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Key Points:  19 

1. High concentrations of leaf-wax n-alkanes are measured in the South China Sea central basin 20 

2. n-Alkane carbon preference index and hydrogen isotopic composition trace aeolian dust deposition from 21 

higher latitudes to the central basin 22 

3. Aeolian dust may play a significant role in regulating deposition of terrestrial organic matter in the 23 

central South China Sea. 24 

 25 

26 
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Abstract 27 

 Recent time-series from sediment traps show abnormally high chlorophyll-a concentrations and 28 

primary productivity in the oligotrophic central South China Sea (SCS), especially during wintertime. 29 

Here we present new insights from compound-specific hydrogen isotopic analysis of leaf wax n-alkanes 30 

and Sr-Nd isotopes extracted from four basin-wide surface sediment transects. We find that the deepest 31 

surface sediments in the central basin contain the most depleted n-alkane hydrogen isotopes, which is 32 

suggestive of inputs from higher latitude soils in northern China. This is further supported by Sr-Nd 33 

isotopes of the same surface sediments. We propose that aeolian dust is transported by the winter 34 

monsoon and fertilizes the phytoplankton bloom in the central SCS. This process was may have been 35 

enhanced during glacial periods due to a stronger winter monsoon, driving both vertical mixing and 36 

dust transport to the central basin.  37 

 38 

Keywords: n-alkane, leaf wax, carbon and hydrogen isotopes, aeolian dust, Sr-Nd isotopes, South China 39 
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 42 

Plain Language Summary:  43 

 Recent studies observe abnormally high winter primary productivity and nitrate concentrations 44 

in the surface waters of the central South China Sea. However, this is a nutrient limited region of the 45 

ocean, so the drivers of this primary productivity are unclear. Here we analyze leaf wax carbon and 46 

hydrogen isotopes, and Sr-Nd isotopes, at four shallow to deep water sediment transects to trace the 47 

sources of dust and organic matter in the sediments of the central basin. Our results suggest the central 48 

basin sediments receive significant terrestrial inputs of dust and nutrients from northern Asia via long-49 

range aeolian transport (during the winter monsoon). These results give new insights to terrestrial-50 

marine connections and the carbon cycle of the SCS. This process maybe a significant carbon sink in 51 

the present-day and during the past. 52 

 53 

1. Introduction 54 

 The marine biological pump plays an important role in manipulating glacial-interglacial 55 

atmospheric CO2, with the majority of carbon uptake apparently occurring in high latitude oceans such 56 

as the Southern Ocean and subarctic Pacific (Brunelle et al., 2010; Martínez-García et al., 2014). 57 

Recently, Buchanan et al. (2019) used a global marine biogeochemical model to show that the low 58 

latitude ocean could be as important as high latitude locations for regulating atmospheric CO2 during 59 

glacial periods, due to Fe-induced stimulation of dinitrogen (N2) fixation, strengthening the biological 60 

pump, and ultimately causing CO2 drawdown during glacial periods. This modelling work is consistent 61 

with observations from ocean sediments cores that large quantities of sediments enriched in organic 62 

carbon are preserved in continental seas and basins along continental margins at low latitudes (Berner, 63 

1982; Hedges and Keil, 1995), suggesting an important role in the global carbon cycle (e.g., Dai et al., 64 

2013; Liu et al., 2010). 65 

 The South China Sea (SCS) is the largest marginal sea of the Pacific Ocean. It receives more than 66 

700 million metric tons of fluvial sediments annually from surrounding rivers (Liu and Stattegger, 2014). 67 

However, recent evidence highlights anomalously high phytoplankton distributions in the central SCS 68 

where fluvial input is usually considered to be insignificant (Ma et al., 2013), indicating the central SCS 69 

could be a significant carbon sink (Hung et al., 2020). In particular, satellite observations show 70 

phytoplankton blooms, indicated by anomalously high concentrations of Chlorophyll-a, in the central 71 



SCS during winter seasons (Ma et al., 2013; Ma et al., 2019). Export production from phytoplankton 72 

blooms contributes a major source of organic matter (OM) to sediments. Sinking particle fluxes 73 

including particulate organic matter (POM), calcium carbonate (CaCO3), opal, and lithogenic matter 74 

from long-term sediment traps show increased transportation and accumulation of biogenic materials 75 

during the winter, within the central basin, compared with northern shallower traps (Li et al., 2017; Ma 76 

et al., 2019; Priyadarshani et al., 2019; Zhang et al., 2019). Several ‘bottom-up’ driving mechanisms of 77 

this phenomenon have been proposed, including the intrusion of Kuroshio surface waters (Hung et al., 78 

2007) and mesoscale eddies (Li et al., 2017) during the winter. However, the upwelling events induced 79 

by Kuroshio intrusions and meso-scale eddies only account for about 20% of total deposition observed 80 

in sediment traps between July 2012 and April 2013 (Zhang et al., 2019). Consequently, modern 81 

observations of enhanced winter primary productivity in the central SCS requires an additional 82 

mechanism for nutrient delivery. 83 

One such potential driving mechanism is the ‘top-down’ delivery of dust, loaded with nutrients, 84 

from higher latitudes by the East Asian Winter Monsoon (EAWM), which would stimulate nitrogen 85 

fixation and the biological pump. Tracers for aeolian dust in marine sediments include minerals (Blank 86 

et al., 1985; Liu et al., 2015), chemical components (Mcgee et al., 2016; Uematsu et al., 1983) and 87 

terrestrial organics (Bendle et al., 2007; Bendle et al., 2006; Boreddy et al., 2017). Clay minerals and 88 

grain sizes as well as chemical components have been discussed as possible input tracers for the SCS 89 

(Boulay et al., 2007; Liu et al., 2016), but the mixed signal of the fluvial input, deep water current 90 

transportation through Luzon strait, and/or the aeolian dust has made it difficult to confidently appoint 91 

the sources of sediments to the central SCS.  92 

The molecular and isotopic composition of leaf wax n-alkanes in aerosols has been widely used to 93 

evaluate sources and pathways of airborne dust (Bendle et al., 2007; Ohkouchi et al., 1997; Schefuß et 94 

al., 2003). For example, the carbon isotopic composition of plant wax n-alkanes has been used to map 95 

the distribution of C3/C4 plants in source regions, and to decipher variations in vegetation in the 96 

sediment record throughout the Quaternary (Jia et al., 2012; Li et al., 2015). Moreover, the δ2H values 97 

of modern leaf wax n-alkanes are well correlated with the δ2H of meteoric water at latitudinal scales 98 

(Rao et al., 2009) and are increasingly used in palaeohydrological reconstructions (Huang et al., 2018; 99 

Thomas et al., 2014). The δ2H values and carbon preference indices (CPIs; ratio of odd-to-even chained 100 

n-alkanes) of plant wax n-alkanes in East China surface soils exhibit a strong dependence on latitude 101 



and the meteoric δ2H line (Rao et al., 2009). The SCS region is strongly influenced by the East Asian 102 

Monsoon, but whether the δ2H values of n-alkanes from surface sediments can be used to constrain 103 

sediment sources in the deep basin, which sits beyond the reach of most fluvial inputs, is still unknown.  104 

We argue that the SCS represents a valuable research opportunity: local fluvial inputs are largely 105 

captured on the continental shelf, whilst the middle of central basin (>4000m) sits beyond the reach of 106 

most fluvial inputs. Thus, the deep SCS may capture a broad regional signal of aeolian dust inputs 107 

(relatively uncontaminated by fluvial or biogenic factors) from a position proximal to the Asian 108 

continent. We conduct a basin-wide survey of leaf wax molecular and isotopic distributions and 109 

radiogenic Sr-Nd isotopes in the surface sediments of the SCS, and contrast this data with observations 110 

and sedimentary of plankton groups in the SCS. This synthesis leads us to infer an increasing biological 111 

pump for the anomalous wintertime phytoplankton bloom in the SCS on glacial-interglacial timescales.   112 

 113 

2. Samples and Methods 114 

2.1 Sampling sites  115 

A total of 62 surface sediment samples were collected from the SCS (Fig. 1), with water depths 116 

ranging from 30 to 4405m. The sampling transect therefore allows a comparison of the preservation of 117 

terrestrial organic matter between shallow and deep-water sediments. The samples were collected using 118 

a deep-sea sediment grab sampler or a box corer (0-5cm) and stored at -20°C prior to analysis.  119 

2.2 TOC and Sr-Nd isotopic compositions analysis 120 

For the TOC analysis, 1 gram sediment was decalcified with 2M HCl at room temperature for 24h, 121 

then rinsed with pure water until pH = 7. Samples were freeze dried and transferred into tin capsules, 122 

then analyzed by Elemental Analyzer. For the Sr-Nd isotopes analysis, 20 samples were digested in 123 

Teflon bombs with mixed agents of double distilled HNO3 and HF acid at 190 °C for 48h. Then, samples 124 

were detected using a Triton T1 thermal ionization mass spectrometer (TIMS) and a Neptune Plus multi-125 

collector ICP-MS. The measured 143N/144Nd and 87Sr/86Sr ratios were normalized to 146Nd/144Nd = 126 

0.7219 and 86Sr/88Sr = 0.1194, respectively. During the analysis, BCR-2 standard gave 87Sr/86Sr= 127 

0.704989 ± 8 (2σ) and 143N/144Nd=0.512644 ± 2 (2σ). Nd results are calculated as ɛNd(0) = 128 

[((143N/144Nd)/0.512638)-1] × 10000, using the chondritic uniform reservoir value given by Jacobsen 129 

and Wasserburg (1980). 130 



2.3 Lipid extraction and analysis.  131 

Samples were freeze dried and homogenized with a pestle and mortar, then subjected to a 132 

methodology modified from Yang et al. (2014). Samples were ultrasonically extracted with an azeotrope 133 

of dichloromethane: MeOH (v/v 9:1) 5 times. All extracts were combined and collected after 134 

centrifugation. The combined extracts were concentrated to 1-2 mL using rotary evaporation and dried 135 

under a flow of N2 gas. The total lipid extract was fractionated with n-hexane and MeOH into an apolar 136 

fraction (containing the n-alkanes) and a polar fraction. 137 

n-Alkanes were detected and identified by an Agilent 7890 gas chromatograph and 5975A mass 138 

spectrometer (GC-MS) equipped with a DB-5MS capillary column (60m × 0.25mm × 0.25µm). The 139 

alkane fraction was injected at a programmed temperature ramp of 3 °C/min-1 from 70 to 300 °C and 140 

held at 300 °C for 30 min. Relative compound abundances were calculated by comparing corresponding 141 

MS (TIC) peak areas with internal standards of known concentration. Stable carbon and hydrogen 142 

isotope compositions of individual n-alkanes were determined followed the program of Huang et al. 143 

(2014) using a Finnigan Trace GC instrument attached to a Finnigan Delta Plus XP isotope ratio mass 144 

spectrometer. Duplicate analyses were used to confirm that the standard deviations of leaf wax carbon 145 

and hydrogen isotope determinations were better than ± 0.5‰ and 5‰ respectively. The δ13C and δ2H 146 

values are reported in the delta notation (‰) relative to Vienna Pee Dee Belemnite (VPDB) and Vienna 147 

Standard Mean Ocean Water (VSMOW), respectively. 148 

 149 

3. Results  150 

3.1 TOC and Sr-Nd isotope compositions 151 

TOC values range from 0.12% to 0.82% (average 0.43%) in the SCS, and C/N values vary from 152 

1.8 to 8.7 (average 6.3). Both TOC and C/N decrease with distance offshore, with high values in the 153 

northern SCS, representing the higher organic matter deposits from fluvial inputs. However, in the 154 

central basin, the TOC and C/N show an increase, with values comparable to those of the northern SCS 155 

(Fig. 2A), suggesting a distinct source of terrestrial organic matter. 156 

The 87Sr/86Sr and 143Nd/144Nd ratios range from 0.709161 to 0.712215 (average 0.712125) and from 157 

0.512058 to 0.512425 (average 0.512154), respectively. ɛNd(0) values range from -11.31 to -4.15 158 

(average -9.45). These values are consistent with previously published data of surface sediments from 159 



the SCS (Liu et al., 2015, and references therein). Three samples from the northern and eastern SCS 160 

with the highest ɛNd(0) (-6 to -4) derived from Luzon island (Liu et al., 2015).  161 

3.2 Leaf wax molecular and isotopes distributions  162 

The surface sediments contain n-alkanes characterized by a high odd-over-even carbon number 163 

ranging in carbon number from C16 to C35, with C31 dominant (Fig. S1). This is a clear signature of 164 

terrestrial higher plant origin (Bush and McInerney, 2013; Eglinton and Hamilton, 1967). The 165 

concentrations of total long chain n-alkanes show large variations, with anomalously high 166 

concentrations in the deep central basin (Fig. 2B). CPI is typically around 2 in shallow surface sediments, 167 

but it increases abruptly to 8 in the deepest basin (Fig. 2C). Concentrations of long chain diols (LCDs) 168 

(algal biomarkers) range from 0.1 to 32.7 mg/g TOC dry sediments (Fig. 2D; Yang et al., 2020). It is 169 

notable that both n-alkanes and planktonic LCDs comprise an enhanced proportion of the total organic 170 

carbon (TOC) in the surface sediments deposited in the central basin, with TOC-normalized 171 

concentrations up to three orders of magnitude higher in deep sediments than in shallow sediments (Fig. 172 

3A-B).  173 

Our n-alkane δ13C values shift from -29 to -31‰ from the northeastern coast to the central basin 174 

(Fig. 2E-F). The values in the deep central basin are similar to the northern SCS, and are highly variable 175 

(Fig. 3E). n-Alkane δ2H values vary from -140 to -160‰ in the northern SCS (Fig. 2G-H), but are 176 

depleted in the deep central basin, with minimum values around -200‰. The lowest values (-190 to -177 

200 ‰) are distinct from the values observed in both Southern China catchment soils and the shallow 178 

sediments (Fig. 1, Pelejero et al., 2003; Rao et al., 2009).  179 

 180 

4. Discussion 181 

4.1 Sources of surface sediments in the central SCS 182 

The Sr-Nd isotopes from SCS surface sediments and surrounding fluvial drainage systems have 183 

been well studied and were used to identify the sediment source provinces (Liu et al., 2016 and 184 

references therein). Three samples from the northern and eastern SCS have a more positive ɛNd(0) 185 

falling within the variation range of the Luzon island (Liu et al., 2016), indicating the possible influence 186 

of northern Luzon Arc material. The surrounding fluvial inputs have higher values of 87Sr/86Sr (>7.2, 187 

Liu et al., 2016), which are distinguishable from our deep-water sediments, except for two samples 188 

from the Red River. However, the clay mineral assemblages showed limited influence of the Red River 189 
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on the SCS central basin (Liu et al., 2016). Our data shows that the more positive ɛNd(0) and lower 190 

87Sr/86Sr isotopes from the central basin sediments are not consistent with, and thus may not originate 191 

from the surrounding fluvial drainage systems.  192 

Instead, the 87Sr/86Sr and ɛNd(0) isotopes from the central basin are consistent with Asian dust 193 

regions, suggesting a source relationship (Fig. 4A). This result is in line with the geochemical analyses 194 

of sediments from Yongxing island in the SCS, which received significant high-latitude Asian aeolian 195 

dust inputs (Liu et al., 2014). Grain size of the sediments might exert an impact on the Sr-Nd isotopes 196 

as the Sr isotopic compositions are known to be strongly affected by the weathering, transportation and 197 

deposition (Chen et al., 2007). The grain size of the sediments ranges from 0-400 µm (average medium 198 

diameter >5 µm) in the northern and eastern SCS, but from 0-40 µm (average medium diameter ~ 3µm) 199 

in the central SCS basin. Comparison of the grain size fractions suggests the Asian dust (<5 µm) falling 200 

in the range of the SCS central basin is mainly contributed by the isotopic region B (i.e, the northern 201 

margin of Tibetan Plateau) and C (i.e., the Ordos Plateau) (Fig. 4B). A calculation based on a simple 202 

mass balance suggests 1:4 for the relative contribution of the isotopic regions B and C to the SCS central 203 

basin (Fig. 4B).  204 

n-Alkane CPIs of ~2 are consistent with those previously observed in shallow sediments from the 205 

northern SCS (about 1.4 to 2.9 from Xu et al., 2014), and somewhat lower than those from surrounding 206 

surface soils in Southern China ( ca. 4, Rao et al., 2009; Luo et al., 2012), as well as northern SCS 207 

Holocene sediments (ca. 2.3, Pelejero, 2003). Lower CPIs in marine sediments than in source catchment 208 

soils suggest microbial degradation during riverine transportation (Ganeshram et al., 2011; Sun et al., 209 

2005). However, in the deepest SCS sediments, CPIs >3 are observed (Fig. 3C), with the highest CPI 210 

measured approaching 8. Such high values are not observed in any of the shallow water settings 211 

(Pelejero, 2003; Xu et al., 2014), suggesting that the terrestrial organic matter observed in this deep 212 

basin setting is unlikely to be of riverine origin. CPIs of surface soils in eastern and northern China 213 

show a strong relationship with latitude, with elevated values (> 5) observed in higher latitudes (Rao et 214 

al., 2009). This high latitude CPI signature transported from the Asian dust area is also observed in the 215 

deep-sea surface sediments collected from the Central Pacific (Ohkouchi et al., 1997). Comparison of 216 

CPI values from SCS surface sediments with latitudinal soil profiles (Fig. S2), highlights that the high 217 

CPI values (ca. 8) in the deep basin match source locations at mid-high latitudes (about 40 °N) (Fig. 218 

4C), where the loess plateau (with average CPI at 12.3; Liu and Huang, 2005; Luo et al., 2012) and 219 



Gobi desert are located. Although n-alkane CPI covaries with various different environmental factors 220 

(latitude, aridity and vegetation types) globally (Luo et al., 2012), latitude is still significant and 221 

correlates broadly with CPI values (Fig. S2), with higher CPI in high latitudes. We propose the 222 

distinctive CPI signature of the deepest SCS records are related to enhanced terrestrial organic matter 223 

contributions via aeolian dust transported directly from vegetation or soils (Chikaraishi and Naraoka, 224 

2003; Ning et al., 2005).  225 

n-Alkane δ2H values in East China surface soils also exhibit a strong dependence on latitude, with 226 

lower values occurring at higher latitudes (Fig. 4D) (Rao et al., 2009). The δ2H of southern Chinese 227 

surface soils are around -160‰, consistent with northern SCS surface sediment values. However, the 228 

δ2H values in the central basin are more depleted and closer to higher latitude soil values (according to 229 

the linear correlation between δ2H and latitude (Fig. 4D)), supporting the above suggestion that n-230 

alkanes deposited in the central SCS are sourced from high-latitude dust inputs. The trend with water 231 

depth for n-alkane δ13C values in the SCS is more variable than for δ2H. n-Alkane δ13C is used to trace 232 

the relative contribution of C3 and C4 plant types. The n-alkane δ13C through the SCS thus likely records 233 

the C3/C4 plant signal in terrestrial inputs to the SCS. The n-alkane δ13C in the SCS surface sediments 234 

is consistent with inputs from a diverse and mixed distribution of C3 and C4 plants extending from 235 

Southeast Asia throughout mainland China (Still et al., 2009). Thus in this context δ13C values are not 236 

as diagnostic as the corresponding δ2H values and CPIs for indicative of source regions. 237 

Comparison of n-alkane δ2H and CPI data from the central basin with the available soil n-alkane 238 

data (this study and Rao et al., 2009, Fig. 4C-D), suggests significant soil inputs from >40 °N, ca. 239 

2000km to the north of the SCS region. High latitude arid and semi-arid regions in China and Asia, 240 

especially the Taklimakan desert (located at ca. 35 to 45 °N), are major sources of atmospheric dust in 241 

the Northern Hemisphere (add ref). During the winter monsoon, decreased winter precipitation allows 242 

more aeolian dust transport to the SCS, while only minimal inputs of entrained dust occurs during the 243 

summer monsoon, due to heavy summer precipitation and rainout of dust closer to source regions 244 

(Boulay et al., 2003; Tian et al., 2005). We conducted a seasonal back trajectory air masses model which 245 

simulated the seasonal organic matter transport pathway to the central SCS (13°N, 115°E). The result 246 

shows a larger amount of dust transport from central Asia during the winter season compared to the 247 

summer season (Fig. S3), which is consistent with the results from Yongxin island (Xiao et al., 2017). 248 

Our n-alkane isotopic signatures (low δ2H values) are consistent with enhanced delivery of aeolian dust 249 
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to the central SCS by the winter monsoon. The lipid profile results agree with the 87Sr/86Sr and ɛNd(0) 250 

evidence, both confirm dust inputs from high latitude Asian source regions to the deep central basin of 251 

the SCS. 252 

 253 

4.2 Enhanced Aeolian dust input to the SCS central basin and its implications 254 

Our results show both terrestrial leaf wax n-alkane and LCD concentrations increase in the central 255 

basin compared to northern SCS. Trace metal (Sr-Nd) isotopes from the same stations also constrain 256 

the original sources to predominantly mid-latitude Asian deserts (Fig. 4A-B). It is interesting to note 257 

that time-series sediment trap data from the SCS quantified the effects of the different processes on 258 

sinking particle fluxes, and highlighted that the northeast winter monsoon and associated aerosol 259 

deposition events played key roles in sediment deposition during the winter monsoon period (58.7%, 260 

Zhang et al., 2019, from October to April). Consequently, our investigations on surface sediments - and 261 

the reported time-series trap data - both indicate an important contribution of Asian dust to the SCS 262 

central basin. 263 

Of significance is that Asian dust inputs are elevated during the winter season due to the occurrence 264 

of the enhanced Winter Asian Winter Monsoon. This is of importance for connections to the carbon-265 

cycle, via processes such as fertilization of phytoplankton and the rapid deposition of organic matter. 266 

Both n-alkane and LCD concentrations are elevated in the surface sediments of the central basin 267 

compared with the northern SCS, and high n-alkane CPI values indicate relatively fresh organic matter 268 

deposition to the deepest water sites in the central SCS. These results are consistent with enhanced 269 

satellite Chl-a concentration and organic matter collected from time-series sediment traps in the central 270 

basin (Li et al., 2017; Ma et al., 2019; Priyadarshani et al., 2019; Zhang et al., 2019). Seasonal time-271 

series data analysis shows higher OM deposition during the winter season when EAWM conditions 272 

prevail.  273 

A “bottom-up” mechanism driving phytoplankton blooms and biomass in the marginal, stratified 274 

regions of the SCS has been well characterised (Chen, 2005; Tang et al., 1999; Li et al., 2017). During 275 

the winter season, the frequency of cold meso-scale eddies increases in the central SCS, which drives 276 

nutrient-rich subsurface waters to the surface and stimulates phytoplankton blooms in the oligotrophic 277 

SCS central basin (Chen, 2005; Tang et al., 1999). Coupled with the meso-scale eddies during winter 278 

season, vertical mixing in the upper water column is strongest in the central basin, and is about four 279 



times deeper in winter than is seen in the rest of the year (Lu et al., 2020; Qu, 2001). Increased vertical 280 

mixing drives higher concentrations of nitrate to the surface layer and fertilizes the phytoplankton 281 

bloom in the central basin. This mechanism explains the higher nitrate concentration and primary 282 

production in the central basin compared to the northern SCS observed in satellite data. Logically, 283 

increased carbon export to the SCS during the winter monsoon will lead to the deposition of an outsized 284 

proportion of these sediments during that time interval. This bottom-up mechanism successfully 285 

explains the abnormal high chl-a and high OC fluxes at the central basin, but cannot reconcile the high 286 

terrestrial sourced n-alkane distribution in the central SCS. 287 

High concentrations of high CPI n-alkanes which are depleted in δ2H demonstrate the importance 288 

of aeolian dust deposition in the transport of organic matter to the central SCS (Fig. 4C-D). We propose 289 

a “top-down” mechanism could be essential to explain the observed distributions of n-alkane and long 290 

chain diols in the surface sediments of the central SCS basin. Windborne dust particles containing both 291 

lithogenic material and land-derived lipids are significant in the rapid transfer of newly fixed organic 292 

carbon from the sea surface to the bottom (Ittekkot et al., 1992). The incorporation of minerals into 293 

biologically formed aggregates ensures the rapid deposition of fresh n-alkanes with higher CPI in the 294 

central basin. Meanwhile, modern observation studies suggest Asian dust events could enhance 295 

phytoplankton growth and primary production in Chinese marginal seas (Tan et al., 2011; Tan et al., 296 

2012; Wang et al., 2012), which further supports evidence from TOC, carbonate, microfossil and lipid 297 

profiles studies (Thunell et al., 1992; Huang et al., 1997a; Huang et al., 1997b; Shiau et al., 2008; Ren 298 

et al., 2017). Long time in situ studies revealed aerosol deposition of dissolved inorganic nitrogen to 299 

the SCS, especially in the basin area, was approximately 20% on average (Kim et al., 2014; Shen et al., 300 

2020; Gao et al., 2020). This atmospheric N deposition could support the primary production in the 301 

oligotrophic water of the SCS, which is characterized by limited nitrate.  302 

Dust regulated iron supply might stimulate the nitrogen fixation, and is crucial in linking the 303 

biological cycling of iron to the assimilation of major nutrients and carbon fixation (Tagliabue et al., 304 

2017). A recent model study shows Fe-induced stimulation of N2 fixation pathways could drive a 305 

considerable uptake of carbon dioxide in low latitude oceans during dusty glacial conditions (Buchanan 306 

et al., 2019). Gaye et al. (2009) proposed the N2 fixation contributed up to 20% to settling particle 307 

nitrogen in the deep SCS, about twice the estimated contribution in the northern SCS (Kao et al., 2012; 308 

Wong et al., 2007; Zhang et al., 2015). However, both foraminifera-bound nitrogen isotope records and 309 
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ammonia oxidizing archaea records from the SCS (Ren et al., 2017; Dong et al., 2019) reconstruct lower 310 

N2 fixation rates during glacial periods, despite the observed increase in dust deposition and productivity. 311 

Thus the role of Fe fertilization in regulating the SCS carbon and nitrogen cycles requires further 312 

investigation.   313 

In summary our evidence from terrestrial leaf wax (n-alkane) and marine phytoplankton (LCDs) 314 

biomarkers is consistent with sediment trap time-series data (ref) and suggests a role for aerosol dust 315 

deposition in the winter phytoplankton blooms as observed by satellite in the central basin of the SCS 316 

(Ma et al., 2013). During the winter monsoon it appears that dust supplied from higher latitudes and 317 

vertical oceanic mixing supplies higher nutrients and triggers new production in the central SCS. Our 318 

results are also important for paleoclimate reconstructions, as this process would be expected to deliver 319 

enhanced supplies of terrestrial, nutrient baring, dust during the glacial periods (Shiau et al., 2008; Ren 320 

et al., 2017). However, precise mechanisms and the relative importance of, for example, Fe fertilization 321 

in currently ambiguous. Thus more work, including in-situ monitoring in the central basin and model 322 

simulations are required to elucidate mechanisms, quantify fluxes and understand the importance of 323 

dust deposition at the air-water interface in low latitude marginal seas.   324 

 325 

5. Conclusions  326 

 Multiple lines of evidence based on high n-alkane CPI, depleted δ2H, and Sr-Nd isotope values 327 

in surface sediments highlight the transport and deposition of dust from high latitude regions to the 328 

central SCS basin. We conclude aeolian dust from northern China is transported by the East Asia Winter 329 

Monsoon and contributes (along with vertical mixing of nutrients) to the triggering of the winter 330 

phytoplankton in the central SCS. The intimate biotic-abiotic association trigged by dust supply could 331 

accelerate the organic deposition rate and thus has implications for the biological pump. Our results 332 

shows that nitrogen fixation in the marginal SCS central basin could be as important as vertical mixing, 333 

both in increasing primary production and for high sediment deposition rates. Thus the SCS central 334 

basin could be a significant, but hitherto overlooked, carbon sink during the present day and glacial 335 

periods, which merits further investigation.  336 

 337 

 338 
 339 
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Figure Captions 549 
 550 
Fig. 1 Distribution of samples used in this study: a) new surface sediment analyses from the South China 551 
Sea (red dots); b) surface soil samples previously reported by Rao et al. (2009) and Luo et al. (2012) in 552 
the Chinese mainland. The frequency histograms show the geographical distribution of the hydrogen 553 
isotopic composition of the C31 n-alkane in : 1) northeastern China (purple squares, Rao et al., 2009); 554 
2) the shallow and central SCS (red circles, this study) and; 3) the Loess Plateau and Gobi deserts (blue 555 
circles, this study). The sequential color gradient (from red to blue) represents heavy to light hydrogen 556 
isotope values. 557 
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Fig. 2. Water depth distribution of molecular and elemental parameters measured in SCS surface 576 
sediments. Marked changes are notable at water depths below 4000 m. a) C/N ratio, b-c) Concentrations 577 
of n-alkanes and CPI values, d) Concentrations of long chain diols, e-h) Odd (C29 and C31) and even 578 
(C30 and C32) chains hydrogen and carbon alkane isotopes.  579 
 580 
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 595 
Fig. 3 Spatial distribution of molecular and elemental parameters from the northern to the central basin of 596 
the SCS. Distinct values (e.g. high n-alkane concentrations, high CPI, isotopically light) are highlighted in 597 
the central basin. a-b) Concentrations of n-alkane and long chain diols, c) n-alkane CPI value, d) C/N ratio, 598 
e-f) carbon and hydrogen isotopes of C31 n-alkane. The shaded circle roughly show the deep basin with water 599 
depth deeper than 2400m.   600 
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 624 
Fig. 4 Latitudinal gradients for Sr-Nd isotopes, CPI values and hydrogen isotopes of n-alkanes. These 625 
parameters are used to infer the source of dust which has been long-range transported to the deep, central 626 
basin of the SCS. A) Correlation between εNd and 87Sr/86Sr of SCS surface sediments, modified from 627 
Liu et al. (2014). Shaded areas show potential sources for material in the central basin. Data of the Pearl, 628 
Red and Mekong rivers from Liu et al. (2007); northern Pacific ocean dust samples are from Pettke et 629 
al. (2000). Luzon Arc and Luzon Island samples are from Defant et al. (1990), Philippine Sea samples 630 
are from Jiang et al. (2013), Loess samples are from Chen et al. (2007). B) Sr-Nd isotopic compositions 631 
of ancient dust falls in North Pacific, and SCS central basin, together with the mixing curve between 632 
the <5 µm silicate fractions of the Chinese deserts (Chen et al., 2007) and the volcanic end-member 633 
used in Biscaye et al. (1997). The grey dashed lines means the mixing fraction based on end member B 634 
and C C), the variation of the CPI values of the n-alkanes of the surface soils from different latitude in 635 
East China reported by Rao et al. (2009). The dashed line in red shows the maximum of CPI values 636 
identified in marine sediments of the deepest water in SCS, with the interception with the regression 637 
line (red line) showing the potential dust source; D), the variation of the deuterium content in meteoric 638 
water (the original data are available at the website of Global Network of Isotopes in Precipitation 639 
(GNIP), http://isohis.iaea.org) and in n-alkanes of surface soils in East China reported by Rao et al. 640 
(2009). The lowermost perpendicular red dashed lines indicate the most depleted 2H values of the n-641 
alkanes identified in marine sediments of the deepest waters in the SCS. The interception with the 642 
regression line (dashed line in blue) shows the general latitude of the potential dust source.  643 
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