations (which use either the strong or the weak implication as primitive) of the ‘same’ class of algebras. In the present
paper we shall refrain from employing the term ‘quasi-Nelson residuated lattices’ or the alternative abstract presentation of
[22, 23].
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Fragments of Quasi-Nelson: The Algebraizable Core 5

¬x := x → 0; it is easy to show that ¬ only coincides with ∼ iff A is a Heyting algebra. Conversely,
the weak implication is definable via the strong one by the term x → y := x ⇒ (x ⇒ y). Relying on
this equivalence, depending on convenience, we can employ either the strong or the weak implication
to express key properties of QN-algebras.

For our present purposes, the main structural result on QN-algebras is the twist representation.
We present this result in two slightly different guises, which we will both extend to the class of
{→, ∼}-subreducts of QN-algebras.

Recall that a Heyting algebra is an algebra H = 〈H ; ∧, ∨, →, 0, 1〉 of type 〈2, 2, 2, 0, 0〉 such that
〈H ; ∧, ∨, 0, 1〉 is a bounded lattice (with order ≤) and → is the residuum of ∧, i.e. a ∧ b ≤ c iff
a ≤ b → c, for all a, b, c ∈ H . On each Heyting algebra H, we let D(H) := {a ∈ H : a → 0 = 0}.

DEFINITION 2.3.
Let H+ = 〈H+; ∧+, ∨+, →+, 0+, 1+〉 and H− = 〈H−; ∧−, ∨−, →−, 0−, 1−〉 be Heyting algebras
(with orders ≤+ and ≤−), let ∇ ⊆ H+ be a filter such that D(H+) ⊆ ∇, and let n : L+ → L− and
p : L− → L+ be maps satisfying the following conditions4 :

(i) n is a bounded lattice homomorphism,
(ii) p preserves finite meets and both lattice bounds,

(iii) n · p = IdL− and IdL+ ≤+ p · n.

The quasi-Nelson twist-algebra Tw(H+, H−, n, p, ∇) = 〈A; ∧, ∨, ∼, →, 0, 1〉 has universe

A := {〈a+, a−〉 ∈ H+ × H− : a+ ∨+ p(a−) ∈ ∇, a+ ∧+ p(a−) = 0+}
and operations given as follows. For all 〈a+, a−〉, 〈b+, b−〉 ∈ H+ × H−,

1 := 〈1+, 0−〉,
0 := 〈0+, 1−〉,

∼〈a+, a−〉 := 〈p(a−), n(a+)〉,
〈a+, a−〉 ∧ 〈b+, b−〉 := 〈a+ ∧+ b+, a− ∨− b−〉,
〈a+, a−〉 ∨ 〈b+, b−〉 := 〈a+ ∨+ b+, a− ∧− b−〉,

〈a+, a−〉 → 〈b+, b−〉 := 〈a+ →+ b+, n(a+) ∧− b−〉.
The twist representation result states that every QN-algebra arises in the way described in

Definition 2.3. We proceed to expound the details of this representation.
Given a QN-algebra A = 〈A; ∧, ∨, ∗, →, 0, 1〉, define the operation → by the term x → y =

x → (x → y). Further define the relation ≡, for all a, b ∈ A, by

a ≡ b iff a → b = b → a = 1.

The relation ≡ thus obtained is compatible with the operations 〈∧, ∨, ∗, →〉, which gives us a
quotient A+ = 〈A/≡; ∧, ∗, ∨, →, 0, 1〉. Moreover, the algebra A+ is a Heyting algebra (on which
the operations ∧ and ∗ coincide). Defining the set F(A) = {a ∈ A : ∼ a ≤ a}, we have that
∇A = F(A)/≡ is a lattice filter of A+ and D(A+) ⊆ ∇A. To obtain a second factor, one considers

4In fact, since n and p are monotone maps and n · p ≤− IdH− and IdH+ ≤+ p · n, we have that n and p form an adjoint
pair from the poset 〈H+, ≤+〉 to the poset 〈H−, ≤−〉. This entails that n preserves arbitrary existing joins and p preserves
arbitrary existing meets (cf. Remark 3.8 below).
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6 Fragments of Quasi-Nelson: The Algebraizable Core

the set ∼ A = {∼ a : a ∈ A} and lets A− = ∼ A/≡. Then A− is the universe of a subalgebra
of A+, which we denote by A−. Lastly, we define maps nA : A+ → A− and pA : A− → A+ as
follows: nA(a/≡) = ∼ ∼ a/≡ and pA(∼ a/≡) = ∼ a/≡. The tuple 〈A+, A−, nA, pA, ∇A〉 satisfies
the required properties for defining a QN twist-algebra Tw〈A+, A−, nA, pA, ∇A〉, which allows us to
obtain the representation result below.

THEOREM 2.4. [23], Prop. 10
Every quasi-Nelson algebra A is isomorphic to the quasi-Nelson twist-algebra

Tw〈A+, A−, nA, pA, ∇A〉

constructed according to Definition 2.3 through the map ι given by ι(a) = 〈[a], [∼ a]〉 for all a ∈ A.

Among QN-algebras, the involutive ones (i.e. Nelson algebras) are precisely those algebras A such
that A = ∼ A. Hence A+ = A− and nA, pA are both the identity map (therefore, a Nelson algebra
is determined by just a pair 〈H, ∇〉). Likewise, Heyting algebras correspond to those quasi-Nelson
algebras A such that A+ ∼= A.

An alternative twist representation for QN-algebras arises from the following observation. By
item (iii) of Definition 2.3, the map p is injective; this suggests that the Heyting algebra H− may
be viewed as a (special) subalgebra of H+ and, more precisely, as the image of H+ under a nucleus
operator.

Given a Heyting algebra H = 〈H ; ∧, ∨, →, 0, 1〉, we shall say that a unary operation � : H → H
is a nucleus on H if the following identities are satisfied:

(i) �(x ∧ y) ≈ �x ∧ �y
(ii) x ≤ �x

(iii) �x ≈ ��x
(iv) �0 ≈ 0.

Nuclei have been extensively studied in the literature on residuated lattices, and those defined on
Heyting algebras in particular are the subject, for instance, of [12, 13]. A nucleus can be thought
of as a generalization of the double negation operation. Indeed, it is easy to verify that, on every
Heyting algebra, letting �x := (x → 0) → 0, one obtains a nucleus. The identity map is also a
nucleus on every Heyting algebra. In the present setting, the key observation is the following: given
two Heyting algebras H+ and H− related by maps n, p as per Definition 2.3, it is easy to verify that
the composition p ◦ n is a nucleus on H+.

The following proposition provides a more concise definition of a nucleus that will be useful to
keep in mind when we focus on subreducts of QN-algebras.

PROPOSITION 2.5. [13], Thm. 1.3
Let H be a Heyting algebra endowed with a unary operation � satisfying �0 = 0. The following

are equivalent:

(i) � is a nucleus.
(ii) a → �b = �a → �b for all a, b ∈ H .

At this point we are ready to introduce an alternative twist construction for quasi-Nelson algebras.

DEFINITION 2.6.
Let H = 〈H , ∧, ∨, →, �, 0, 1〉 be a Heyting algebra with a nucleus, and let ∇ ⊆ H be a filter such
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Fragments of Quasi-Nelson: The Algebraizable Core 7

that D(H) ⊆ ∇. The quasi-Nelson twist-algebra Tw(H, ∇) = 〈A; ∧, ∨, ∼, →, 0, 1〉 has universe

A := {〈a1, a2〉 ∈ H × H : a2 = �a2, a1 ∨ a2 ∈ ∇, a1 ∧ a2 = 0}
and operations given as follows. For all 〈a1, a2〉, 〈b1, b2〉 ∈ H × H ,

1 = 〈1, 0〉
0 = 〈0, 1〉

∼〈a1, a2〉 = 〈a2, �a1〉
〈a1, a2〉 ∧ 〈b1, b2〉 = 〈a1 ∧ b1, �(a2 ∨ b2)〉
〈a1, a2〉 ∨ 〈b1, b2〉 = 〈a1 ∨ b1, a2 ∧ b2〉

〈a1, a2〉 → 〈b1, b2〉 = 〈a1 → b1, �a1 ∧ b2〉.
In the above definition (and throughout the rest of the paper), following standard usage on Nelson

algebras, we are overloading the symbols ∧, ∨, → so as to refer to operations on Tw(H, ∇) as well
as on H. A comparison with Definition 2.3 shows that in Definition 2.6 we have replaced the second
Heyting algebra H− with the direct image �[H] of H under the nucleus. This image is a {∧, →, 0, 1}-
subalgebra of H but is not necessarily closed under the disjunction, which explains the different
definition of the disjunction in the twist-algebra.

The representation result based on the alternative construction is entirely analogous to
Theorem 2.4. Given a QN-algebra A = 〈A; ∧, ∨, ∗, →, 0, 1〉, one considers the relation ≡, the
quotient 〈A/≡; ∧, ∗, ∨, →, 0, 1〉 and the filter ∇A defined as before. Moreover, having observed that
a ≡ b entails ∼ ∼ a ≡ ∼ ∼ b for all a, b ∈ A, we enrich the quotient 〈A/≡; ∧, ∗, ∨, →, 0, 1〉 with a
nucleus defined by �a/≡ := ∼ ∼ a/≡ for each a ∈ A. Letting H(A) := 〈A/≡; ∧, ∨, →, �, 0, 1〉, we
construct the twist-algebra Tw(H(A), ∇A) as prescribed by Definition 2.6, obtaining the following
result.

THEOREM 2.7.
Every quasi-Nelson algebra A is isomorphic to the quasi-Nelson twist-algebra Tw〈H(A), ∇A〉
constructed according to Definition 2.6 through the map ι given by ι(a) = 〈[a], [∼ a]〉 for all a ∈ A.

In the next section we are going to define a twist construction that is more general than the above-
defined ones in the sense that it does not require the underlying factor(s) to be Heyting algebra(s),
but only to possess a Heyting implication (plus a little additional structure). Such generalization
is possible because the component-wise definition of the implication on the twist-algebra (say, in
Definition 2.6) only requires the presence of an implication in the first factor, a nucleus and a meet
in the second factor; the most important observation being perhaps that we only need to have meets
of elements that are in the direct image of the nucleus.

3 QNI-Algebras and Their Twist Representation

We are now going to introduce an abstract class of algebras (QNI-algebras) that corresponds
precisely to the {→, ∼}-subreducts of quasi-Nelson algebras. This result will be established thanks
to a twist representation for these algebras. The basic results contained in the present section were
first proved in [20, Sec. 4], to which we refer for further details and proofs.

Let A = 〈A; →, ∼, 0, 1〉 be an algebra of type 〈2, 1, 0, 0〉 and let a, b ∈ A. We write a � b instead
of a → b = 1, and a ≡ b instead of a → b = b → a = 1. We also employ the following new
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8 Fragments of Quasi-Nelson: The Algebraizable Core

abbreviations: a � b := ∼(a → ∼ b) and

q(a, b, c) := (a → b) → ((b → a) → ((∼ a → ∼ b) → ((∼ b → ∼ a) → c))).

The idea behind these operations is that the connective � acts as a conjunction of sorts (cf. especially
items (iv), (xiv) and (xv) in Definition 3.1 and Lemma 3.13), while q(a, b, c) is a generalization of
the operation given, on every quasi-Nelson algebra, by ((a⇒b)∧(b⇒a)) → c (cf. Corollary 3.16).

DEFINITION 3.1. [20], Def. 21
An algebra A = 〈A; →, ∼, 0, 1〉 of type 〈2, 1, 0, 0〉 is a quasi-Nelson implication algebra (QNI-

algebra) if the following properties are satisfied, for all a, b, c, d ∈ A:

(i) 1 → a = a
(ii) a → (b → a) = a → a = 0 → a = 1

(iii) a → (b → c) = b → (a → c) = (a → b) → (a → c)
(iv) ∼ a → (∼ b → c) = (∼ a � ∼ b) → c
(v) q(a, b, a) = q(a, b, b)

(vi) if ∼ a � ∼ b, then ∼ a � ∼ a � ∼ b
(vii) a � (b � c) ≡ (a � b) � c

(viii) a � b ≡ b � a
(ix) if a ≡ b and c ≡ d, then a → c ≡ b → d and a � c ≡ b � d
(x) ∼ a = ∼ ∼ ∼ a

(xi) ∼ 1 = 0 and ∼ 0 = 1
(xii) (a → b) → (∼ ∼ a → ∼ ∼ b) = 1.
(xii) a � ∼∼ a
(xiv) if a � b, then a � c � b � c and c � a � c � b
(xv) a � (a → b) ≡ a � b

(xvi) a � b ≡ ∼ ∼ a � ∼ ∼ b
(xvii) ∼(a → b) ≡ ∼(∼∼ a → ∼ ∼ b).

In what follows, we shall denote by QNI the class of QNI-algebras. Notice that the constants 0, 1
could also be introduced as the following abbreviations: 1 := a → a and 0 := ∼ 1. This ref lects the
observation that, since every quasi-Nelson algebra satisfies x → x ≈ 1 and ∼ 1 ≈ 0, the class of
{→, ∼}-subreducts of quasi-Nelson algebras coincides with the class of {→, ∼, 0, 1}-subreducts.

As a sanity check, one can verify that every quasi-Nelson (twist-)algebra satisfies all the properties
listed in Definition 3.1. Another natural example of a QNI-algebra is any bounded Hilbert algebra
〈A; →, 0, 1〉 (see below for the definition) where one lets ∼ a := a → 0 for all a ∈ A (cf.
Propositions 3.11 and 4.26.iii).

Regarding the connective � it may be helpful to keep in mind that, on a quasi-Nelson twist-algebra
Tw(H+, H−, n, p, ∇), one has, for all 〈a+, b+〉 ∈ H+ and all 〈a−, b−〉 ∈ H−,

〈a+, a−〉 � 〈b+, b−〉 = 〈p(n(a+) ∧− n(b+)), n(a+ →+ p(b−))〉.

REMARK 3.2.
For ease of reference, the items in Definition 3.1 are precisely those in [20, Def. 21]. However, the
ones listed below are redundant and could therefore be omitted:

Item (xiii). Indeed, from (xi) we have 1 = ∼ ∼ 1. Thus, using (i) and (xii), we have
a → ∼ ∼ a = (1 → a) → (1 → ∼ ∼ a) = (1 → a) → (∼ ∼ 1 → ∼ ∼ a) = 1.
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Fragments of Quasi-Nelson: The Algebraizable Core 9

Item (xvi). By definition of � we have a � b = ∼(a → ∼ b). Using (xvii) and applying the
definition of � again, we have ∼(a → ∼ b) ≡ ∼(∼ ∼ a → ∼ ∼ ∼ b) = ∼ ∼ a � ∼ ∼ b.

Also, (xiv) easily implies the second claim in item (ix).

Our next goal is to show that every QNI-algebra embeds into a twist-algebra.

LEMMA 3.3. [20], Lemma 22
Let A ∈ QNI and a, b, c ∈ A.

(i) a → 1 = 1.
(ii) a ≡ b if and only if a → c = b → c for all c ∈ A.

(iii) ∼ a � ∼ b � ∼ a and ∼ a � ∼ b � ∼ b.
(iv) If a � b and b � c, then a � c.
(v) a ≡ 1 if and only if a = 1.

(vi) ∼ a � ∼ b if and only if ∼ a � ∼ a � ∼ b.
(vii) a � ∼ a = 0.

(viii) If a � b, then ∼ ∼ a � ∼ ∼ b.
(ix) a � a ≡ ∼ ∼ a � ∼ ∼ a ≡ ∼ ∼ a.
(ix) The relation ≤ defined by a ≤ b iff (a � b and ∼ b � ∼ a) is a partial order on A, with

minimum 0 and maximum 1.

Let A = 〈A; →, ∼, 0, 1〉 ∈ QNI. Observe that the relation � is ref lexive (Definition 3.1.ii) and
transitive (Lemma 3.3.iv). Hence ≡ is an equivalence relation. Letting A+ := A/≡ and recalling
Definition 3.1.ix, we can thus obtain a quotient algebra A+ = 〈A+; →+, 0+, 1+〉. We proceed to
take a closer look at this structure; we shall need some additional terminology.

Recall that Hilbert algebras are algebras 〈A; →, 1〉 of type 〈2, 0〉 that are precisely the {→, 1}-
subreducts of Heyting algebras. It is well known that 〈A; →, 1〉 is a Hilbert algebra if and only if the
following (quasi-)identities are satisfied:

(H1) x → (y → x) ≈ 1
(H2) (x → (y → z)) → ((x → y) → (x → z)) ≈ 1
(H3) if x → y ≈ 1 and y → x ≈ 1, then x ≈ y.

Every Hilbert algebra has a natural order ≤ (not necessarily forming a lattice or even a semilattice)
given by a ≤ b iff a → b = 1. The top element of ≤ is 1. If the natural order also has a
minimum element (denoted 0 and sometimes included in the algebraic signature as a constant), then
we speak of a bounded Hilbert algebra. It is useful to recall that every Hilbert algebra satisfies
the commutative identity x → (y → z) ≈ y → (x → z) and that the implication → is
order-reversing in the first argument and order-preserving in the second. These observations can
be used to show that every Hilbert algebra satisfies not just (H2) but indeed the stronger (H2’):
x → (y → z) ≈ (x → y) → (x → z).

PROPOSITION 3.4. [20], Prop. 23
For each A ∈ QNI, the quotient A+ = 〈A+, →+, 0+, 1+〉 is a bounded Hilbert algebra.

Let ∼ A := {∼ a : a ∈ A}. Observe that, for all a, b ∈ A, if ∼ a ≡ b, then b ∈ ∼ A. Thus
{b ∈ A : ∼ a ≡ b} = {b ∈ ∼ A : ∼ a ≡ b} for all a ∈ A. Hence, we can unambiguously let
A− := ∼ A/≡, and we have A− ⊆ A+. We endow A− with operations as follows. For all a, b ∈ A, let:

[∼ a] ∧− [∼ b] := [∼ a � ∼ b] = [∼(∼ a → ∼ ∼ b)]

0− := [∼ 1] = [0] = 0+
1− := [∼ 0] = [1] = 1+.
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10 Fragments of Quasi-Nelson: The Algebraizable Core

PROPOSITION 3.5. [20], Prop. 24
For each A ∈ QNI, the quotient A− = 〈A−, ∧−, 0−, 1−〉 is a bounded semilattice.

Although this is not needed for the purpose of the twist representation, one could further define
an operation →− by [∼ a] →− [∼ b] := [∼ ∼(∼ a → ∼ b)], obtaining a bounded Hilbert algebra
〈A−, →−, 0−, 1−〉 and an implicative semilattice 〈A−, ∧−, →−, 0−, 1−〉; see Proposition 3.9.

We define maps pA : A− → A+ and nA : A+ → A− as follows: pA is the identity map on A− and
nA[a] := [∼∼ a] for all a ∈ A.

PROPOSITION 3.6. [20], Prop. 25
Let A = 〈A; →, ∼, 0, 1〉 ∈ QNI, with corresponding quotient algebras A+ = 〈A+; →+, 0+, 1+〉,

A− = 〈A−; ∧−, 0−, 1−〉 and maps nA : A+ → A−, pA : A− → A+ defined as above. Then

(i) nA and pA are monotone and preserve the bounds.
(ii) nA · pA = IdA− and IdA+ ≤+ pA · nA.

(iii) nA(a+) ∧− nA(b+) = nA(a+) ∧− nA(a+ →+ b+), for all a+, b+ ∈ A+.
(iv) pA(a− ∧− b−) →+ c+ = pA(a−) →+ (pA(b−) →+ c+), for all a−, b− ∈ A− and c+ ∈ A+.

Propositions 3.4 to 3.7 motivate the following definition.

DEFINITION 3.7.
Let H+ = 〈H+; →+, 0+, 1+〉 be a bounded Hilbert algebra, let M− = 〈M−; ∧−, 0−, 1−〉 be a
bounded semilattice and let n : H+ → M− and p : M− → H+ be maps satisfying the following
properties:

(i) n and p are monotone and preserve the bounds,
(ii) n · p = IdM− and IdH+ ≤+ p · n.

(iii) n(a+) ∧− n(b+) = n(a+) ∧− n(a+ →+ b+), for all a+, b+ ∈ H+.
(iv) p(a− ∧− b−) →+ c+ = p(a−) →+ (p(b−) →+ c+), for all a−, b− ∈ A− and c+ ∈ H+.

The algebra H+ �� M− = 〈H+ × M−; →, ∼, 0, 1〉 is defined as follows. The operations →, ∼ are
given as the corresponding ones in Definition 2.3. A quasi-Nelson implicative twist-algebra (QNI
twist-algebra) A over 〈H+, M−, n, p〉 is a {→, ∼, 0, 1}-subalgebra of H+ �� M− with carrier set A
satisfying: π1[A] = H+ and n(a+) ∧− a− = 0− for all 〈a+, a−〉 ∈ A.

As observed in [20, p. 18], the set

A := {〈a+, a−〉 ∈ H+ × M− : n(a+) ∧− a− = 0−}
is closed under the algebraic operations and is therefore the universe of the largest twist-algebra over
〈H+, M−, n, p〉.

On every QNI twist-algebra A over 〈H+, M−, n, p〉, we introduce the derived connective � as
before. Therefore we have 〈a+, a−〉 � 〈b+, b−〉 = 〈p(n(a+) ∧− n(b+)), n(a+ →+ p(b−))〉. We also
define the relation � by

〈a+, a−〉 � 〈b+, b−〉 iff 〈a+, a−〉 → 〈b+, b−〉 = 〈1+, 0−〉.
It is easy to check that 〈a+, a−〉 � 〈b+, b−〉 iff a+ ≤+ b+. The relation ≡ is defined by

〈a+, a−〉 ≡ 〈b+, b−〉 iff (〈a+, a−〉 � 〈b+, b−〉 and 〈b+, b−〉 � 〈a+, a−〉).
We then have 〈a+, a−〉 ≡ 〈b+, b−〉 iff a+ = b+. We also have ∼〈a+, a−〉 � ∼〈b+, b−〉 iff a− ≤−
b−, and therefore ∼〈a+, a−〉 ≡ ∼〈b+, b−〉 iff a− = b−.
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Fragments of Quasi-Nelson: The Algebraizable Core 11

REMARK 3.8. [20], Rem. 27
Since n and p are monotone maps and n · p ≤− IdM− and IdH+ ≤+ p · n, we have that n and p

form an adjoint pair from the poset 〈H+, ≤+〉 to the poset 〈M−, ≤−〉. This entails that n preserves
arbitrary existing joins and p preserves arbitrary existing meets (cf. Definition 2.3 above). Moreover,
in our case, for all a−, b− ∈ M−, the meet of {p(a−), p(b−)} always exists in H+ and is the element
p(a− ∧− b−).

PROPOSITION 3.9. [20], Prop. 29
Let 〈H+, M−, n, p〉 be as per Definition 3.7. For all a−, b− ∈ M−, define the operation →− by

a− →− b− := n(p(a−) →+ p(b−)). Then M− = 〈M−; ∧−, →−, 0−, 1−〉 is a bounded implicative
semilattice.5 Moreover, the map p preserves the implication, i.e. p(a− →− b−) = p(a−) →+ p(b−)

for all a−, b− ∈ M−.

Proposition 3.9 suggests that in Definition 3.7 we could equivalently have required M− to be an
implicative semilattice. An interesting consequence of Proposition 3.9 is that M− is a distributive
semilattice in the sense of [10,Sec. II.5], i.e. the lattice of filters of M− is distributive. As is well
known, the lattice of (implicative) filters of a Hilbert algebra (such as our H+) is also distributive [5,
p. 477].

PROPOSITION 3.10. [20], Prop. 31
Every QNI twist-algebra is a QNI-algebra.

PROPOSITION 3.11.
Let 〈A; →, 0, 1〉 be a bounded Hilbert algebra. Upon defining ∼ a := a → 0 for all a ∈ A, the
algebra 〈A; →, ∼, 0, 1〉 is a QNI-algebra.

PROOF. The statement could be proved directly, checking that every bounded Hilbert algebra
satisfies all items of Definition 3.1. There is, however, a shorter indirect proof. We will reason
by contraposition and use the observation that bounded Hilbert algebras (viewed as algebras in the
language {→, ∼, 0, 1}) are precisely the {→, ∼, 0, 1}-subreducts of Heyting algebras. Suppose α ≈ β

is an identity that is not satisfied by all bounded Hilbert algebras. Then, by the above observation,
there is some Heyting algebra A that does not satisfy α ≈ β. Since every Heyting algebra is a quasi-
Nelson algebra [23, Prop. 11.iii], we can view A as a quasi-Nelson twist-algebra [23, Thm. 3] whose
{→, ∼, 0, 1}-reduct is a QNI twist-algebra. By Proposition 3.10 above, this reduct is a QNI-algebra
that witnesses the failure of α ≈ β. This shows that every identity that is satisfied by QNI-algebras
is also satisfied by bounded Hilbert algebras. Since both classes are varieties (cf. Corollary 3.15
below), we have that bounded Hilbert algebras are a subvariety of QNI. Hence, the desired result
follows. �

Observe that Proposition 3.11 entails that the operations/connectives that are not definable in
the {→, ∼, 0, 1}-fragment of intuitionistic logic are, a fortiori, not definable in the setting of QNI-
algebras and their logic (see Section 5). Thus, in particular, the connectives ∧, ∨ and ∗ of QNL are
not definable from {→, ∼, 0, 1}; we shall return to the issue of characterizing (other) fragments of
QNL in Section 6.

5Bounded implicative semilattices are the 〈∧, →, 0, 1〉-subreducts of Heyting algebras and correspond to the conjunction-
implication–negation fragment of intuitionistic logic. Abstractly, an algebra 〈M ; ∧, →, 0, 1〉 is a bounded implicative
semilattice if and only if (i) 〈M ; ∧, 0, 1〉 is a bounded semilattice and (ii) → is the residuum of ∧, i.e. a ∧ b ≤ c iff a ≤ b → c
for all a, b, c ∈ M .
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12 Fragments of Quasi-Nelson: The Algebraizable Core

THEOREM 3.12. [20], Thm. 5
Every A ∈ QNI is isomorphic to a QNI twist-algebra over 〈A+, A−, nA, pA〉 through the map

ι : A → A+ × A− given by ι(a) := 〈[a], [∼ a]〉 for all a ∈ A.

Observe that the result of Theorem 3.12 (unlike those of Theorems 2.4 and 2.7) is only an
embedding and not an isomorphism. It is, however, quite a useful and informative result, as we
proceed to illustrate. First of all, we use it to verify that QNI is a variety.

LEMMA 3.13.
Let A ∈ QNI and a, b, c ∈ A.

(i) (a � b) → c = ∼ ∼ a → (∼ ∼ b → c).
(ii) ∼ a → ∼ b ≡ ∼ a → (∼ a � ∼ b).

(iii) (∼∼ a → ∼ ∼ b) � (∼ ∼ a → ∼ ∼ c) ≡ ∼ ∼ a → (b � c).

PROOF. In the light of Theorem 3.12, we assume that A is a QNI twist-algebra over some
〈H+, M−, n, p〉 and let a = 〈a+, a−〉, b = 〈b+, b−〉, c = 〈c+, c−〉.

(i). Let us compute

(〈a+, a−〉 � 〈b+, b−〉) → 〈c+, c−〉 = 〈p(n(a+) ∧− n(b+)) →+ c+, np(n(a+) ∧− n(b+)) ∧− c−〉
and

∼ ∼〈a+, a−〉 → (∼ ∼〈b+, b−〉 → 〈c+, c−〉)
= 〈pn(a+) →+ (pn(b+) →+ c+), npn(a+) ∧− npn(b+) ∧− c−〉.

Thus n · p = IdM− (Definition 3.7.ii) immediately implies the equality of the second components;
equality of the first follows from Definition 3.7.iv.

(ii). We focus on the first components, which are the only ones that matter. We need to show

p(a−) →+ p(b−) = p(a−) →+ p(np(a−) ∧− np(b−)).

Since p preserves the implication (Proposition 3.9) and n · p = IdM− (Definition 3.7.ii), we have
p(a−) →+ p(b−) = p(a− →− b−) and

p(a−) →+ p(np(a−) ∧− np(b−)) = p(a− →− (a− ∧− b−)).

Since every implicative semilattice satisfies x → (y ∧ z) ≈ (x → y) ∧ (x → z), we have a− →−
(a− ∧− b−) = (a− →− a−) ∧− (a− →− b−) = 1− ∧− (a− →− b−) = a− →− b−. Thus the
required result follows.

(iii). As before, we only compute the first components. We need to show that

p(n(pn(a+) →+ pn(b+)) ∧− n(pn(a+) →+ pn(c+))) = pn(a+) →+ p(n(b+) ∧− n(c+)).

Since p preserves the implication (Proposition 3.9) and n · p = IdM− (Definition 3.7.ii), we have

n(pn(a+) →+ pn(b+) = np(n(a+) →− n(b+)) = n(a+) →− n(b+)

and, similarly, n(pn(a+) →+ pn(c+) = n(a+) →− n(c+). Thus the left-hand side of the above
equality simplifies to p((n(a+) →− n(b+)) ∧− (n(a+) →− n(c+))). Similarly, we can simplify the
right-hand side as follows:

pn(a+) →+ p(n(b+) ∧− n(c+)) = p(n(a+) →− (n(b+) ∧− n(c+))).
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Fragments of Quasi-Nelson: The Algebraizable Core 13

Observe that

(n(a+) →− n(b+)) ∧− (n(a+) →− n(c+)) = n(a+) →− (n(b+) ∧− n(c+))

holds because, as observed above, every implicative semilattice satisfies x → (y ∧ z) ≈
(x → y) ∧ (x → z). This immediately implies the required result. �

The following result shows that all the quasi-equational conditions of Definition 3.1 can be
replaced by equational ones.

PROPOSITION 3.14.
An algebra A = 〈A; →, ∼, 0, 1〉 of type 〈2, 1, 0, 0〉 is a QNI-algebra if and only if A satisfies items
(i)–(iii), (v), (vii)–(viii), (x)–(xii), (xv) and (xvii) of Definition 3.1 plus the three conditions stated
in Lemma 3.13.

PROOF. It follows from (Definition 3.1 and) Lemma 3.13 that every QNI-algebra satisfies the above
conditions. For the converse, observe that, using Definition 3.1.x, it is easy to show that Lemma
3.13.i implies Definition 3.1.iv.

Regarding Definition 3.1.vi, assume ∼ a � ∼ b. Using Lemma 3.13.ii and Definition 3.1.i, we
have 1 = (∼ a → ∼ b) → (∼ a → (∼ a � ∼ b)) = 1 → (∼ a → (∼ a � ∼ b)) = ∼ a →
(∼ a � ∼ b). Hence, ∼ a � ∼ a � ∼ b, as required.

As observed in Remark 3.2, the second implication in Definition 3.1.ix follows from Definition
3.1.xiv and is therefore redundant. Let us show that the first implication in Definition 3.1.ix is also
satisfied. Let then a, b, c, d ∈ A be such that a ≡ b and c ≡ d. Observe that a �((a → c) → c)
holds in general. Indeed, by items (iii) and (ii) of Definition 3.1, we have a → ((a → c) → c) =
(a → c) → (a → c) = 1. Thus, from the assumption b � a we obtain b �((a → c) → c) using the
transitivity of � (see Lemma 3.3.iv: note that the proof of this, which is [20, Lemma 22.iv], only uses
items (i)–(iii) of Definition 3.1). Using Definition 3.1.iii, this gives us 1 = b → ((a → c) → c) =
(a → c) → (b → c). Hence a → c � b → c, and a similar reasoning shows that a → c ≡ b → c.
On the other hand, from the assumption c � d, using Definition 3.1.iii and Lemma 3.3.i, we obtain
(b → c) → (b → d) = b → (c → d) = b → 1 = 1. Thus b → c � b → d, and a similar
reasoning shows that b → d � b → c. Hence, b → c ≡ b → d. Hence, by the transitivity of ≡, we
have a → c ≡ b → d, as required.

Recall that, as noted in Remark 3.2, items (xiii) and (xvi) of Definition 3.1 are redundant.
To complete the proof, let us verify that item Definition 3.1.xiv holds. Observe that, since a� c =

∼(a → ∼ c) = ∼ ∼ ∼(a → ∼ c) = ∼ ∼(a � c) holds by Definition 3.1.x, Lemma 3.13.iii gives us
(a � c) → (b � c) ≡ ((a � c) → ∼ ∼ b) � ((a � c) → ∼ ∼ c). Also observe that Lemma 3.13.i
and Lemma 3.3.i entail ((a � c) → ∼ ∼ c) = ∼ ∼ a → (∼ ∼ c → ∼ ∼ c) = ∼ ∼ a → 1 = 1
(note that the proof of Lemma 3.3.i, which is [20, Lemma 22.i], only uses Definition 3.1.ii). Hence,
(a � c) → (b � c) ≡ ((a � c) → ∼ ∼ b) � ((a � c) → ∼ ∼ c) = ((a � c) → ∼ ∼ b) � 1. By
items (viii) and (i) of Definition 3.1, we have ((a � c) → ∼ ∼ b) � 1 ≡ 1 � ((a � c) → ∼ ∼ b) =
∼(1 → ∼((a�c) → ∼ ∼ b)) = ∼∼((a�c) → ∼ ∼ b). Thus, using the transitivity of ≡, we obtain
(a � c) → (b � c) ≡ ∼ ∼((a � c) → ∼ ∼ b). By Lemma 3.13.i and Definition 3.1.iii, we have
∼ ∼((a � c) → ∼ ∼ b) = ∼ ∼(∼ ∼ a → (∼ ∼ c → ∼ ∼ b)) = ∼ ∼(∼ ∼ c → (∼∼ a → ∼ ∼ b)).
Hence, (a � c) → (b � c) ≡ ∼ ∼(∼ ∼ c → (∼ ∼ a → ∼ ∼ b)). Now, assuming a � b, by items
(i) and (xii) of Definition 3.1, we have 1 = (a → b) → (∼∼ a → ∼ ∼ b) = 1 → (∼ ∼ a →
∼ ∼ b) = ∼ ∼ a → ∼ ∼ b. Therefore, using Lemma 3.3.i, we have ∼ ∼(∼ ∼ c → (∼ ∼ a →
∼ ∼ b)) = ∼ ∼(∼ ∼ c → 1) = ∼ ∼ 1 = 1. Thus (a � c) → (b � c) ≡ 1. By Lemma 3.3.v, this
entails (a � c) → (b � c) = 1, i.e. a � c � b � c, as required (note that the proof of Lemma 3.3.v,
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14 Fragments of Quasi-Nelson: The Algebraizable Core

which is [20, Lemma 22.v], only uses items (i) and (ii) of Definition 3.1). Since a � c ≡ c � a and
b � c ≡ c � b hold by Definition 3.1.viii, the preceding argument (recalling that � is transitive) also
establishes c � a � c � b, as required. �
COROLLARY 3.15. QNI is a variety.

In the next section we are going to introduce an alternative and in a way more economic
representation for QNI-algebras via nuclei; but before that, let us take a look at the congruence
lattice of these algebras.

PROPOSITION 3.16. [20], Cor. 34
The term q(x, y, z) is a (commutative, non-regular) ternary deduction term in the sense of

[4]. Therefore QNI has equationally definable principal congruences and the strong congruence
extension property [4, Thm. 2.12].

PROPOSITION 3.17. [20], Prop. 37
Let A ∈ QNI, and let A+ be the corresponding bounded Hilbert algebra (as given in Theorem

3.12). Let θ ∈ Con(A) and η ∈ Con(A+).

(i) θ+ ∈ Con(A+), where θ+ := {〈[a], [b]〉 ∈ A+ × A+ : 〈a → e, b → e〉 ∈ θ for alle ∈ A}.
(ii) η�� ∈ Con(A), where η�� := {〈a, b〉 ∈ A × A : 〈[a], [b]〉, 〈[∼ a], [∼ b]〉 ∈ η}.

(iii) (θ+)�� = θ .
(iv) (η��)+ = η.

THEOREM 3.18. [20], Thm. 6
For every A ∈ QNI, one has Con(A) ∼= Con(A+) via the mutually inverse maps (.)�� and (.)+.

It is well known that the lattice of congruences of every Hilbert algebra is distributive (see e.g.
[5, p. 477]). Thus Theorem 3.18 gives us the following.

COROLLARY 3.19. [20], Cor. 38
QNI is congruence-distributive.

4 Nuclear Representation

In this section we present an alternative twist representation of QNI-algebras via nuclei that is the
analogue of the representation of quasi-Nelson algebras stated in Theorem 2.7.

Let 〈H+, M−, n, p〉 be given as in Definition 3.7. Define on H+ the operations �+ and � as
follows: for a+, b+ ∈ H+,

a+ �+ b+ := p(n(a+) ∧− n(b+)) �a+ := a+ �+ a+ = pn(a+).

We list without proof a few straightforward properties enjoyed by these operations.

PROPOSITION 4.1.
Let 〈H+, M−, n, p〉 be as in Definition 3.7, and let a+, b+ ∈ H+.

(i) �1+ = 1+ and �+0+ = 0+.
(ii) �(a+ →+ b+) ≤ �a+ →+ �b+.

(iii) a+ ≤+ �a+ = ��a+.
(iv) a+ �+ (b+ �+ c+) = (a+ �+ b+) �+ c+.
(v) a+ �+ b+ = b+ �+ a+ = a+ �+ (a+ →+ b+).

(vi) a+ →+ (a+ �+ b+) = a+ →+ b+.
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Fragments of Quasi-Nelson: The Algebraizable Core 15

(vii) �(a+ �+ b+) = �a+ �+ �b+ = a+ �+ b+.
(viii) (a+ �+ b+) → c+ = �a+ →+ (�b+ →+ c+).

(ix) a+ �+ 0+ = 0+.
(x) a+ �+ 1+ = �a+.

The algebra 〈H+; �+〉 is thus a commutative semigroup. Letting H�+ := {�a+ : a+ ∈ H+}, the
following result is also straightforward.

PROPOSITION 4.2.
H�+ = 〈H�+ ; �+, 0+, 1+〉 is a bounded semilattice.

DEFINITION 4.3.
Given a bounded Hilbert algebra H = 〈H ; →, 0, 1〉, we say that a unary operation � is a nucleus on
H if, for all a, b ∈ H ,

(i) �0 = 0,
(ii) �(a → b) ≤ �a → �b.

(iii) a ≤ �a = ��a.

Hilbert algebras (‘positive implication algebras’) with nuclei are considered, for instance, in [12,
Ch. 13]. If the natural order of H is a lattice order, then the structure H = 〈H ; ∧, ∨ →, �, 0, 1〉 is a
Heyting algebra with a nucleus.

We proceed to establish and analogue of Proposition 2.5, which suggests an alternative way to
define nuclei on bounded Hilbert algebras.

LEMMA 4.4.
Let H = 〈H ; →, 0, 1〉 be a bounded Hilbert algebra endowed with a unary operation � satisfying
�0 = 0. The following are equivalent:

(i) � is a nucleus.
(ii) H � x → �y ≈ �x → �y.

PROOF. Assume (i) holds. Since a ≤ �a, we have �a → �b ≤ a → �b because the Hilbert
implication is order-reversing in the first argument. To show that a → �b ≤ �a → �b, we
compute:

1 = (�a → �b) → (�a → �b)

= (�a → (�a → �b)) → (�a → �b) x → y ≈ x → (x → y)

= �a → ((�a → �b) → �b) (x → y) → (x → z) ≈ x → (y → z)

= �a → ((�a → ��b) → �b) ��x ≈ �x

≤ �a → (�(a → �b) → �b) �(x → y) ≤ �x → �y

= �(a → �b) → (�a → �b) x → (y → z) ≈ y → (x → z)

≤ (a → �b) → (�a → �b) x ≤ �x.

Conversely, assume (ii) holds. Observe that, by instantiating x → �y ≈ �x → �y, we can obtain
a → �a = �a → �a = 1 and 1 = �a → �a = ��a → �a. Hence, for all a ∈ H , we have
a ≤ �a and ��a ≤ �a. It remains to show that �(a → b) ≤ �a → �b for all a, b ∈ H . Observe
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16 Fragments of Quasi-Nelson: The Algebraizable Core

that, from b ≤ �b, we have a → b ≤ a → �b because the Hilbert implication is order-preserving
in the second argument. Hence,

1 = (a → b) → (a → �b)

= a → ((a → b) → �b) x → (y → z) ≈ y → (x → z)

= a → (�(a → b) → �b) x → �y ≈ �x → �y

= �(a → b) → (a → �b) x → (y → z) ≈ y → (x → z)

= �(a → b) → (�a → �b) x → �y ≈ �x → �y.
�

DEFINITION 4.5.
A bounded nuclear Hilbert semigroup (nH-semigroup for short) is an algebra S = 〈S; �, →, 0, 1〉
such that

(i) 〈S; →, 0, 1〉 is a bounded Hilbert algebra;
(ii) 〈S; �〉 is a commutative semigroup;

(iii) The operation � given by �a := a � a for all a ∈ S is a nucleus on 〈S; →, 0, 1〉.
(iii) For all a, b ∈ S,
(iv) a � b = a � (a → b)

(v) �a → (�b → c) = (a � b) → c
(vi) a � 0 = 0

(vii) a � 1 = �a.

The above-defined operation � can be thought of as a generalization of the one determined, on
every Heyting algebra with a nucleus, by the term �(x ∧ y) or, equivalently, �x ∧�y. The following
lemma justifies this remark and provides an example of an nH-semigroup, which will be useful later
on.

LEMMA 4.6.
Let M = 〈M ; ∧, →, �, 0, 1〉 be a bounded implicative semilattice with a nucleus. Upon defining
x � y := �x ∧ �y, the algebra 〈M ; �, → 0, 1〉 is an nH-semigroup.

PROOF. All items of Definition 4.5 are easily verifiable. We show a few examples. Item (i) is clear.
It is also clear that, for all a ∈ M , one has �a = a�a = �a∧�a. Regarding item (iv), we have, for
all a, b ∈ M , a � b = �a ∧ �b = �(a ∧ b) = �(a ∧ (a → b)) = �a ∧ �(a → b) = a � (a → b).�

Indeed, any bounded Hilbert algebra can be endowed with an nH-semigroup structure
(Proposition 4.8); hence, nH-semigroups can also be viewed as a generalization (rather than a
specialization) of bounded Hilbert algebras. To show this, we shall rely on the properties of bounded
Hilbert algebras listed in the following lemma. Given a bounded Hilbert algebra H = 〈H ; →, 0, 1〉,
we abbreviate ¬x := x → 0.

LEMMA 4.7.
Let H = 〈H ; →, 0, 1〉 be a bounded Hilbert algebra, and let a, b, c ∈ H .

(i) a ≤ ¬¬a.
(ii) ¬a = ¬¬¬a

(iii) a → ¬b = b → ¬a.
(iv) a → ¬b = ¬¬a → ¬b.
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Fragments of Quasi-Nelson: The Algebraizable Core 17

(v) a ≤ b → ¬(a → ¬b).
(vi) ¬¬a → (¬¬b → c) = ¬(a → ¬b) → c.

PROOF. We do not prove the identities that are well known to hold on all Hilbert algebras (as opposed
to bounded ones), such as x → x ≈ 1, x → 1 ≈ 1 etc. (see e.g. [5, Lemma 1.1]). Also recall that
a ≤ b if and only if a → b = 1, for all a, b ∈ H .

(i). We have:

a → ¬¬a = a → (¬a → 0)

= ¬a → (a → 0) x → (y → z) ≈ y → (x → z)

= ¬a → ¬a

= 1 x → x ≈ 1.

(ii). By item (i), it suffices to prove ¬¬¬a ≤ ¬a. We have:

¬a → ¬¬¬a = ¬a → (¬¬a → 0)

= ¬¬a → (¬a → 0) x → (y → z) ≈ y → (x → z)

= ¬¬a → ¬¬a

= 1 x → x ≈ 1.

(iii). Obviously it suffices to show a → ¬b ≤ b → ¬a. We have:

(a → ¬b) → (b → ¬a) = b → ((a → ¬b) → ¬a) x → (y → z) ≈ y → (x → z)

= b → ((a → ¬b) → (a → 0))

= b → (a → (¬b → 0)) by (H2′)

= a → (b → ¬¬b) x → (y → z) ≈ y → (x → z)

= a → 1 by item (i)

= 1 x → 1 ≈ 1.

(iv). Using items (iii) and (ii), we have a → ¬b = b → ¬a = b → ¬¬¬a = ¬¬a → ¬b.
(v). Since a ≤ b → a, we have (a → c) → d ≤ ((b → a) → c) → d for all c, d ∈ H . Hence,

1 = (a → ¬b) → (a → ¬b) x → x ≈ 1

≤ ((b → a) → ¬b) → (a → ¬b)

= a → (((b → a) → ¬b) → ¬b) x → (y → z) ≈ y → (x → z)

= a → (((b → a) → (b → ¬b)) → (b → 0)) x → (x → 0) ≈ ¬x

= a → ((b → (a → ¬b)) → (b → 0)) by (H2′)

= a → (b → ((a → ¬b) → 0)) by (H2′)

= a → (b → ¬(a → ¬b)).

(vi). By item (iii), ¬a ≤ b → ¬a = a → ¬b. Since the Hilbert implication is order-reversing in
the first argument, from the latter we obtain ¬(a → ¬b) ≤ ¬¬a. Similarly, ¬(a → ¬b) ≤ ¬¬b.
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18 Fragments of Quasi-Nelson: The Algebraizable Core

From the the latter we have ¬¬b → c ≤ ¬(a → ¬b) → c. Using also the observation that the
Hilbert implication is order-preserving in the second argument, from ¬¬b → c ≤ ¬(a → ¬b) → c
we obtain ¬¬a → (¬¬b → c) ≤ ¬¬a → (¬(a → ¬b) → c) ≤ ¬(a → ¬b) → (¬(a →
¬b) → c) = ¬(a → ¬b) → c, where the last equality holds because of the contraction identity
x → (x → y) ≈ x → y. To show that ¬(a → ¬b) → c ≤ ¬¬a → (¬¬b → c), first observe that:

¬¬a → (¬¬b → ¬(a → ¬b)) = (¬¬a → ¬¬b) → (¬¬a → ¬(a → ¬b)) by (H2′)

= (a → ¬¬b) → (a → ¬(a → ¬b)) by item (iv)

= a → (¬¬b → ¬(a → ¬b)) by (H2′)

= a → (b → ¬(a → ¬b)) by item (iv)

= 1 by item (v).

Now, recalling that the identity x ≤ (x → y) → y holds on every Hilbert algebra, we compute:

1 = ¬¬a → (¬¬b → (¬(a → ¬b)))

≤ ¬¬a → (¬¬b → ((¬(a → ¬b) → c) → c))

= [byx → (y → z) ≈ y → (x → z)]

= ¬¬a → ((¬(a → ¬b) → c) → (¬¬b → c))

= [byx → (y → z) ≈ y → (x → z)]

= (¬(a → ¬b) → c) → (¬¬a → (¬¬b → c)).
�

PROPOSITION 4.8.
Let H be any algebra having a bounded Hilbert algebra reduct 〈H ; →, 0, 1〉. Upon defining x � y :=
¬(x → ¬y), the algebra 〈H ; �, → 0, 1〉 is an nH-semigroup.

PROOF. Let us verify that items (ii)–(vii) of Definition 4.5 are satisfied.
(ii). Commutativity of � follows directly from Lemma 4.7.iii. For associativity, we need to show

that a � (b � c) = ¬(a → ¬¬(b → ¬c)) = ¬(¬(a → ¬b) → ¬c) = (a � b) � c. Thus, it suffices
to verify the following equalities:

a → ¬¬(b → ¬c) = ¬(b → ¬c) → ¬a by Lemma 4.7.iii

= ¬¬b → (¬¬c → ¬a) by Lemma 4.7.vi

= ¬¬b → (a → ¬¬¬c) by Lemma 4.7.iii

= ¬¬b → (a → ¬c) by Lemma 4.7.ii

= ¬¬b → (¬¬a → ¬c) by Lemma 4.7.iv

= ¬¬a → (¬¬b → ¬c) x → (y → z) ≈ y → (x → z)

= ¬(a → ¬b) → ¬c by Lemma 4.7.vi.

(iii). Observe that a → ¬a = a → (a → 0) = a → 0 = ¬a for all a ∈ H . Thus, �a = ¬(a →
¬a) = ¬¬a. Using this observation, it is easy to verify that � is a nucleus.
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Fragments of Quasi-Nelson: The Algebraizable Core 19

(iv). We need to check that ¬(a → ¬b) = ¬(a → ¬(a → b)) for all a, b ∈ H . Indeed, this follows
from the equality a → ¬b = a → ¬(a → b). The latter holds because, using (H1) and (H2), we
have a → ¬(a → b) = a → ((a → b) → 0) = (a → b) → (a → 0) = a → (b → 0) = a → ¬b.

(v). This is Lemma 4.7 (vi).
(vi). Easy: for all a ∈ H , we have a � 0 = ¬(a → ¬0) = ¬(a → 1) = ¬1 = 0.
(vii). Also easy: a � 1 = ¬(a → ¬1) = ¬(a → 0) = ¬¬a for all a ∈ H . �
Note that Proposition 4.8 applies also to (e.g.) Heyting algebras and implicative semilattices but

produces an nH-semigroup of a special type (as opposed to the one in Lemma 4.6), namely one
where the nucleus coincides with the double negation.

The following lemma will be useful in subsequent proofs.

LEMMA 4.9.
Let S = 〈S; →, �, 0, 1〉 be an nH-semigroup and a, b, c ∈ S.

(i) �(a � b) = �a � �b = a � b.
(ii) If a ≤ b, then �a = a � b.

(iii) �a → (b � c) = (�a → �b) � (�a → �c).
(iv) a → 0 = �a → 0.

PROOF. (i). The equality �(a�b) = �a��b is straightforward: observe that, applying the definition
of � (and using the associativity and commutativity of �), we have �(a � b) = a � b � a � b =
a � a � b � b = �a � �b. To show that �a � �b = a � b, recall that every Hilbert algebra
satisfies x → x ≈ 1. Then, using Definition 4.5.v and Definition 4.3.iii, we have (�a � �b) →
(a � b) = ��a → (��b → (a � b)) = �a → (�b → (a � b)) = (a � b) → (a � b) = 1. Thus
�a ��b ≤ a � b. The other inequality follows from the following observation: by Definition 4.3.iii
we have a � b ≤ �(a � b) = �a � �b. Hence a � b = �a � �b.

(ii). Given a, b ∈ S such that a ≤ b (so a → b = 1), we are going to show that (a � b) → �a =
�a → (a � b) = 1. Since every Hilbert algebra satisfies x → (y → x) ≈ 1, by Definition 4.5.v
we have (a � b) → �a = �a → (�b → �a) = 1. Also recall that, by Definition 4.5.iv, we have
a � b = a � (a → b). Thus, using also the assumption Definition 4.5.vii, it is easy to verify that the
assumption a → b = 1 entails �a → (a � b) = �a → (a � (a → b)) = �a → (a � 1) = �a →
�a = 1.

(iii). In the light of Proposition 4.11, it is sufficient to adapt the proof of Lemma 3.13.iii.
(iv). Recall that �0 = 0 (Definition 4.3.i). Using this and Lemma 4.4, we have a → 0 = a →

�0 = �a → �0 = �a → 0, as required. �
Given an nH-semigroup S, let S� := {�a : a ∈ S} = {a ∈ S : a = �a}.

LEMMA 4.10.
For every nH-semigroup S, the algebra S� := 〈S�; �, 0, 1〉 is a bounded semilattice.

PROOF. Definition 4.3.iii implies 1 ≤ �1, therefore �1 = 1. Thus � preserves the bounds, and
we have 0, 1 ∈ S�. Lemma 4.9.i entails that S� is closed under the � operation. Thus 〈S�; �〉 is a
commutative semigroup. For all a ∈ S�, items (vi) and (vii) of Definition 4.5 imply a�0 = 0�a = 0
and a � 1 = 1 � a = a � a = �a = a. Moreover, a � a = �a = a. So 〈S�; �, 0, 1〉 is a bounded
semilattice, as claimed. �

It is also easy to check that, upon defining a →� b := �(a → b), we have that 〈S�; �, →�, 0, 1〉
is an implicative semilattice (cf. Proposition 3.9 above). Furthermore, the map � : S → S� and the
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20 Fragments of Quasi-Nelson: The Algebraizable Core

identity map IdS� : S� → S� satisfy the following properties (corresponding precisely to those of
Definition 3.7).

PROPOSITION 4.11.
Let S be an nH-semigroup, and let S� and � : S → S� be defined as above. Then:

(i) � and IdA� are monotone and preserve the bounds.
(ii) � · IdS� = IdS� and IdS ≤ IdS� · �.

(iii) �a � �b = �a � �(a → b) for all a, b ∈ S.
(iv) (a � b) → c = a → (b → c) for all a, b ∈ S� and all c ∈ S.

PROOF. (i). The statement clearly holds for the map IdA� . Also, we have observed in the proof of
Lemma 4.10 that the map � preserves the bounds. To check that � is monotone, assume a ≤ b for
some a, b ∈ S, which means 1 = a → b. Then, using Definition 4.3.ii, we have 1 = �1 = �(a →
b) ≤ �a → �b, so �a ≤ �b.

(ii). This clearly follows from � being a nucleus (Definition 4.3.iii).
(iii). We have observed in the proof of Lemma 4.10 that �a � �b = �(a � b) for all a, b ∈ S.

Using this observation and Definition 4.3.iv, we have �a � �b = �(a � b) = �(a � (a → b)) =
�a � �(a → b), as required.

(iv). This easily follows from Definition 4.5.v together with Definition 4.3.iii. �
Let S = 〈S; →, �, 0, 1〉 be an nH-semigroup. By Proposition 4.11, upon defining H+ := 〈S; →

, �, 0, 1〉, M− := S�, n(a) = �a for all a ∈ S and p(a) = a for all a ∈ S�, can construct an
algebra H+ �� M− according to Definition 3.7, which we can simply denote by H+ �� H+ since it
is completely determined by H+. We can further consider QNI twist-algebras A over 〈H+, M−, n, p〉
or (more brief ly) over H+. Observe that the elements of A are pairs 〈a, b〉 ∈ S ×S satisfying b = �b
and �a � b = 0. The latter requirement is indeed equivalent to a � b = 0. We officialize these
considerations in the following definition.

DEFINITION 4.12.
Let S = 〈S; �, →, 0, 1〉 be an nH-semigroup. The algebra S �� S = 〈S × S; →, ∼, 0, 1〉 is defined as
follows. For all 〈a1, a2〉, 〈b1, b2〉 ∈ S × S,

1 := 〈1, 0〉,
0 := 〈0, 1〉,

∼〈a1, a2〉 := 〈a2, �a1〉,
〈a1, a2〉 → 〈b1, b2〉 := 〈a1 → b1, a1 � b2〉.

A quasi-Nelson implicative twist-algebra (QNI twist-algebra) A over S is a {→, ∼, 0, 1}-subalgebra
of S �� S with carrier set A satisfying: π1[A] = S and, for all 〈a1, a2〉 ∈ A, �a2 = a2 and a1�a2 = 0.

Keeping the abbreviation x � y := ∼(x → ∼ y), we can check that

〈a1, a2〉 � 〈b1, b2〉 = 〈a1 � �b1, �(a1 → b2)〉 = 〈a1 � b1, a1 → b2〉.
The last equality holds because, on the one hand, by Lemma 4.9.i and Definition 4.3.iii, we have
a1 � �b1 = �a1 � ��b1 = �a1 � �b1 = a1 � b1. On the other hand, a1 → b2 ≤ �(a1 → b2)

holds by Definition 4.3.iii, but we also have �(a1 → b2) ≤ �a1 → �b2 = a1 → b2 by Lemma 4.4
(and the requirement �b2 = b2).
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Fragments of Quasi-Nelson: The Algebraizable Core 21

For Definition 4.12 to be sound, we need to check that the set

B := {〈a1, a2〉 : a1 � a2 = 0, a2 = �a2}

is the universe of a subalgebra of S �� S (and therefore the largest twist-algebra over S). It is clear that
〈1, 0〉, 〈0, 1〉 ∈ B. Assuming 〈a1, a2〉 ∈ B, we have ∼〈a1, a2〉 = 〈a2, �a1〉 ∈ B because a2 � �a1 =
�a2 � �a1 = a2 � a1 = 0 (Lemma 4.9.i) and ��a1 = �a1 (Definition 4.3.iii). Regarding the
binary operation, assume 〈a1, a2〉, 〈b1, b2〉 ∈ B. To see that 〈a1 → b1, a1 � b2〉 ∈ B, we observe that
�(a1 � b2) = a1 � b2 by Lemma 4.9.i. Furthermore, using the commutativity and associativity of
� together with items (iv) and (vi) of Definition 4.5, we have (a1 → b1) � (a1 � b2) = a1 � (a1 →
b1) � b2 = a1 � b1 � b2 = 0 � b2 = 0, as required.

Before stating the main embedding result (Theorem 4.16 below), we wish to give a direct proof of
an interesting observation that could also be derived from Theorem 4.16 together with Theorem 3.18.

LEMMA 4.13. [20], Lemma 36
Let H = 〈H ; →, 1〉 be a Hilbert algebra, a, b ∈ A and θ ∈ Con(H). The following conditions are

equivalent:

(i) 〈a, b〉 ∈ θ .
(ii) 〈a → b, 1〉, 〈b → a, 1〉 ∈ θ .

PROPOSITION 4.14.
Let S = 〈S; �, →, 0, 1〉 be a nH-semigroup and let θ ⊆ S × S be an equivalence relation. The
following are equivalent:

(i) θ is a congruence of S.
(ii) θ is a congruence of the Hilbert algebra reduct 〈S; →, 1〉.

PROOF. Obviously it suffices to show that (ii) implies (i). Let then θ be a congruence of the �-free
reduct of S such that 〈a, b〉 ∈ θ . We claim that, for all c ∈ S, we have 〈a � c, b � c〉 ∈ θ and (since
� is commutative) also 〈c � a, c � b〉 ∈ θ . Indeed, from 〈a, b〉 ∈ θ we have 〈a → b, b → b〉 =
〈a → b, 1〉 ∈ θ . Recall that (on every Hilbert algebra) for all c, d ∈ S such that c ≤ d, one has
that 〈c, 1〉 ∈ θ implies 〈d, 1〉 ∈ θ . Indeed, since c → d = 1 and 1 → d = d, from 〈c, 1〉 ∈ θ

we obtain 〈c → d, 1 → d〉 = 〈1, d〉 ∈ θ . Hence, from 〈a → b, 1〉 ∈ θ and the inequalities
a → b ≤ �(a → b) ≤ �a → �b, which hold by items (iii) and (ii) of Definition 4.3, we have
〈�a → �b, 1〉 ∈ θ . The same reasoning shows that 〈�c → (�a → �b), 1〉 ∈ θ for all c ∈ S.
Since �c → (�a → �b) = �a → (�c → �b), we have 〈�a → (�c → �b), 1〉 ∈ θ . Also,
from �c → �b ≤ �(�c → �b), we have �a → (�c → �b) ≤ �a → �(�c → �b), which
gives us 〈�a → �(�c → �b), 1〉 ∈ θ . By Definition 4.5.vii and Lemma 4.9.iii, we have �(�c →
�b) = (�c → �b) � 1 = (�c → �b) � (�c → �c) = �c → (b � c). Thus, using Definition
4.5.v, we have �a → �(�c → �b) = �a → (�c → (b � c)) = (a � c) → (b � c). Hence,
〈(a�c) → (b�c), 1〉 ∈ θ . Similar reasoning shows that 〈a, b〉 ∈ θ entails 〈(b�c) → (a�c), 1〉 ∈ θ .
By Lemma 4.13, this gives us 〈a � c, b � c〉 ∈ θ , as claimed. This easily entails the desired result.�

In the converse direction, from every A = 〈A; →, ∼, 0, 1〉 ∈ QNI, we can retrieve an nH-
semigroup as follows. The Hilbert algebra quotient 〈A/≡; →, 0, 1〉 is defined as in the preceding
section. On A/ ≡ we define the operation � by [a] � [b] := [a � b] = [∼(a → ∼ b)]
and we let S(A) := 〈A/ ≡; →, �, 0, 1〉. Observe that we could let �[a] := [∼ ∼ a] because
[∼∼ a] = [a � a] = [∼(a → ∼ a)] holds on every QNI-algebra.
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22 Fragments of Quasi-Nelson: The Algebraizable Core

PROPOSITION 4.15.
For every A = 〈A; →, ∼, 0, 1〉 ∈ QNI, the above-defined algebra S(A) := 〈A/≡; →, �, 0, 1〉 is an
nH-semigroup.

PROOF. We verify that all items of Definition 4.5 are satisfied. Item (i) follows from Proposition
3.4. Item (ii) is a consequence of items (vii) and (viii) of Definition 3.1. Regarding item (iii), recall
that �[a] = [∼ ∼ a] for all a ∈ A. It then follows from Definition 3.1.xi that � preserves both
bounds, and Definition 3.1.xiii implies that [a] ≤ �[a] for all a ∈ A. That �[a] = ��[a] follows
from Definition 3.1.x. Finally, to establish item (ii) of Definition 4.3, we can reason (using twist-
algebras) as in [20, Lemma 28]. Item (iv) of Definition 4.5 follows from Definition 3.1.xv, and
Definition 4.5.v in Lemma 3.13.i. Item (vi) of Definition 4.5 is easy. Regarding item (vii), observe
that a � 1 = 1 � a = ∼(1 → ∼ a) = ∼ ∼ a and that, as observed earlier, ∼ ∼ a ≡ a � a. �

We have thus established an embedding result analogue to Theorem 3.12.

THEOREM 4.16.
Every QNI algebra A is isomorphic to a QNI twist-algebra over S(A) through the map
ι : A → A/≡ ×A/≡ given by ι(a) := 〈[a], [� ∼ a]〉 = 〈[a], [∼ a]〉 for all a ∈ A.

Our next aim is to show that every nH-semigroup is embeddable into a (complete) Heyting algebra
with a nucleus. The latter result (taking advantage of Theorems 2.7 and 4.16) will then be used to
to show that every QNI-algebra embeds into a quasi-Nelson algebra, thus justifying the claim that
QNI-algebras are precisely the {→, ∼, 0, 1}-subreducts of quasi-Nelson algebras. We shall need a
few lemmas, beginning from the following well-known result on Hilbert algebras.

LEMMA 4.17. [16], Thm. II.4.1
Every bounded Hilbert algebra 〈H ; →, 0, 1〉 embeds into a complete Heyting algebra (of open sets

of a T0 space).

The Heyting algebra and the embedding of Lemma 4.17 are constructed as follows. Given a
Hilbert algebra 〈H ; →, 0, 1〉, one defines an implicative filter as a subset F ⊆ H satisfying (i) 1 ∈ F
and (ii) b ∈ F whenever a, a → b ∈ F, for all a, b ∈ H . An implicative filter F is irreducible if
F �= H and F = F1 ∩ F2 (where F1, F2 are implicative filters) entails F = F1 or F = F2. The set of
all irreducible implicative filters of 〈H ; →, 0, 1〉, denoted X , is endowed with the following topology.
Defining h(a) := {F ∈ X : a ∈ F} for all a ∈ H , one considers the topology τ generated by the
subbase {h(a) : a ∈ H}. On X one defines a Heyting algebra A(X ) = 〈O(X ); ∧, ∨, →, 0, 1〉 as
follows. The universe O(X ) is the family of all τ -open subsets of X and the operations are defined,
for all O1, O2 ∈ O(X ), by

1 := X ,

0 := ∅,

O1 ∧ O2 := O1 ∩ O2,

O1 ∨ O2 := O1 ∪ O2,

O1 → O2 := Int((X − O1) ∪ O2),

where Int is the interior operator. Then the map h : H → O(X ) is the required embedding, i.e. one
has h(1) = X , h(0) = ∅ and h(a → b) = Int((X − h(a)) ∪ h(b)) for all a, b ∈ H .

Now, given an nH-semigroup H = 〈H ; �, →, �, 0, 1〉, let A(X ) = 〈O(X ); ∧, ∨, →, 0, 1〉 be the
complete Heyting algebra defined as above and h the above-defined embedding. Let us expand A(X )
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Fragments of Quasi-Nelson: The Algebraizable Core 23

with operations �A and �A defined as follows: for all O, O′, ∈ A(X ),

�AO :=
∧

{(O → h(�a)) → h(�a) : a ∈ H}
O �A O′ := �AO ∩ �AO′.

Observe that A(X ), being complete, is closed under �A (and therefore also under �A). Thus,
〈O(X ); ∧, ∨, →, �A, �A, 0, 1〉 is an algebra.

THEOREM 4.18.
Let H = 〈H ; �, →, �, 0, 1〉 be an nH-semigroup, and let 〈O(X ); ∧, ∨, →, �A, �A, 0, 1〉 be the
algebra defined as above. Then,

(i) The above-defined map h is an embedding of 〈H ; �, �〉 into 〈O(X ); �A, �A〉.
(ii) 〈A(X ), �A〉 is Heyting algebra with a nucleus, and 〈O(X ), �A, →, 0, 1〉 is an nH-

semigroup.
(iii) Thus, h is an embedding of H into 〈A(X ), �A〉.

PROOF. (i) We need to show that h preserves the two new operations. Let a ∈ H . Let us show that
�Ah(a) = h(�a). Indeed, on the one hand, for all b ∈ H , we have h(�a) ≤ (h(a) → h(�b)) →
h(�b). Indeed, we have

�a → ((a → �b) → �b) = (a → �b) → (�a → �b) x → (y → z) ≈ y → (x → z)

= (a → �b) → (a → �b) by Lemma 4.4

= 1.

Hence, h(�a → ((a → �b) → �b) = h(�a) → ((h(a) → h(�b)) → h(�b)) = 1, i.e.
h(�a) ≤ (h(a) → h(�b)) → h(�b). This means that h(�a) ≤ �Ah(a). On the other hand, since
a ≤ �a, we have (a → �a) → �a = 1 → �a = �a. Thus, h(�a) = (h(a) → h(�a)) → h(�a).
This entails h(a) ∈ {(h(a) → h(�b)) → h(�b) : b ∈ H}, so �Ah(a) ≤ h(�a).

Now, given a, b ∈ H , let us verify that h(a � b) = h(a) �A h(b). If F ∈ h(a � b), then a � b ∈ F.
By Definition 4.5.v, we have (a � b) → �b = �a → (�b → �b) = �a → 1 = 1 ∈ F. Thus,
by (mp), we have �b ∈ F, which gives us F ∈ h(�b) = �Ah(b). A similar reasoning shows that
F ∈ h(�a) = �Ah(a), so F ∈ �Ah(a) ∩ �Ah(b) = h(a) �A h(b).

Conversely, assume F ∈ h(a)�A h(b) = �Ah(a)∩�Ah(b) = h(�a)∩ h(�b). Then �a, �b ∈ F.
By Definition 4.5.v, we have �a → (�b → (a�b)) = (a�b) → (a�b) = 1 ∈ F. Then, applying
(mp) twice, from �a, �b ∈ F we obtain a � b ∈ F. Hence, F ∈ h(a � b), as required.

(ii). It follows from [12, Thm. 13.15] that �A is a nucleus on the Heyting algebra A(X ). Hence,
by Lemma 4.6, we have that 〈O(X ), �A, →, 0, 1〉 is an nH-semigroup, as required.

(iii). By the two previous items. �
The preceding theorem allows us to prove the following result.

COROLLARY 4.19.
Every QNI-algebra embeds into a quasi-Nelson algebra.

PROOF. Let A ∈ QNI. By Theorem 4.16, we can assume that A is a subalgebra of a QNI twist-algebra
over an nH-semigroup S. By Theorem 4.18, the map h is an embedding of S into the Heyting algebra
with a nucleus H = 〈A(X ), �A〉. Define a map f : A → H × H by f (〈a1, a2〉) := 〈h(a1), h(a2)〉.
We claim that f is an embedding of A into Tw〈H, H〉. It is easy to check that f is injective and
preserves the algebraic operations of A. It remains to verify that h[A] ⊆ Tw〈H, H〉. For this, it
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24 Fragments of Quasi-Nelson: The Algebraizable Core

suffices to observe that, for all 〈a1, a2〉 ∈ A, we have a1 �S a2 = 0S and �Sa2 = a2. Hence,
h(a1) �H h(a2) = 0H and �Hh(a2) = h(a2), as required. �
COROLLARY 4.20.
QNI is the class of {→, ∼, 0, 1}-subreducts of quasi-Nelson algebras.

Congruences, subdirectly irreducibles and subvarieties

Taking into account Proposition 4.14, Theorem 4.16 gives us a counterpart of Theorem 3.18:

THEOREM 4.21.
The lattice of congruences of every A ∈ QNI is isomorphic to the lattice of congruences of the
Hilbert algebra reduct of H(A).

Given an algebra A with a partial order ≤ and maximum 1, we shall say that an element c ∈ A is
the penultimate element of A if c �= 1 and, for all a ∈ A such that a < 1, it holds that a ≤ c. The
following observation can be found in [3, p. 69]; the proof presented below is an unpublished result
by L. Cabrer and S. Celani (personal communication).

THEOREM 4.22.
A Hilbert algebra H is subdirectly irreducible if and only if H has a penultimate element.

PROOF. Recall from [16, p. 26–7] that the lattice of congruences of every Hilbert algebra H is
isomorphic to the lattice of implicative filters of H and that the implicative filter generated by an
element a ∈ H is F(a) = {b ∈ H : a ≤ b}.

Now assume H = 〈H , →, 1〉 is a subdirectly irreducible Hilbert algebra. Then H has a minimal
congruence above the identity, to which corresponds an implicative filter F0 that is minimal among
the filters distinct from {1}. We claim that F0 has exactly two elements. Indeed, suppose for a
contradiction that there were elements a, b ∈ F0 such that a �= b and a, b < 1. Assume a �≤ b.
Then F(a) is an implicative filter and b /∈ F(a). Hence F0 ⊆ F(a), by minimality of F0. But this
is impossible, because b ∈ F0 and b /∈ F(a). So F0 has exactly two elements, say F0 = {c, 1}.
Moreover, for every a �= 1, we have F0 ⊆ F(a), so a ≤ c. Hence, c is the penultimate element.

Conversely, assume c ∈ H is the penultimate element. We claim that F(c) = {c, 1} is minimal
among the filters distinct from {1}. Indeed, let F be a filter such that F �= {1}. Then there is an
element a < 1 such that a ∈ F. We have a ≤ c, because c is the penultimate element. Hence,
F(c) ⊆ F, as claimed. By the correspondence between filters and congruences, we conclude that H
has a minimal congruence above the identity, entailing that H is subdirectly irreducible. �

We have seen in Lemma 3.3.x that, on every A ∈ QNI, a partial order ≤ can be defined by
the prescription a ≤ b iff (a � b and ∼ b � ∼ a). Thus the above-introduced notion of penultimate
element applies to QNI-algebras as well. The result of Cabrer and Celani can be recast in the context
of QNI-algebras as follows.

THEOREM 4.23.
A QNI-algebra A is subdirectly irreducible if and only if A has a penultimate element.

PROOF. Let us assume that A = 〈A; →, ∼, 0, 1〉 is a QNI twist-algebra over an nH-semigroup
H = 〈H ; →, �, 0, 1〉. By Theorem 4.21, A is subdirectly irreducible if and only if 〈H ; →, 1〉 is
a subdirectly irreducible Hilbert algebra. Hence, by Theorem 4.22, we have that A is subdirectly
irreducible if and only if 〈H ; →, 1〉 has a penultimate element. To complete the proof, it suffices to
check that A has a penultimate element precisely when the same holds for 〈H ; →, 1〉.
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Fragments of Quasi-Nelson: The Algebraizable Core 25

Assume 〈H ; →, 1〉 has a penultimate element c. If c = 0, then 〈H ; →, 0, 1〉 is the two-element
Boolean algebra. It is easy to check that there are only two QNI twist-algebras over the two-element
Boolean algebra (cf. Remark 4.27), and both have a penultimate element. Let us then assume 0 <

c < 1. We claim that the element 〈c, 0〉 belongs to A and is the penultimate element of A. To see
this, observe first of all that, by the requirement π1[A] = H in Definition 4.12, we have that c ∈ H
entails that there is d ∈ H such that 〈c, d〉 ∈ A. Recall also that Definition 4.12 requires c � d = 0.
This entails d = 0. Indeed, if d = 1, then (by Definition 4.3.iii and Definition 4.5.vii) we would
have 0 < c ≤ �c = c � 1 = c � d, contradicting the assumption that c � d = 0. Since c is the
penultimate element of 〈H ; →, 1〉, we conclude that d ≤ c. Then d → c = 1 and we can invoke
Lemma 4.9.ii to obtain 0 = c � d = �d. Since d ≤ �d (Definition 4.3.iii), we have d = 0 as
claimed. Now let us verify that 〈a, b〉 ≤ 〈c, 0〉 for all 〈a, b〉 ∈ A with 〈a, b〉 �= 〈1, 0〉. To this end,
observe that a = 1 entails b = 0. Indeed, reasoning as before, the requirement a � b = 0 gives us
b ≤ �b = 1 � b = a � b = 0. Hence, if 〈a, b〉 �= 〈1, 0〉, then a �= 1 and so a ≤ c. This gives us
〈a, b〉�〈c, 0〉. On the other hand we easily obtain ∼〈c, 0〉 = 〈0, �c〉� ∼〈a, b〉. Hence 〈a, b〉 ≤ 〈c, 0〉,
as claimed.

The converse is easy. Assume A has a penultimate element 〈c, d〉. Then, for every a ∈ H such that
a �= 1 and for every b ∈ H , we have 〈a, b〉 ≤ 〈c, d〉. Thus, in particular, 〈a, b〉�〈c, d〉, which means
that a ≤ c. Hence c is the penultimate element of 〈H ; →, 1〉. �

As done in [23, Prop. 11] for quasi-Nelson algebras, it is possible to use the representation of
either Theorem 3.12 or Theorem 4.16 to obtain further information on subvarieties of QNI.

LEMMA 4.24.
Let A = 〈A; →, ∼, 0, 1〉 be a QNI twist-algebra over an nH-semigroup H = 〈H ; →, �, 0, 1〉, and let
α ≈ β be an equation in the language of nH-semigroups. The following are equivalent:

(i) H � α ≈ β.
(ii) A � α → β ≈ 1 and A � β → α ≈ 1.

PROOF. The result is an easy consequence of the following considerations. Recall that, for all
〈a1, a2〉, 〈b1, b2〉 ∈ A, one has 〈a1, a2〉 → 〈b1, b2〉 = 〈b1, b2〉 → 〈a1, a2〉 = 1 if and only if a1 = b1.
Further observe that the operations →, �, 0, 1 are defined on A, for the first component, precisely
as in a direct product of the corresponding operations on H. In fact, the preceding reasoning can
be extended to include the operation � as well, if we considered the operation � on QNI-algebras
defined as �x := ∼ ∼ x. �
LEMMA 4.25.
Let A = 〈A; →, ∼, 0, 1〉 ∈ QNI. The following are equivalent:

(i) A � (x → y) → (∼ y → ∼ x) ≈ 1.
(ii) A � (x → ∼ y) → (y → ∼ x) ≈ 1.

(iii) A � (x → 0) → ∼ x ≈ 1.
(iv) A � ∼ x ≈ x → 0.
(v) A � ∼ x ≈ x → ∼ x.

(vi) A � ∼ ∼ x ≈ x � 1.
(vii) A � x � y ≈ y � x.

(viii) A � ∼ ∼ x � 1 ≈ 1 � ∼ ∼ x.

PROOF. Whenever convenient, we will assume that A is QNI twist-algebra over an nH-semigroup
H = 〈H ; →, �, 0, 1〉. Supposing (i) holds, we have a → ∼ b � ∼ ∼ b → ∼ a for all a, b ∈ A.
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26 Fragments of Quasi-Nelson: The Algebraizable Core

Observe that ∼ ∼ b → ∼ a � b → ∼ a because

(∼ ∼ b → ∼ a) → (b → ∼ a) = b → ((∼ ∼ b → ∼ a) → ∼ a) by Def.3.1.iii

= (b → (∼ ∼ b → ∼ a)) → (b → ∼ a) by Def.3.1.iii

= ((b → ∼ ∼ b) → (b → ∼ a)) → (b → ∼ a) by Def.3.1.iii

= (1 → (b → ∼ a)) → (b → ∼ a) by Def.3.1.xiii

= (b → ∼ a) → (b → ∼ a) by Def.3.1.i

= 1 by Def.3.1.ii.

Thus, by the transitivity of � (Lemma 3.3.iv), we have a → ∼ b � b → ∼ a, i.e. (a → ∼ b) →
(b → ∼ a) = 1. Hence (ii) holds.

Now, assuming (ii), by items (xi) and (i) of Definition 3.1, we have (a → ∼ 1) → (1 → ∼ a) =
(a → 0) → ∼ a = 1. Hence we have (iii).

To show that (iii) implies (iv), observe that ∼ x → (x → 0) ≈ 1 is satisfied by every QNI (twist-)
algebra A. Indeed, for 〈a1, a2〉 ∈ A, we have ∼〈a1, a2〉 = 〈a2, �a1〉 and, using Definition 4.5.vii,
〈a1, a2〉 → 〈0, 1〉 = 〈a1 → 0, �a1 � 1〉 = 〈a1 → 0, ��a1〉 = 〈a1 → 0, �a1〉. Thus the second
components are equal, and it suffices to check that a2 ≤ a1 → 0. From the requirement a1 � a2 = 0
of Definition 4.12, we have (a1 � a2) → 0 = 0 → 0 = 1. Moreover, using Definition 4.5.v, we
have 1 = (a1 � a2) → 0 = �a1 → (�a2 → 0). Recall that �a2 = a2 (by Definition 4.12)
and a1 ≤ �a1. Since the Hilbert implication is order-reversing in the first argument, we thus have
1 = �a1 → (�a2 → 0) = �a1 → (a2 → 0) ≤ a1 → (a2 → 0) = a2 → (a1 → 0). Hence
a2 ≤ a1 → 0, as claimed. This indeed means that a QNI-algebra A satisfies (x → 0) → ∼ x ≈ 1 if
and only if A satisfies ∼ x ≈ x → 0, so (iii) and (iv) are equivalent.

We claim that (iv) and (v) are equivalent because, actually, every QNI (twist-)algebra satisfies
x → ∼ x ≈ x → 0. To verify this, let 〈a1, a2〉 ∈ A. Let us preliminary observe that a1 → 0 = a1 →
a2. Indeed, the inequality a1 → 0 ≤ a1 → a2 holds because → is order-preserving in the second
argument. As to the other inequality, since a1 → a2 ≤ �(a1 → a2), it will suffice to show that
�(a1 → a2) → (a1 → 0) = 1. We have:

�(a1 → a2) → (a1 → 0) = �(a1 → a2) → (�a1 → 0) by Lemma 4.9.iv

= ((a1 → a2) � a1) → 0 by Def. 4.5.v

= (a1 � a2) → 0 by Def. 4.5.iv

= 0 → 0 a1 � a2 = 0

= 1 x → x ≈ 1.

Thus (since we are in a Hilbert algebra) we have �(a1 → a2) ≤ a1 → 0, which gives us a1 →
0 = a1 → a2. Now, as shown earlier in the proof, 〈a1, a2〉 → 〈0, 1〉 = 〈a1 → 0, �a1〉. On the
other hand, we have 〈a1, a2〉 → ∼〈a1, a2〉 = 〈a1 → a2, a1 � �a1〉 = 〈a1 → a2, �a1〉 = 〈a1 →
0, �a1〉. Regarding the second components, the last equality holds because, by Lemma 4.9.ii and the
inequality a1 ≤ �a1, we have �a1 = a1 � �a1.

It is easy to check that (iv), which we have seen to be equivalent to (v), implies (vi): just observe
that x � 1 = ∼(x → ∼ 1), and that every QNI-algebra satisfies ∼(x → ∼ 1) ≈ ∼(x → 0).

Let us show that (vi) implies (vii). Let 〈a1, a2〉 ∈ A. Observe that �(a1 → 0) = a1 → 0. Indeed,
the inequality a1 → 0 ≤ �(a1 → 0) holds because of Definition 4.3.iii. As to the converse, observe
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that a1 ≤ �a1 entails �a1 → 0 ≤ a1 → 0. Then, using items (ii) and (i) of Definition 4.3, we
easily obtain �(a1 → 0) ≤ �a1 → �0 = �a1 → 0 ≤ a1 → 0. Hence, assuming (v) holds, we
have 〈�a1, a2〉 = ∼ ∼〈a1, a2〉 = 〈a1, a2〉 � 〈1, 0〉 = 〈�a1 � �1, �(a1 → 0)〉 = 〈��a1, a1 →
0〉 = 〈�a1, a1 → 0〉. Thus (v) entails, like (iii) and (iv), that every element of A is of the form
〈a1, a1 → 0〉. Thus, to verify that (vi) holds, it suffices to check that 〈a1, a1 → 0〉� 〈b1, b1 → 0〉 =
〈b1, b1 → 0〉 � 〈a1, a1 → 0〉 for all a1, b1 ∈ H . This follows easily from the commutativity of the
Hilbert implication: we have 〈a1, a1 → 0〉 � 〈b1, b1 → 0〉 = 〈�a1 � �b1, �(a1 → (b1 → 0))〉 =
〈�a1 � �b1, �(b1 → (a1 → 0)〉 = 〈b1, b1 → 0〉 � 〈a1, a1 → 0〉.

It is clear that (vii) entails (viii). To conclude the proof, assume (viii) holds, and let us show that
(i) must hold as well. On a twist-algebra, this means that, for all 〈a1, a2〉 ∈ A, we have ∼ ∼〈a1, a2〉�
〈1, 0〉 = 〈��a1 � �1, �(a1 → 0)〉 = 〈�a1, �(a1 → 0)〉 = 〈�a1, a2〉 = 〈�a1, �a2〉 = 〈�1 �
��a, �(1 → b)〉 = 〈1, 0〉 � ∼ ∼〈a, a2〉. Thus, in particular, �(a1 → 0) = a2, which means
that every element of A has the form 〈a1, �(a1 → 0)〉 for some a1 ∈ H . Observe that, in fact,
�(a1 → 0) = a1 → 0, which brings us back to the condition considered in item (iv). Indeed, the
inequality a1 → 0 ≤ �(a1 → 0) holds because of Definition 4.3.iii. As to the converse, observe
that a1 ≤ �a1 entails �a1 → 0 ≤ a1 → 0. Then, using items (ii) and (i) of Definition 4.3, we
easily obtain �(a1 → 0) ≤ �a1 → �0 = �a1 → 0 ≤ a1 → 0. Hence every element of A
has the form 〈a1, a1 → 0〉 for some a1 ∈ H . It is then easy to verify that (i) holds. Indeed, for all
a1, b1 ∈ H , we have (〈a1, a1 → 0〉 → 〈b1, b1 → 0〉) → (∼〈b1, b1 → 0〉 → ∼〈a1, a1 → 0〉) =
〈(a1 → b1) → ((b1 → 0) → (a1 → 0)), �(a1 → b1) � �(b1 → 0) � �a1〉. Regarding the
second component of this expression, we use the observation that � distributes over � to obtain
�(a1 → b1) � �(b1 → 0) � �a1 = �((a1 → b1) � (b1 → 0) � a1). Using the commutativity
of � and items (iv) and (vi) of Definition 4.5, we have �((a1 → b1) � (b1 → 0) � a1) = �(a1 �
b1 � (b1 → 0)) = �(a1 �b1 �0) = �0 = 0. As to the first component, using the commutativity of
the Hilbert implication together with (H2’) and (H1), we have (a1 → b1) → ((b1 → 0) → (a1 →
0)) = (b1 → 0) → ((a1 → b1) → (a1 → 0)) = (b1 → 0) → (a1 → (b1 → 0)) = 1. Hence
(〈a1, a1 → 0〉 → 〈b1, b1 → 0〉) → (∼〈b1, b1 → 0〉 → ∼〈a1, a1 → 0〉) = 〈1, 0〉, as was required to
prove. �
PROPOSITION 4.26.
Let A = 〈A; →, ∼, 0, 1〉 be a QNI twist-algebra over an nH-semigroup H = 〈H ; →, �, 0, 1〉.

(i) A � ∼ ∼ x → x ≈ 1 iff A � ∼ ∼ x ≈ x iff A � x ≈ 1 � x (1 is the neutral element for �
on the left) iff A � (x � x) → x ≈ 1 iff H � �x → x ≈ 1 iff H � �x ≈ x iff the natural
order of the Hilbert algebra reduct of H forms a bounded meet-semilattice with � as meet.

(ii) A � (∼ ∼ x → ∼ ∼ y) → ∼ ∼(x → y) ≈ 1 iff A � ∼ ∼ x → ∼ ∼ y ≈ ∼ ∼(x → y) iff
H � (�x → �y) → �(x → y) ≈ 1 iff H � �x → �y ≈ �(x → y).

(iii) A satisfies any of the identities of Lemma 4.25 (e.g. the operation � is commutative) iff
h : H ∼= A, where h(a) := 〈a, a → 0〉 for all a ∈ H , iff A is a bounded Hilbert algebra.

(iv) A � x ≈ x � x (the operation � is idempotent) iff A � x ≈ x � 1 (1 is the neutral element
for � on the right) iff A � (∼ x → ∼ y) → (y → x) ≈ 1 iff A � ∼ x → ∼ y ≈ y → x iff
A is a Boolean algebra (on which � is the meet) iff H is a Boolean algebra and h : H ∼= A,
where h(a) := 〈a, a → 0〉 for all a ∈ H .

(v) A � ((x → y) → x) → x ≈ 1 iff H is a Boolean algebra.

PROOF. (i). The equivalence between ∼ ∼ x ≈ x and x ≈ 1 � x is straightforward: just observe
that, by Definition 3.1.i, we have 1 � x ≈ ∼(1 → ∼ x) ≈ ∼ ∼ x. Now, letting 〈a1, a2〉 ∈ A,
let us compute ∼ ∼〈a1, a2〉 = 〈�a1, �a2〉 = 〈�a1, a2〉 and 〈a1, a2〉 � 〈a1, a2〉 = ∼(〈a1, a2〉 →
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28 Fragments of Quasi-Nelson: The Algebraizable Core

∼〈a1, a2〉) = ∼〈a1 → a2, �a1 � �a1〉 = ∼〈a1 → a2, a1 � a1 � a1 � a1〉 = ∼〈a1 → a2, ��a1〉 =
∼〈a1 → a2, �a1〉 = 〈�a1, �(a1 → a2)〉. Hence ∼ ∼〈a1, a2〉 ≡ 〈a1, a2〉 � 〈a1, a2〉, which implies
that ∼ ∼〈a1, a2〉 → 〈b1, b2〉 = 〈1, 0〉 iff 〈a1, a2〉 � 〈a1, a2〉 → 〈b1, b2〉 = 〈1, 0〉 for all 〈b1, b2〉 ∈ A.
This gives us the equivalence between A � ∼ ∼ x → x ≈ 1 and A � (x � x) → x ≈ 1. The
equivalence between A � ∼ ∼ x → x ≈ 1 and A � ∼ ∼ x ≈ x is easy: let us compute ∼ ∼〈a1, a2〉 →
〈a1, a2〉 = 〈�a1 → a1, ��a1�a2〉 = 〈�a1 → a1, �a1�a2〉. Thus ∼∼〈a1, a2〉 → 〈a1, a2〉 = 〈1, 0〉
entails �a1 ≤ a1, which (recalling Definition 4.3.iii) gives us �a1 = a1. Hence ∼ ∼〈a1, a2〉 =
〈a, a2〉. That H � �x ≈ x entails any of the above conditions is easily proved. To conclude the
proof, observe that, on the one hand, if � is a semilattice operation on H , then a1 = a1 � a1 = �a1
for all a1 ∈ H . On the other hand, if H � �x ≈ x, then � is a semilattice operation and one has
a1 → b1 = 1 iff a1 � b1 = a1 for all a1, b1 ∈ H . To see that � is a semilattice operation, it suffices
to observe that (using �a1 = a1) we have a1 � a1 = �a1 = a1. Observe next that, assuming
a1 → b1 = 1, by Definition 4.5.iv we have a1 � b1 = a1 � (a1 → b1) = a1 � 1 = �a1 = a1.
Conversely, if a1 � b1 = a1, then Definition 4.5.v gives us a1 → b1 = (a1 � b1) → b1 = �a1 →
(�b1 → b1) = a1 → (b1 → b1) = 1, as required.

(ii). Assume A � (∼ ∼ x → ∼ ∼ y) → ∼∼(x → y) ≈ 1. Let a1, b1, a2, b2 ∈ H . Using
Definition 4.3.iii, we have ∼ ∼〈a1, a2〉 → ∼ ∼〈b1, b2〉 = 〈�a1, �a2〉 → 〈�b1, �b2〉 = 〈�a1 →
�b1, ��a1 � b2〉 = 〈�a1 → �b1, �a1 � b2〉. On the other hand, we have ∼ ∼(〈a1, a2〉 →
〈b1, b2〉) = 〈�(a1 → b1), �(�a1 � b2)〉. Recall from the proof of Lemma 4.10 that � distributes
over �, i.e. �(�a1 � b2) = ��a � �b2. Also recall that b2 = �b2 holds because 〈b1, b2〉 ∈ A.
Using also Definition 4.3.iii, we have 〈�(a1 → b1), �(�a1�b2)〉 = 〈�(a1 → b1), ��a1��b2〉 =
〈�(a1 → b1), �a1 � b2〉. It is thus clear that A � (∼ ∼ x → ∼ ∼ y) → ∼ ∼(x → y) ≈ 1
is equivalent to requiring �a1 → �b1 ≤ �(a1 → b1) for all a1, b1 ∈ H . Since the inequality
�(a1 → b1) ≤ �a1 → �b1 holds on all nH-semigroups, we also have that A � (∼∼ x →
∼ ∼ y) → ∼ ∼(x → y) ≈ 1 is equivalent to A � ∼ ∼ x → ∼ ∼ y ≈ ∼ ∼(x → y).

(iii). Recall that every bounded Hilbert algebra H is a QNI-algebra if we let ∼ x := x → 0.
(Proposition 3.11). Now assume any of the conditions of Lemma 4.25 holds. As we have seen, each
of them is equivalent to requiring that every element of A be of the form 〈a1, a1 → 0〉 for some
a1 ∈ H . Observe that, since ∼〈a1, a1 → 0〉 = 〈a1 → 0, �a1〉, this entails �a1 = (a1 → 0) → 0
for all a ∈ H . The preceding considerations show that the map h given by h(a1) := 〈a1, a1 → 0〉
for all a1 ∈ H is bijective. It is clear that h is a homomorphism in the first component, and this is all
that matters, since the second component of each pair in A, as we have seen, is determined by the
first. Hence h : H ∼= A (which implies that A is itself a bounded Hilbert algebra).

To conclude the proof, assume A is a bounded Hilbert algebra, and let us verify that A satisfies
(x → 0) → ∼ x ≈ 1. Let 〈a1, a2〉 ∈ A, and observe that (〈a1, a2〉 → 〈0, 1〉) → ∼ ∼(〈a1, a2〉 →
∼〈a1, a2〉) = 〈1, 0〉. To see this, by Lemma 3.3.v, it is sufficient to check equality of the first
components, i.e. that (a1 → 0) → �(a1 → a2) = 1. The latter holds true because a1 → 0 ≤
a1 → a2 ≤ �(a1 → a2). Further observe that, Lemma 3.3.ix, we have 〈a1, a2〉 � 〈a1, a2〉 =
∼(〈a1, a2〉 → ∼〈a1, a2〉) ≡ ∼ ∼〈a1, a2〉. Since A is a Hilbert algebra, by (H3) we have that the
relation ≡ coincides with the equality on A. Hence we have ∼(〈a1, a2〉 → ∼〈a1, a2〉) = ∼ ∼〈a1, a2〉,
which implies ∼ ∼(〈a1, a2〉 → ∼〈a1, a2〉) = ∼ ∼ ∼〈a1, a2〉 = ∼〈a1, a2〉. Thus we have (〈a1, a2〉 →
〈0, 1〉) → ∼ ∼(〈a1, a2〉 → ∼〈a1, a2〉) = (〈a1, a2〉 → 〈0, 1〉) → ∼〈a1, a2〉 = 〈1, 0〉. This implies
that a1 → 0 ≤ a2 for all 〈a1, a2〉 ∈ A. As observed in the proof of Lemma 4.25, the latter is in turn
equivalent to a1 → 0 = a2 for all 〈a1, a2〉 ∈ A. Hence 〈a1, a2〉 → 〈0, 1〉 = ∼〈a1, a2〉, which means
that A satisfies (x → 0) ≈ ∼ x, as required.

(iv). For 〈a1, a2〉 ∈ A, let us compute 〈a1, a2〉 � 〈1, 0〉 = 〈�(a1 � 1), �(a1 → 0)〉 =
〈��a1, �(a1 → 0)〉 = 〈�a1, a1 → 0〉. The last passage is justified by (Definition 4.3.iii and) the
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equality �(a1 → 0) = a1 → 0, which was shown in the proof of Lemma 4.25. Also observe that
〈a1, a2〉�〈a1, a2〉 = 〈a1�a1, a1 → a2〉 = 〈�a1, a1 → 0〉. The last equality is justified by Definition
4.5.iii (for the first component) and, for the second component, by the equality a1 → a2 = a1 → 0,
which we have seen to hold in the proof of Lemma 4.25. Thus, every QNI (twist-)algebra satisfies
x � x ≈ x � 1, which gives us the equivalence of the first two conditions in the statement. Our
computations also show that x � 1 ≈ 1 amounts to the requirement 〈�a1, a1 → 0〉 = 〈a1, a2〉
for all 〈a1, a2〉 ∈ A. This implies that H � �x ≈ x (i.e. item (i) above holds) and that every
element of A is of the form 〈a1, a1 → 0〉 for some a1 ∈ H (i.e. all the conditions of Lemma
4.25 hold as well). In particular, A � (∼ x → ∼ y) → (y → x) ≈ 1 because, by involutivity,
A � y → x ≈ ∼ ∼ y → ∼ ∼ x, so the result follows easily from Lemma 4.25.i.

Further observe that A � (∼ x → ∼ y) → (y → x) ≈ 1 entails items (i) and (iii) above. Indeed,
using items (x) and (i) of Definition 3.1, we can instantiate the identity (∼ x → ∼ y) → (y → x) ≈ 1
as follows: 1 = (∼ a → ∼ ∼ ∼ a) → (∼∼ a → a) = (∼ a → ∼ a) → (∼ ∼ a → a) = 1 →
(∼ ∼ a → a) = ∼ ∼ a → a for all a ∈ A. Thus (i) holds, and ∼ ∼ a = a for all a ∈ A. Hence, for
all a, b ∈ A, we have (a → b) → (∼ b → ∼ a) = (∼ ∼ a → ∼ ∼ b) → (∼ b → ∼ a) = 1, which
is item (iii) above. It is well known that the identities (H1), (H2) and (∼ x → ∼ y) → (y → x) ≈ 1
constitute a presentation of Boolean algebras in the language {→, ∼}. Hence A is a Boolean algebra,
which entails that A � ((x → y) → x) → x ≈ 1, i.e. item (v) holds as well. Then H is a Boolean
algebra (on which, by item (i) above, the � is the identity map).

Conversely, assume H is a Boolean algebra and h : H ∼= A via the map given by h(a1) :=
〈a1, a1 → 0〉 for all a ∈ H . Then A is a Boolean algebra (in which � is the meet), so all the
other statements in (iv) are satisfied.

(v). It is easy to show that A � ((x → y) → x) → x ≈ 1 if and only if H � ((x → y) → x) →
x ≈ 1. The latter condition implies that the {→, 1}-reduct of H is a Tarski algebra; Tarski algebras
are precisely the {→, 1}-subreducts of Boolean algebras and can be axiomatized (relative to Hilbert
algebras) precisely by the identity ((x → y) → x) → x ≈ 1. In a bounded Tarski algebra all Boolean
operations are definable (x → 0 defines the negation, (x → (y → 0)) → 0 defines the conjunction,
etc.). Hence H is a Boolean algebra (in which � is the meet), as claimed. Conversely, if the latter
holds, then it is obvious that A � ((x → y) → x) → x ≈ 1. �

REMARK 4.27.
Regarding Proposition 4.26, observe that item (iv) implies all the other items, and that (vii) implies
(vi); moreover, items (iii) and (vii) jointly imply (iv). We also note that not only the identity in
item (iv) but also the one in item (v) define a finitely generated subvariety of QNI. Let us call I3
the variety axiomatized by the identity in item (v). Theorem 4.21 tells us that I3 is generated by
those QNI-algebras A such that the corresponding nH-semigroup H has a subdirectly irreducible
Boolean algebra reduct. Since the only subdirectly irreducible Boolean algebra is the two-element
one, we have that H consists of two elements. It is easy to check that, on a two-element universe,
the only possible nucleus is the identity map; items (vi) and (vii) of Definition 4.5 further imply
that � must be the lattice meet operation associated to the natural order of the algebra. Thus the
two-element nH-semigroup is unique up to isomorphism; let us denote it by H2. Over H2 �� H2
only two (both involutive) QNI twist-algebras can be built: a two-element one (call it A2) with
universe {〈0, 1〉, 〈1, 0〉} and a three-element one A3 with universe {〈0, 1〉, 〈1, 0〉, 〈0, 0〉}. The algebra
is A2 isomorphic to the two-element Boolean algebra (where → is the Boolean implication, ∼ is the
complement operation and � is the meet), and it is obviously a subalgebra of A3. Thus I3 is generated
by A3 alone, which is the reduct of the (unique, up to isomorphism) three-element Nelson algebra.
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30 Fragments of Quasi-Nelson: The Algebraizable Core

This algebra, in turn, is known to be isomorphic to the three-element MV (or Wajsberg) algebra;
observe, however, that A3 cannot be viewed as a MV/Wajsberg algebra, because the implication →
is not the Łukasiewicz implication (which coincides with the strong Nelson implication →). Indeed,
having → in the language, one would be able to define x → y := x → (x → y), but from → one
cannot define → unless the meet operation is also present.

Characterizations similar to those in Proposition 4.26 can be obtained by considering other
identities. In general, it is easy to show that, if t is a term in the language of QNI-algebras that
only involves the implication, then A � t ≈ 1 if and only if H � t ≈ 1. Thus one can verify,
e.g. that A satisfies ((x → y) → z) → (((y → x) → z) → z) ≈ 1 if and only if H satisfies
((x → y) → z) → (((y → x) → z) → z) ≈ 1, which is the well-known prelinearity identity often
considered in the context of fuzzy logics.

5 The Logic of QNI

In this section we introduce a Hilbert-style calculus �QNI that is algebraizable (in the sense of Blok
and Pigozzi [1]) and has QNI as its equivalent algebraic semantics. The main results of this section
have been established in [14], to which we refer for further details and proofs.

Fm will denote the set formulas built over a denumerable set Var of propositional variables using
the propositional connectives → and ∼ (we do not include truth constants in the language, but these
may be defined by letting 1 := ϕ → ϕ and 0 := ∼ 1). In keeping with the notation of the previous
sections, given formulas ϕ, ψ , γ ∈ Fm, we abbreviate ϕ � ψ := ∼(ϕ → ∼ ψ) and

q(ϕ, ψ , γ ) := (ϕ → ψ) → ((ψ → ϕ) → ((∼ϕ → ∼ ψ) → ((∼ψ → ∼ ϕ) → γ ))).

The calculus �QNI is defined in a standard way by the following axiom schemata:
ϕ → (ψ → ϕ) (A1)

(ϕ → (ψ → γ )) → ((ϕ → ψ) → (ϕ → γ )) (A2)

q(ϕ, ψ , ψ) → q(ϕ, ψ , ϕ) (A3)

q(ϕ, ψ , ϕ) → q(ϕ, ψ , ψ) (A4)

(ϕ � (ψ � γ )) → ((ϕ � ψ) � γ ) (A5)

((ϕ � ψ) � γ ) → (ϕ � (ψ � γ )) (A6)

∼ ∼ ∼ ϕ → ∼ ϕ (A7)

(ϕ → ψ) → (∼ ∼ ϕ → ∼∼ ψ) (A8)

ϕ → ∼ ∼ϕ (A9)

(ϕ � (ϕ → ψ)) → (ϕ � ψ) (A10)

∼ ∼ ϕ → (∼ ψ → ∼(ϕ → ψ)) (A11)

∼(ϕ → ψ) → ∼ ψ (A12)

∼(ϕ → ψ) → ∼ ∼ ϕ (A13)

∼(ϕ → ϕ) → ψ (A14)

∼ ∼(∼ ϕ → ∼ ψ) → (∼ϕ → ∼ ψ). (A15)
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The only rule of �QNI is modus ponens (mp): from ϕ and ϕ → ψ , derive ψ .
As expected, it is not difficult to check that all the axioms of �QNI are sound w.r.t. Nelson logic

(provided one interprets → as the weak implication and ∼ as the strong negation; see e.g. [25]) and
w.r.t. intuitionistic logic. From the presence of axioms (A1), (A2) and the observation that (mp) is
the only rule of the logic, we also obtain that �QNI enjoys the deduction–detachment theorem in its
classical form.

THEOREM 5.1 (Deduction–detachment theorem). For all Γ ∪ {ϕ, ψ} ⊆ Fm, we have Γ , ϕ �QNI ψ

iff Γ �QNI ϕ → ψ .

THEOREM 5.2. [14], Prop. 1
�QNI is finitely and regularly algebraizable [6, Def. 3.49] with equivalence formulas Δ(ϕ, ψ) :=

{ϕ → ψ , ψ → ϕ, ∼ ϕ → ∼ ψ , ∼ ψ → ∼ ϕ} and defining equation E(ϕ) := {ϕ ≈ ϕ → ϕ}.
One can obtain an axiomatization of the class of �QNI-algebras in the standard way [1, Thm. 2.17].

The above results entail that the term x → x defines an algebraic constant on every �QNI-algebra;
thus, letting 1 := x → x and 0 := ∼ 1, we can view �QNI-algebras as a quasivariety of algebras in
the same language as QNI. In fact, it is not difficult to show that the class �QNI-algebras (modulo
the above-mentioned language formalities) coincides with the variety QNI.

THEOREM 5.3. [14], Props. 3 and 4
QNI is the equivalent algebraic semantics of �QNI.

Taking into account the well-known bridge theorems regarding algebraizable logics, the latter
result could be used to obtain alternative proofs of some of the statements established in Section 3
(see for instance Proposition 3.16).

6 Conclusions

In these final remarks we would like ref lect on what we have learnt so far about the problem of
characterizing fragments of quasi-Nelson algebras/logic. As mentioned in the Introduction (and
illustrated throughout the paper), the twist representation has been a most valuable tool in this
endeavour, and indeed it is fair to say that the limits of our current knowledge about fragments
of quasi-Nelson coincide with the current limitations of the twist construction. The vagueness of the
notion of ‘twist construction’ makes it hard to formulate in general necessary/sufficient conditions
for a twist representation of some sort to be possible. However, the fragments that have been
successfully characterized (namely {∧, ∨, ∼} in [18], {∧, ∨, ∼, ¬} in [17] and {→, ∼} in [20] and in
the present paper) provide some insight. In all three cases, the presence of the negation (∼) appears
to be an essential ingredient in the definition of the embeddings of (e.g.) Theorems 3.12 and 4.16;
one then invokes the Nelson identity (in one of its equivalent formulations) to ensure that the maps
are actually injective. The lattice structure (in particular, the structure of the prime spectrum) played
a prominent role in the study of the {∧, ∨, ∼}-fragment, but it turns out to be inessential if the
language is sufficiently expressive, as in the case of {∧, ∨, ∼, ¬} and {→, ∼}.

A further lesson to be learnt from the above-mentioned case studies is that, even if the non-
involutive setting seems to require a more complex representation of an algebra A via two factors
(A+, A−), only the positive factor seems essential, for A− may be recovered as a special subalgebra
of A+ (this, indeed, appears to be a characteristic consequence of the Nelson identity: see, by
contrast, the representation of semi-Kleene lattices [18], in which both A+ and A− are essential).
This suggests that the operations that require a richer structure on the negative factor than on the
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32 Fragments of Quasi-Nelson: The Algebraizable Core

positive one (for instance the monoid operation, as defined component-wise on quasi-Nelson twist-
algebras) may turn out to be the hardest to account for. Another difficulty is in general represented
by the operations that are not compatible with the relation ≡ defined in Section 2, such as the strong
implication (→); this may of course be overcome if the operation is definable from the compatible
ones that are present in the language (as is the case of → in the presence of ∼).

Regarding the above problems, the treatment of QNI-algebras developed in the present paper
suggests a potentially successful strategy. Indeed, even if an algebra A does not possess a certain
operation (say, the meet ∧) that would be required to define the corresponding one on the quotient
(say, the meet on A−), it is sometimes possible to find a term (in this case letting x�y := ∼(x → ∼ y)
was enough) that is not a meet on A but acts as a meet on the quotient A−. This observation led us
to the discovery of the ‘right’ counterpart of QNI-algebras, i.e. nH-semigroups, a class of algebras
that (we note) could not be simply obtained from Heyting algebras with nuclei by eliding certain
algebraic operations.

It is clear that the preceding considerations are far from constituting a general explanation of the
regularities and irregularities in the landscape of fragments of quasi-Nelson. This notwithstanding,
we speculate that a number of other interesting fragments may lie within the reach of (suitable
extensions of) the techniques developed in the present paper, and we wish our efforts to be
instrumental in reaching a higher point of observation, from which the pattern of such (ir)regularities
may start to emerge.

Acknowledgements

The author acknowledges partial funding by the Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq, Brazil), under the grant 313643/2017-2 (Bolsas de Produtividade em Pesquisa–
PQ)

References
[1] W. J. Blok and D. Pigozzi. Algebraizable logics. Memoirs of the American Mathematical

Society, 77, 1989.
[2] S. Burris and H. P. Sankappanavar. A Course in Universal Algebra, vol. 78 of Graduate Texts

in Mathematics. Springer, New York, 1981.
[3] J. Berman and W.J. Blok. Algebras defined from ordered sets and the varieties they generate.

Order, 23, 65–88, 2006.
[4] W. J. Blok and D. Pigozzi. On the structure of varieties with equationally definable principal

congruences III. Algebra Universalis, 32, 545–608, 1994.
[5] S. A. Celani, L. M. Cabrer and D. Montangie. Representation and duality for Hilbert algebras.

Cent. Eur. J. Math., 7, 463–478, 2009.
[6] J. M. Font. Abstract Algebraic Logic: An Introductory Textbook. College Publications, 2016.
[7] W. Fussner and N. Galatos. Categories of models of R-mingle. Annals of Pure and Applied

Logic, 170, 1188–1242, 2019.
[8] N. Galatos, P. Jipsen, T. Kowalski and H. Ono. Residuated Lattices: An Algebraic Glimpse at

Substructural Logics. Elsevier, 2007.
[9] N. Galatos and J. G. Raftery. Idempotent residuated structures: some category equivalences

and their applications. Transactions of the American Mathematical Society, 367, 3189–3223,
2015.

[10] G. Grätzer. General Lattice Theory. Academic Press, New York, 1978.

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzab023/6311966 by Ian N

orthover on 10 January 2022



Fragments of Quasi-Nelson: The Algebraizable Core 33

[11] F. Liang and T. Nascimento. Algebraic semantics for quasi-Nelson logic. In Logic, Language,
Information, and Computation. Proc. WoLLIC 2019, vol. 11541 of Lecture Notes in Computer
Science, R. Iemhoff, M. Moortgat and R. de Queiroz., eds, pp. 450–466. Springer, Berlin,
Heidelberg, 2019.

[12] D. S. Macnab. An Algebraic Study of Modal Operators on Heyting Algebras With Applications
to Topology and Sheafification. PhD Dissertation, University of Aberdeen, 1976.

[13] D. S. Macnab. Modal operators on Heyting algebras. Algebra Universalis, 12, 5–29, 1981.
[14] T. Nascimento and U. Rivieccio. Negation and implication in quasi-Nelson logic. Logical

Investigations, 27, 107–123, 2021.
[15] D. Nelson. Constructible falsity. Journal of Symbolic Logic, 14, 16–26, 1949.
[16] H. Rasiowa. An Algebraic Approach to Non-Classical Logics, vol. 78 of Studies in Logic and

the Foundations of Mathematics. North-Holland, Amsterdam, 1974.
[17] U. Rivieccio. Fragments of quasi-Nelson: two negations. Journal of Applied Logic, 7, 499–559,

2020.
[18] U. Rivieccio. Representation of De Morgan and (semi-)Kleene lattices. Soft Computing, 24,

8685–8716, 2020.
[19] U. Rivieccio, T. Flaminio and T. Nascimento. On the representation of (weak) nilpotent

minimum algebras. In 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pp. 1–8. Glasgow, United Kingdom, 2020. DOI: 10.1109/FUZZ48607.2020.9177641.

[20] U. Rivieccio and R. Jansana. Quasi-Nelson algebras and fragments. Mathematical Structures
in Computer Science, in press, 2021. DOI: 10.1017/S0960129521000049.

[21] U. Rivieccio, R. Jansana and T. Nascimento. Two dualities for weakly pseudo-complemented
quasi-Kleene algebras. In Information Processing and Management of Uncertainty in
Knowledge-Based Systems. IPMU 2020. Communications in Computer and Information
Science, M.J. Lesot. et al., eds, vol. 1239, pp. 634–653. Springer, 2020.

[22] U. Rivieccio and M. Spinks. Quasi-Nelson algebras. Electronic Notes in Theoretical Computer
Science, 344, 169–188, 2019.

[23] U. Rivieccio and M. Spinks. Quasi-Nelson; or, non-involutive Nelson algebras. In Trends in
Logic, D. Fazio, A. Ledda, F. Paoli (eds.), Algebraic Perspectives on Substructural Logics
(Trends in Logic, 55), pp. 133–168, Springer, 2020.

[24] M. Spinks, U. Rivieccio and T. Nascimento. Compatibly involutive residuated lattices and the
Nelson identity. Soft Computing, 23, 2297–2320, 2019.

[25] M. Spinks and R. Veroff. Constructive logic with strong negation is a substructural logic. I.
Studia Logica, 88, 325–348, 2008.

Received 10 March 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzab023/6311966 by Ian N

orthover on 10 January 2022

https://doi.org/10.1109/FUZZ48607.2020.9177641
https://doi.org/10.1017/S0960129521000049

	Fragments of Quasi-Nelson: The Algebraizable Core
	1 Introduction
	2 Quasi-Nelson Algebras as Twist-Algebras
	3 QNI-Algebras and Their Twist Representation
	4 Nuclear Representation
	5 The Logic of QNI
	6 Conclusions


