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Fault detection of contactor using
acoustic monitoring

Katsuhito Inoue , Edward Stewart and Mani Entezami

Abstract
Recently, condition monitoring methods using the sound of the machine have attracted attention. Since approaching high
voltage equipment increases the risk of electrocuting, non-contact data acquisition is desirable. Most of the research tar-
gets of acoustic monitoring are rotating machines and it is not clear whether it is effective for machines that switch
between two states, such as contactors and circuit breakers. In this work, several investigations have been carried out
on the acoustic condition monitoring of contactor. The Mel-frequency cepstrum coefficients (MFCCs) were obtained
from the sound data of the contactors under normal and simulated fault conditions. Support Vector Machine (SVM) was
trained with MFCCs and found that it could detect and diagnose contactor faults with high accuracy.
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Introduction

Background

Contactors, switches and circuit breakers are used in
Japan’s high-speed railways and in power distribution
networks around the world, and the failure of these
equipment can be significant. Therefore, many of the
facilities are designed redundantly and carefully main-
tained to ensure safety. However, despite all of costs
and efforts, accidents due to equipment failure do
occur. In 2007, a circuit breaker at a substation burned
out due to insulation degradation over time, causing a
blackout of the surrounding high voltage distribution
network for approximately 1.5 h in Osaka, Japan.1

Similar accident was also happened in 2019 and 2020,
causing a total of 4.5 h of blackout.2 In 2012, a fire
broke out in a substation in the USA due to a ground
fault caused by degraded contacts in a circuit breaker.3

Contactors are electric power devices that open and
close the circuit, either when there is no current flowing
or when the rated current is flowing. However, these
devices alone cannot cut off an accidental current more

significant than the rated current, for example such as
those occurring in the event of a short circuit or earth
fault. Unlike a circuit breaker, contactor does not cut
off an accidental current, but it has a high durability for
opening and closing operation. Both contactor and cir-
cuit breaker have a moving electrode, which engages
with or detaches from the fixed electrode to connect or
disconnect the circuit. Both mechanical structure is sim-
ilar, but the circuit breaker has a mechanism to extin-
guish the arc and so can cut off an accidental current,
whereas contactors are designed for repeated operation.

Contactors are widely used in places where circuits
are frequently switched on and off, such as blast fur-
naces in steel mills and power factor correction capaci-
tors in high-voltage distribution networks. In the field
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of railways, they are used in the changeover section of
the Japanese bullet trains and the opening and closing
of the propulsion coils of Maglev trains.4,5 Due to the
high frequency of operation, mechanical failures are
the most frequent faults. According to an international
study more than 70,000 circuit breakers in use in 22
countries has shown that 54.4% of severe failures and
49.3% of minor failures are due to mechanical causes.6

Another study more than 281,000 circuit breakers in
use in 26 countries has shown that 50% of major fail-
ures are related to mechanical problem.7

Since the contactor failure has a significant impact
on the distribution system and train operation, mainte-
nance is carried out according to a periodic mainte-
nance cycle. However, this maintenance cycle is based
on the worst condition of the contactor, which may
lead to excessive maintenance. In recent years, condi-
tion monitoring technology has been attracting atten-
tion for efficient maintenance. This technology enables
the monitoring of the equipment’s condition by using
sensors to the equipment. It allows the maintenance to
be performed only on the equipment that needs it. A
wide range of research has been carried out on condi-
tion monitoring of circuit breakers and contactors,
largely utilizing voltage, current, and vibration analysis
techniques.8–15 These approaches, however, require
direct access to the systems being monitored, which pre-
sents a safety risk, and the nature of the environment
means that the risk of sensor failures is also increased.

A basic principle of monitoring is that sensors
should be installed in such a way that they do not affect
the functionality of the equipment being monitored.
Voltage sensors, load sensors, displacement sensors,
etc. need to be attached directly to the high voltage cir-
cuit or mechanical portion of the equipment. Should a
sensor fail, it is therefore possible for it to adversely
affect the functionality of the equipment, or even cause
significant damage. According to a report by Ministry
of Economy, Trade and Industry Japan, 69 measure-
ment sensor incidents have occurred in the central
region of Japan since 1986.2

Additionally, current and voltage sensors, Acoustic
Emission (AE) and vibration sensors, etc. need to be
mounted directly on or very close to the equipment.
Contactors operate at high voltages, and as such fitting
and obtaining data from such sensors presents a risk to
personnel. East Japan Railway Company reported seven
people have been lost due to electric shocks since 1986.16

Since attaching sensors directly or approaching to
high voltage equipment poses a certain risk, a method
of collecting data from some distance away is desirable.
Acoustic monitoring is attracting attention because the
data can be measured non-contact and at a certain dis-
tance. Furthermore, it may enable low-cost mainte-
nance by monitoring several pieces of equipment from
a single sensor.

Considerable research has been undertaken using
acoustic monitoring technology to detect axle bearing
failures, however there are few applications of it to con-
tactors.17 Many rotating machines operate at a con-
stant speed and produce periodic vibrations when an
abnormality occurs. In many previous studies, this
vibration is used for fault detection and diagnosis.
Reciprocating machines such as contactors, which
operate non-continuously, do not exhibit the repetitive
characteristics in their data, and it is therefore neces-
sary to extract characteristics different from those con-
ventional methods.

Related studies

It is known that rotating machinery failures can cause
periodic noise, for example in bearing and axle failures.
A major issue in the previous research is how to extract
the anomalous noise from the background noise.
Although there are few acoustic monitoring studies for
single throw mechanical equipment (STME).16 STME
is a type of equipment that switches two states of the
equipment by control signals. Point machines, contac-
tors, circuit breakers, and doors are examples of
STMEs. It is expected that in the initial failure of
STMEs, the components will be damaged or deformed,
and the balance of the force on the components trans-
mitted to each component will be disrupted. With this,
it is expected that it will be possible to detect the failure
from the acoustic data if the occurrence of unusual
sounds, changes in frequency, intensity, and length of
the sound. Most of the studies into condition monitor-
ing by sound have been carried out on rotating
machines, while few have been carried out on recipro-
cating machines such as contactors and circuit break-
ers. On the other hand, the vibration data analysis for
circuit breakers has been widely studied. Since sound is
a vibration conducted through the air, vibration analy-
sis methods can also be applied to sound data analysis.

Hou et al.17 proposed a fault diagnosis method for a
12kV circuit breaker. The method calculates the wave-
let packet energy of the vibration and acoustic signals
of the circuit breaker. It classifies them using Support
Vector Machine (SVM) using the wavelet packet
energy relative entropy as an input vector. In their
work, they obtained 30 data of normal and 2 failures
(insufficient lubrication of the crank arm, mechanism
fall off in moving). Three data of each state were used
as training data, and the remaining 21 data were used
for validation. The results show that the combination
of vibration and acoustic data can detect abnormalities
with an accuracy of more than 90%. Although the clas-
sification accuracy of this study is high, only 10 data
were obtained for each, and the number of data needs
to be increased to check the generality.
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Huang et al.18 proposed a method to extract the
EMD energy entropy from the vibration data of a
72.5 kV SF6 gas circuit breaker and to classify the fea-
ture data using a multi-layered SVM. In this verifica-
tion, the following failures were considered: ‘‘loosing
the base screw,’’ ‘‘invalid overtravel of the buffer
spring,’’ and ‘‘time-delay vibration event caused by the
inadequate lubrication for the operating mechanism.’’
Twenty-five data for each failure, and 25 normal data
were collected. To demonstrate the effectiveness of
EMD and SVM, several features and classifiers were
combined, and their accuracy compared. The charac-
teristics used were EMD, and wavelet packet transform
energy entropy (WPT), and the classifiers were SVM
and back-propagation network (BPN). The combina-
tion of EMD and SVM were shown to have a classifi-
cation accuracy of 95% for all faults. Huang et al.19

proposed a fault diagnosis method using variational
mode decomposition (VMD) and a multi-layered SVM
for circuit breaker vibration data. They proposed a
fault diagnosis method using VMD and multi-layered
SVMs for three faults: (1) jam fault of the iron core, (2)
looseness of the base, and (3) insufficient lubrication of
the connecting lever. The characteristic data are
extracted from the vibration of the circuit breaker.
Twenty data of each failure and normal were used for
training, and 20 data were used for validation. The
results showed that the classification accuracy was
100% when using multi-layered SVM. They also vali-
dated the anomaly detection for new faults that were
not in the training data. When the classifier was not
trained on the connecting lever’s lubrication failure, the
single SVM could not determine the failure. Still, the
multilayer SVM could detect and diagnose the fault as
unknown fault with 100% accuracy. In actual condi-
tion monitoring, it may be difficult to obtain all types
of fault data in advance, and unexpected faults may
occur, therefore the ability to detect and diagnose
unknown faults can be say very practical.

Yang et al.21 proposed a fault classification method
for 12 kV circuit breakers. The Morphological
Correlation Coefficient (MCC) was used to detect faults,
and the ensemble empirical mode decomposition Hilbert
marginal spectrum energy entropy (EEMD-HMSEE)
obtained from vibration data was used to train the SVM
for classification. Normal data and three simulated faults,
Oil Damper Failure (ODF), Operating Mechanism
Jamming (OMJ), and Insulation Rod Loosening (IRL),
were taken 50 each, and 60% were used for training and
40% for validation. In the validation, EMD-HMSEE-
SVM using EMD as a feature and EEMD-HMSEE-
KNN using KNN as a classifier were also validated and
it was found proposed method accuracy was the best for
classification. In order to validate the practicality of the
proposed method, five data were obtained from three cir-
cuit breakers of the same type in actual use. Obtained

data were analyzed by the same method and actual fault
of ODF was found by this analysis. The verification also
found a fault that was not investigated in the laboratory
(loosening of the transmission shaft). Furthermore, 20
data were obtained from each phase of different types of
252kV circuit breakers and analyzed by the same
method. As a result, it was found that the fault of OM
occurred in one phase. These results showed that the pro-
posed method is practical for several types of circuit
breakers.

Methodology

Feature extraction method

Sound data contains a lot of redundant information,
and it takes a lot of computation to analyze it. Using
feature extraction, it is possible to extract useful feature
vectors from the data, which reduces the dimensionality
of the data and reduces the computational complexity.
In this study, Mel-frequency cepstrum coefficients
(MFCCs) widely used in speech recognition are applied
to extract features from the sound data. MFCCs have
previously been also used to detect abnormalities in
railway equipment. Lee et al. proposed a method to
extract MFCCs from the sound of a point machine and
classify them using a multilayer SVM. This method has
been shown to detect faults with an accuracy of 94.1%.
When only the fault data were classified, the method
was able to classify them with 97.0% accuracy.20 The
following procedure obtains the MFCCs.

1. Emphasize the high-frequency components of
the waveform by using a pre-emphasis filter.

2. Calculate the amplitude spectrum by FFT after
applying the window function.

3. Compress the amplitude spectrum by applying a
Mel filter bank.

4. Consider the above-compressed sequence of
numbers as a signal and perform a discrete
cosine transform.

5. Obtain the lower-order components of the
obtained cepstrum.

The low-dimensional component of the cepstrum
obtained above is the MFCCs. Since the power of
sound attenuates in the higher frequencies, high-
frequency enhancement is used to compensate for this.
For discontinuous data, a window function is used to
attenuate the two ends of the waveform. The power
spectrum is used because the sound’s magnitude (the
frequency to be emphasized) changes with the phonetic
difference.

Suppose the dimensionality of the MFCC is
increased. In that case, the more delicate components
of the Mel frequency spectral envelope can be

Inoue et al. 3



represented. Still, the dimensionality of the feature vec-
tor increases, so MFCCs with less than 20 dimen-
sions20–23 or MFCCs and logarithmic energy are often
used.24 The MFCCs and its time-varying component
Delta MFCCs, and also the time-varying component
of Delta MFCCs, Delta delta MFCCs, are sometimes
used.23,25–27 Nelwamondo et al.28 tested the accuracy of
bearing failure detection by varying the number of
MFCCs. The results showed that 13 MFCCs was opti-
mal for failure detection. In this analysis, the number
of MFCCs was set to 13, hamming window was used
for 30ms window frame, and an overlap length was set
to 20ms.

Classification method

Support Vector Machine (SVM) is a supervised
machine learning method for pattern identification
based on Vapnik’s statistical learning theory.29 It can
be used for both classification and regression, but it is
mostly used for classification tasks. It is a fast and reli-
able classification algorithm and is expected to perform
well with a small amount of data. In recent years, artifi-
cial neural networks (ANNs) have also attracted atten-
tion for their high accuracy. Still, ANNs require a large
amount of data to predict the response accurately and
need a lot of time and computational resources to
adjust the parameters. In addition, the complexity of
the classification method makes it difficult to under-
stand intuitively why the data has been classified. The
SVM has an advantage in this respect because of the
simplicity of the classification method.

SVM creates a decision function to classify data
from training sets (xi, yi)f gi2 n½ �. The decision function is
represented by the following equation. The boundary
created by f xð Þ=0 is called the classification
boundary.

f xð Þ= vT x+ bð Þ ð1Þ

In SVM, the classification boundary is set so that
the distance called margin between each class across the
classification boundary is the largest. Therefore, SVM
can be treated as the following optimization problem.
C is called the regularization parameter and was set to
1.0 in this work

min
v, b, j

1
2

vk k2 +C
P

i2 n½ �
ji

s:t:� yi vT xi + bð Þø 1� ji, i 2 n½ �
ji ø 0, i 2 n½ �

ð2Þ

Multi-classification method

SVM is essentially a learning method for binary classi-
fication. To construct a multi-class classifier, several

SVMs of this form can be combined. In this work the
one versus one (OvO) method was used for classifica-
tion of multiple classes. This reduces the problem of
classification with several classes to a set of binary clas-
sification problems. In the OvO method, only the data
belonging to class i and class j are extracted, and SVM
classification learning is performed. This method con-
structs k(k � 1)=2 classifiers to classify k classes.

Since the operating sound of contactors varies with
time, the time-varying data obtained by MFCC was
used as training data for the SVM. This makes it possi-
ble to detect not only abnormal sounds caused by faults
but also sound deviations and differences in sound tran-
sitions. In the case of a mechanical fault of the contac-
tor, or of a lack of grease, it is expected that the balance
of the parts is lost, and the shift of the operating sound
and the transition appear. Hence, fault detection by this
method is expected.

Field experiment

To check whether mechanical faults can be classified
by operating sound, tests were conducted using 6.6 kV
contactors. The structure of the contactor is shown in
Figure 1. The contactor has two moving parts, one at
the top and the other at the bottom. The electrode con-
nected to the moving part engage with to and detach
from the fixed electrode to connect and disconnect the
circuit. Figure 2 shows the movement of the compo-
nents when the contactor is closed and opened. The fol-
lowing procedure switches on and off the contactor.

1. The plunger is accelerated by the current flow-
ing through the closing (solenoid) coil. This
causes the upper and lower moving parts to
move downwards and upwards.

2. The opening springs are shortened, and the
moving contact (electrode) contacts the fixed
contact, thus forming a circuit.

3. After the circuit is formed, the current flows
through the holding coil, which attracts the
plunger and continues to form the circuit.

4. The holding coil’s current is stopped, and the
opening spring force returns the moving part to
its original position.

This mechanism is designed to ensure that the circuit is
safely opened in a failure such as a power failure.

In the test, three normal contactors and one dam-
aged contactor were used. The damaged contactor
(contactor A) has a broken bolt in the lower moving
part, although it can be opened and closed. All contac-
tors were installed in the same cabinet. Two micro-
phones were used for data collection and microphone
positions are shown in Figures 3 and 4. Normal data
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was obtained from contactor B, C, and D and fault
data was obtained from the damaged contactor A.
Multiple simulated fault (Lack of grease, Spring weak-
ening, Obstruction, and Improper position pin) data
were also obtained from contactor B. Table 1 shows
the measuring equipment used. Since the contactors

were installed inside the panel, one microphone (micro-
phone1) was placed in front of the contactor outside
the panel, and one microphone (microphone2) was
placed next to the contactor inside the panel. Two
acceleration sensors were installed, one for each of the
upper and lower closing coils, and four current sensors

Figure 1. The structure of the contactor.

Figure 2. Contactor components movement through opening
and closing.

Table 1. Measuring equipment.

Measuring equipment Model Range

Microphone RION UC59 10 Hz–20 kHz
Accelerometer RION PV91C 1 Hz–15 kHz
Current sensor HIOKI CT9691 —
Data recorder HIOKI MR8847A —

Figure 3. Location of measuring equipment and contactors.

Figure 4. Measuring equipment.
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were installed to measure the closing and holding cur-
rent of the upper and lower coils.

The damaged contactor was used and destroyed in
an endurance test carried out in the past to check its
durability. Periodic maintenance was carried out every
60,000 cycles in the test, and after 1.8million cycles, the
bolt leading to the bottom moving part was found to be
broken. The structures of the normal and damaged

contactor used are shown in Figure 5. In the damaged
contactor, the bolt connecting the bottom plunger and
the moving part was broken. The system continued to
operate despite the plunger and moving part being
separated from each other as the accelerating plunger
would contact the moving part to carry it upward.
When released, the components would fall separately.

Mechanisms for simulating each fault is shown in
Figures 6 to 9. In simulated fault 1 (Lack of grease),
the grease applied to the sliding parts of the contactor
was removed. The greased areas are highlighted in
Figure 6. In simulated fault 2 (Spring weakening), a
weakening of the opening spring was simulated. If the
spring is used frequently, it is expected that the spring
will compress over time, and the force will weaken. To
shorten the spring, a tape was applied between the fixed
part and the damper. The thickness of the tape was
varied between 1, 3, 5, and 20mm, and the data for
each case were obtained. In this simulated fault, the
motion of closing is the same as that of the actual fault,
but the motion of opening is different from that of the
actual fault. In the actual fault, when the moving part
is released, it moves up and down repeatedly beyond
the initial position due to the spring force, and then
gradually decays and returns to the initial position.
However, in the case of the simulated fault, the moving
part does not move up and down when it returns to the

Figure 5. The structure of normal and damaged contactor.

Figure 6. Simulated fault 1: Lack of grease.

Figure 7. Simulated fault 2: Spring weakening.
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initial position because the tape is attached, and the
speed instantly becomes zero and the moving part stops
at the initial position. For this reason, only closing data
was used in the verification. In simulated fault 3
(Obstruction), objects were placed between the moving
contact and the fixed contact. The placed objects were
a piece of cloth (1mm thick), a piece of tape (1mm
thick), a piece of rubber (5mm thick), and a piece of
wood (20mm thick). In the case of simulated fault 4
(Improper position pin), the pin connecting the coil

plunger to the moving part was displaced from its
proper position. Even if the pin was displaced, the con-
tactor could be opened and closed.

Examples of time domain representations and power
spectrogram for both healthy and faulty signals are
shown in Figures 10 and 11. The fault data of broken
bolt, lack of grease, and obstruction have an observa-
ble abnormal sound before the blade impact. There is
no significant difference in the other fault data, com-
pared to the healthy case, observable using these
representations.

The data were acquired once every 7 s. Test schedule
is shown in Table 2. Each data was collected for 1 s
from 0.05 s before the control voltage exceeded 50V.
Data were obtained for each switching on and off. In
the building where the contactor was installed, other
equipment than the contactor was also installed, and
the pump for cooling run irregularly, so some of the
data includes the sound of those machines. The inter-
ference loudness was over 75 dB.

Analysis

Classification accuracy

The classification algorithm used in this experiment is
shown in Figure 12. The data obtained in this

Figure 10. Each data signal.

Figure 8. Simulated fault 3: Obstruction.

Figure 9. Simulated fault 4: Improper position pin.
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experiment was divided by k-fold-cross-validation, and
two-thirds of the data was used for training and one-
third for validation. The MFCCs were calculated and
used by the SVM, and the resulting classification model
was used to classify the validation data.

A measure called the recall was used for verification.
Recall is the percentage of fault data that are correctly
predicted as fault. It is expressed by the following equa-
tion using True Positive (TP) and False Negative (FN).
The fault detection accuracy is expressed using TP,
FN, True Negative (TN), and False Positive (FP). The
relationship between TP, TN, FP, and FN is shown in
Table 3 as a confusion matrix.

Recall= TP
TP+FN

ð3Þ

Accuracy= TP+ TN
TP+ TN +FP+FN

ð4Þ

FP is a diagnosis of a fault, even though the equip-
ment is normal. The equipment is fine and there is no
risk of an accident, but the more FPs there are, the less
confidence the maintenance engineers have in the sys-
tem. FN means that faults are missed, increasing the
probability of accidents. In the railway field, this is
known as a wrong side failure.30,31 Since industrial
machines rarely break, there are more normal data than
fault data. If there is a lot of normal data, and the num-
ber of correct answers of normal data (TN) is large, the
accuracy will become high. However, the most impor-
tant thing is not to miss any faults when considering
condition monitoring of industrial machines as the
damage caused by a failure is significant. TP and FN is
more important than TN, therefore, in the condition
monitoring of industrial machines, fault detection
model should be evaluated by recall.

Figure 12. The algorithm for detecting failures from acoustic
data.

Figure 11. Power spectrogram of each data.

Table 3. Confusion matrix.

Predicted fault Predicted normal

Actual fault TP FN
Actual normal FP TN

Table 2. Test schedule.

Date Data type used
contactor

Number of data
(Open + Close)

Sep 2020 Normal B 235
Broken bolt A 682

Jan 2021 Normal C 485
Normal D 475

Feb 2021 Normal B 194
Lack of grease B 664
Spring weakening B 397
Obstruction B 150
Improper position pin B 804
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Table 4 shows the average number of TP, FP, TN,
and FN, and recall for each fault. It is clear from the
table that the recall is high for all faults. Comparing
the results of microphone 1 and microphone 2, it was
found that the recall of microphone 2 installed inside
the panel was higher than that of microphone 1. This
may be because the data from microphone 1, which
was located outside the panel, contained greater levels
of noise, such as that arising from the cooling pump.
However, since the recall of microphone 1 was also
high enough (more than 95%), the influence of noise
on the detecting faults seems to be small.

Figure 13 shows the diagnostic results of the data. It
is revealed that most of the data are accurately diag-
nosed. However, some data corresponding to the lack
of grease and spring weakening faults are classified as
normal, suggesting that the operating sound of these
faults may be similar to the normal. On the other hand,
for broken bolt and improper position pin, the diagnos-
tic accuracy is 100%, suggesting a clear difference in the
operating sound. In this study, each operation data was
verified one by one. Since the fault of spring weakening
and lack of grease progresses gradually, it is highly
likely that the data before and after the verification tar-
get are also fault data. A higher fault detection accuracy
can be expected by verifying multiple data (three to five
operations) instead of diagnosing data one by one.

Conclusion

In this work, MFCCs were extracted from the contac-
tor’s operating sound and used to train the SVM. When

the trained model was used with the validation data, it
was found to classify and diagnose faults with high
accuracy. Experiments and analysis carried out have
shown that this fault detection and diagnosis algorithm
applied to acoustic data is effective for contactors.
More detailed analysis is needed to clarify the charac-
teristics and similarities of the sounds and the effects of
microphone locations.

Future work

This work showed that it was possible to detect and
diagnose contactor faults with a high accuracy using
operating sound. In the future, the transferability of
the fault detection model will be investigated by
obtaining same simulated fault data from multiple
contactors.
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Table 4. Recall of the fault detection.

Fault mode Mic Closing Opening
FN Recall FN Recall

All faults Both 1.3 99.7 6.7 97.2
1 3.3 99.3 11.3 95.2
2 3.0 99.3 8.0 96.6

Broken bolt Both 0.0 100.0 0.0 100.0
1 0.0 100.0 0.0 100.0
2 0.0 100.0 0.0 100.0

Lack of Grease Both 1.0 99.1 1.0 99.1
1 1.3 98.8 3.3 97.0
2 1.0 99.1 2.0 98.2

Obstruction Both 0.0 100.0 0.0 100.0
1 0.0 100.0 0.0 100.0
2 0.3 99.5 0.0 100.0

Improper
position pin

Both 0.0 100.0 0.0 100.0

1 0.0 100.0 0.3 98.7
2 0.0 100.0 0.0 100.0

Spring
weakening

Both 1.7 98.8

1 2.3 98.4
2 1.7 98.8

Figure 13. Diagnostic results.
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