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ABSTRACT: Controllable higher-order assembly is a central aim of macromolecular
chemistry. An essential challenge to developing these molecules is improving our
understanding of the structures they adopt under different conditions. Here, we demonstrate
how flow linear dichroism (LD) spectroscopy is used to provide insights into the solution
structure of a chiral, self-assembled fibrillar foldamer. Poly(para-aryltriazole)s fold into
different structures depending on the monomer geometry and variables such as solvent and
ionic strength. LD spectroscopy provides a simple route to determine chromophore alignment
in solution and is generally used on natural molecules or molecular assemblies such as DNA
and M13 bacteriophage. In this contribution, we show that LD spectroscopy is a powerful tool
in the observation of self-assembly processes of synthetic foldamers when complemented by
circular dichroism, absorbance spectroscopy, and microscopy. To that end, poly(para-
aryltriazole)s were aligned in a flow field under different solvent conditions. The extended
aromatic structures in the foldamer give rise to a strong LD signal that changes in sign and in
intensity with varying solvent conditions. A key advantage of LD is that it only detects the large
assemblies, thus removing background due to monomers and small oligomers.

Bl INTRODUCTION

Aromatic foldamers, which adopt predictable, well-defined
helical conformations in solution, have significant potential for
applications in biotechnology as they bear a close resemblance
to natural helical systems, but are amenable to low-cost
commercial scale production.' ™ They are convenient building
blocks for preparing supramolecular assemblies such as
nanocylinders by stacking foldamer helices into columns.”’
Application areas to date range from molecular recogni-

. 8—10 . . . 8,11 . e 12
tion artificial ion channels,” " and virus mimics ~ to .
i . . 13,14 ’ promote assembly, and we found using absorbance, CD, NMR,
asymmetric catalysis.

A key element of the design-build-test cycle for macro- and microscopy that they display a highly ordered "self-
molecular assemblies, such as the ones formed by foldamers, is assembly process as solvent transitioned from dimethylforma-

produces increased upfield shifts and signal broadening (via
'"H NMR spectroscopy) or enhanced hypochromicity (via
absorbance spectroscopy), while the formation of solution
stable-stacked helices can be visualized via cryo-transmission
electron microscopy (cryo-TEM).'>***” These approaches are
well-established and provide a rich description of the foldamer
structure.

The poly(para-aryltriazole) [P(p-AT), Figure 1] foldamers
synthesized by Pfukwa et al,'” was designed with features to

a detailed understanding of the higher-order structures that
they form. For chiral structures such as those in this study, the
helical folding and self-assembly are normally characterized by
NMR,">™* fluorescence,”>*' UV-—visible absorbance,'® and
circular dichroism (CD) spectroscopy”>>® for the solution
state and X-ray crystallography'®** for the solid state. The
unfolded and folded oligomers/polymers give different
spectroscopic signals. For example, in foldamers with aromatic
moieties involved in the structure, helical folding is
characterized by the upfield shifting of aromatic protons (‘H
NMR),"® the appearance of excimer-like fluorescence
emission,”””" or hypochromicity in absorbance spectra. If an
excess in one handedness of the helical conformation is
induced, a Cotton effect is observed in the CD spectrum in the
chromophore region of the foldamer backbone.'>*>**¢
Further assembly of the foldamer helices into columns

© 2021 The Authors. Published by
American Chemical Society
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mide (DMF) to water. At a low water content, the polymer
adopted an unstructured random coil. As the water content
was increased, a series of helical structures formed, which we
described as first “loose spring”, then “tight coil”, and then long
and thin helical columns. The assembly process was
determined to be a thermodynamically controlled formation
of well-defined rod-shaped nanostructures in water/DMF

mixtures, with >40% water.'>*®

Received: November 2, 2021
Accepted: November 15, 2021
Published: November 24, 2021

https://doi.org/10.1021/acsomega.1c06139
ACS Omega 2021, 6, 33231-33237


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jake+G.+Carter"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rueben+Pfukwa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Liam+Riley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="James+H.+R.+Tucker"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alison+Rodger"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Timothy+R.+Dafforn"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bert+Klumperman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bert+Klumperman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.1c06139&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06139?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06139?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06139?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06139?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06139?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/6/48?ref=pdf
https://pubs.acs.org/toc/acsodf/6/48?ref=pdf
https://pubs.acs.org/toc/acsodf/6/48?ref=pdf
https://pubs.acs.org/toc/acsodf/6/48?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.1c06139?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/

ACS Omega

http://pubs.acs.org/journal/acsodf

n P(p-AT) R-1

N° O
OJ\/O\/\O/\/OM\O/

n P(p-AT) S-1

Figure 1. Structural formulae of the foldamers P(p-AT) R-1 and P(p-AT) S-1. Blue arrows indicate approximate directions of EDTMs for the

monomer units.

However, molecular-level details such as the relative
orientations of chromophores within a structure are difficult
to determine using NMR, CD, and absorbance spectroscopy. It
was also unclear to what extent the measured data could be
ascribed solely to the target-extended helical structures or
whether monomers and oligomers were also contributing to
the observed spectra. Since our previous electron microscopy
(EM) images showed that the P(p-AT) foldamer assemblies
possess very high aspect ratios and suggested that they might
be rigid, we decided to explore what information could be
deduced from flow linear dichroism (LD). LD is a measure of
the difference in the absorbance of two perpendicular linearly
polarized beams of light (eq 1).*”*° LD data provides a
significant extra constraint on what types of molecular
structures are possible, so combining microscopy, absorbance,
CD, and LD takes us a significant step towards being able to
deduce molecular-level structures from spectroscopic and
microscopic data. Specifically, CD reports on local chiral
structures that cause local coupling of (electric and magnetic)
transition dipole moments. Absorbance and LD are also
dependent on locally coupled dipole moments for locations of
bands and intensities, but LD is also dependent on the net
orientation of those transition moments, so it gives information
about local structures relative to the long axis of any structure.

LD =A|| - A (1)

The absorbance of light is dependent on the orientation of
the electron dipole transition moments (EDTMs) of the
molecule relative to the electric field of the light, and therefore,
the difference in absorption gives rise to a characteristic
spectrum based on the identity of the chromophores and their
orientation within an assembly.g’ofg’2 In most cases, the long
axis of the assembly is aligned along the orientation axis. If an
EDTM is oriented more parallel than perpendicular to the
orientation direction, a positive LD signal is observed. On the
other hand, a more perpendicular EDTM results in a negative
LD signal. When the EDTM is at an angle a to the long axis,
the LD may be expressed as shown in eq 2.

o =D é5(3 cos’a — 1)

Aiso 2 (2)

where LD" is the reduced LD and S is the orientation factor of
the EDTM (1 being perfectly orientated and 0 being a random
orientation).*”*" When « is equal to 54.7°, the “magic angle”,
the LD signal is always 0. As preferential orientation of the
EDTMs of the structure is vital for this analytical technique,
the molecules making up the structure must be aligned to give
a signal. The physical properties of a structure are the key to
determining which method is used to orientate the molecule.
Rigid or semiflexible polymers/assemblies of molecules in
solution may be aligned using laminar flow with the long axis
of the structure being parallel to the flow of the solution.
Through the use of a micro-Couette cell made of quartz, it is

possible to align microliters of the sample and permit the
transmission of light to record the LD signal.””**~>* This
means flow LD spectroscopy produces strong signals for
assemblies with high aspect ratios such as filamentous
bacteriophage (eg, M13)** and DNA.** Small molecules
that are unable to be aligned through shear flow, due to an
insufficient force exerted on the molecule, are instead able to
be aligned through their adsorption onto a polymer film which
is mechanically stretched. The stretching aligns the long axis of
the molecule parallel to the stretch direction.””” =

While the use of LD as a tool for studying the orientation of
chromophores in biopolymers such as DNA, protein
assemblies, and MI13 bacteriophage is well estab-
lished,>'»*3*%35%7%5 45 far as we are aware, flow LD has
extremely limited use for the analysis of synthetic polymers.
This is partly because synthetic polymers do not usually form
secondary and tertiary structures such as double helical DNA
and coiled-coil, cross-beta, or protein fibers which enhance
biomolecular polymer rigidity and hence flow orientation.

In this study, we used LD to probe the secondary and
tertiary structures formed by the two chiral enantiomeric, P(p-
AT) S-1 and P(p-AT) R-1, foldamers developed by Pfukwa et
al,'> which have previously been shown by CD and EM to
form a range of different secondary and tertiary structures. We
demonstrate that LD can provide unique insights into the
structure and assembly process for the extended foldamer
structures which can be used to optimize future foldamer
designs. This data lays the foundations for the use of the
foldamers in bioassays developed using LD as the detector.*

B RESULTS AND DISCUSSION

We have previously seen with diphenyl alanine®’ that the
process of forming self-assembled structures may vary from
experiment to experiment depending as it does on nucleation
events. We therefore performed extensive experiments as a
function of time and concentration of the monomer.
Supposedly identical experiments for S-1 (or R-1) did indeed
show differences in the absorbance and CD spectra observed,
even though the same trends always occurred across the
experiment. A typical data set is shown in Figures 2A and S1
for P(p-AT) S-1 for experiments undertaken at similar
concentrations to our previous work (Pfukwa et al.'?). Figure
2B shows the CD spectra of P(p-AT) S-1 and P(p-AT) R-1
35% water to be mirror images, indicative of the opposite
handedness of the helices in both systems. Figure S2 contains a
data set for R-1 which has opposite signed CD but otherwise is
similar to Figure 2A illustrating the degree of experiment to
experiment variability. We previously ascribed the phases of
folding apparent in Figure 2A to be a random coil in DMF
(red), predominantly loose helix from 10 to 20% water
(orange), and a tighter helix above 20%, which ultimately
assembles into helical columns (fibers) above 40% (green to
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Figure 2. (A) CD (top, 0.5 mm path length) and absorbance
(bottom, 1 cm path length) spectra of the solvent titrations of P(p-
AT) S-1 (10 uM monomer). (Red) 0% water, (orange) 15% water,
(green) 21% water, (blue) 29% water, and (purple) 90% water. (B)
CD spectra of P(p-AT) S-1 (red) and P(p-AT) R-1 (blue) at 10 uM
concentration and 35% water.

blue to purple). The goal of this work was to understand more
about the assemblies formed at different water/DMF ratios.

LD of the Polymer Chromophores. As LD is based on
the direction of EDTMs relative to any orientation axis, we first
measured the film LD spectra of the polymer chromophores.
The lowest energy transition of 1-phenyl-1,2,3-triazole (3) and
4-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline (7) both showed
positive signals with maxima, respectively, at 250 and 285
nm (Figures S3 and S4). This means that the transitions are
polarized along the long axis of these molecules and thus also
polarized along the long axis of the polymer backbone.

LD of Polymers as a Function of Water. Typical flow
LD spectra collected in a microvolume Couette flow cell*”**
are shown in Figures 3 and S5—S7. The signs and shapes of the
LD spectra are independent of the foldamer concentration
between 1 and 10 M but change as a function of the water
content. From 0 to 9% H,O, as expected, there is no LD signal
since the molecularly dissolved polymers are not aligned in the
laminar flow field.

P(p-AT) Assemblies Formed at 10—20% Water. The
flow LD spectra for the 10—20% water P(p-AT) samples (red
and orange spectra shown in Figure 3) are simpler than the
corresponding CD and absorbance spectra of Figure 2: they
show a single negative band with a maximum at ~310 nm,
which corresponds to the longer wavelength component of the
absorbance and CD spectra. Thus, the 10—20% water regime
has two chiral populations: one that is long enough and stiff

Figure 3. LD of the solvent titrations of P(p-AT) S-1 (10 uM
monomer and path length 0.5 mm). (Red) 0—13% water, (orange)
14—20% water, (green) 21—28% water, (blue) 29—50% water, and
(purple) 55—90% water. (A) Wavelength scans. (B) 310 nm
wavelength data.

enough to align (310 nm maximum) and one that is not (295
nm maximum).lz’48

A negative LD signal indicates that the corresponding
EDTM is oriented more perpendicular than parallel to the long
axis of the structure. Therefore, the structure adopted is one
where the long axis of the monomers is >54.7° from the
structure’s long axis. Concomitantly, the chirality of the
polymers biases their folding toward a specific handedness.
The CD spectroscopy is dominated by the interactions of the
backbone chromophores in that geometry to create a net
electric dipole moment and a net magnetic dipole moment.
Since we observe a positive CD band at 320 nm for the S-1
enantiomer, the structure must have parallel magnetic and
electric dipole transition moments, thus a right-handed helix
(as discussed by Nordén et al.>"). In ref 12, we proposed the
polymer wound into a helix ~3 nm in diameter (the diameter
being determined by the curve of the monomer units) with a
pitch of ~10—15°. The cartoon of Figure 4D is drawn
consistent with this proposal and the CD/LD data.

Negative stain TEM (Figure 4A) images of the assemblies
deposited at 15% water show curved fibers approximately 500
nm in length that associate into bundles (even though the
bundling may be an artifact of the TEM sample preparation
process). The reduced LD (eq 2) for the 20% water is ~0.22. If
the helix pitch is 10—15°, as illustrated in Figure 4D, the
polymer orientation parameter S is ~0.09 + 0.02. A 300 nm
rigid fiber of ~3 nm width is expected to have S ~0.2,*
whereas the quite flexible DNA (of width 2.5 nm) has § ~0.01
for a 500 nm polymer. Therefore, the LD data for 10—20% are
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Figure 4. (A) TEM negative-stained image of P(p-AT) S-1 at 15% water. (B) TEM negative-stained image of P(p-AT) S-1 at 45% water. White
arrows point at examples of the ubiquitous superhelices. (C) TEM negative-stained image of P(p-AT) S-1 at 90% water. (D) Cartoon representing
the proposed structure of P(p-AT) S-1 at 15%. The white arrow indicates shear direction. The blue arrow indicates chromophore transition
moment polarizations relative to the long axis. (E) Cartoon representing the proposed structure of P(p-AT) S-1 at 45%. The white arrow indicates
shear direction. Blue arrows indicate chromophore transition moment polarizations relative to the long axis. (F) Zoomed in details of one-folded

P(p-AT) S-1 chain at 45%.

consistent with a semirigid “loose spring” chiral superstructure
based on a fairly flat polymer pitch.

P(p-AT) Assemblies Formed at 20—50% Water. The
LD signals for P(p-AT) with a water content above 20% are all
a single positive band with the same shape, even though with
differing magnitudes. The band maximum is red-shifted
relative to the lower-water-content samples by about 8—10
nm (Figure S8). The redshift is consistent with close (~3.4
nm) 7—7 stacking interactions (as observed in e.g., DNA), as is
the almost perfectly symmetrical exciton CD spectra (a
positive Cotton effect for S-1) that develop.

The change in the sign of the LD signal is indicative of a
different orientation of the aromatic chromophores. We
tentatively assign this observation to the formation of
elongated superstructures composed of tighter stacked helices
that intertwine to form a “helix of helices” (cartoon in Figure
4E), also known as superhelices, where the monomers are
tilted to be less than 54.7° from the long axis of the structure.
This is in line with negative stain TEM images where twisting
of the fibers can be observed (Figure 4B), although it is at the
limit of the resolution of the images.

The CD and LD results can be combined to give more
information about the local helical structure of the helices in
this solvent regime. The CD signs and magnitudes for the
degenerate coupling of helically oriented chromophores®
depend on the relative angles of EDTMs. The two energeti-
cally likely stacking options for the hexagon—pentagon -
systems are in either vertical stacks of identical units (Figure
4F) or stacks in alternating patterns (hexagon-pentagon-
hexagon, etc). The sign of the CD couplet together with the
geometry required by the LD suggests that the S-1 polymer
adopts either a right-handed helix with the aryl units
(hexagons) vertically stacked on top of each other (Figure
4F) or a left-handed helix with alternating stacking of aryls
(hexagons) and triazoles (pentagons).” We conclude that the
former is more likely given the right-handed helix of the low-
water structures.

Approximating the superhelices as rigid structures of ~1 ym
or longer (TEM of Figure 4B), the theoretical value for § is

~0.5—0.7."" The experimental LD" (from Figures 2 and 3) for
40% water is approximately 1. This indicates that the average
polymer monomer is tilted to about 40° (or more precisely, the
average cos2 « is 0.6) from the helix axis. The cartoon of
Figure 4F shows how such a larger average tilt angle of the
polymer planes can develop when a superhelix is formed
(subsequent layers will tilt further). Thus, the structures we
previously referred to as columns are superhelical chiral
structures.

P(p-AT) Assemblies Formed at >50% Water. The
magnitude of LD signal intensity depends on the concentration
of the analyte, its orientation parameter (which in turn
depends on the length and rigidity of the structure), and the
orientation of the transitions with respect to the helix axis. The
gradual decrease in LD signal intensity at higher water
percentages is caused by limited solubility of the tetra(ethylene
glycol) appended backbone that leads to agglomeration into
spherical structures, as seen in the TEM images, which do not
give an LD signal. The CD indicates that the tightly twisted
local packing of monomer units is retained in these structures.

P(p-AT) Assembly Stability in Shear Flow. As our
understanding of the foldamers dictates that they form
elongated structures composed of stacked helices, we were
curious to determine their stability in shear flow. To that end,
we tested the LD at different Couette shear flow rates from 0
to 5000 rpm. The principle of alignment via Couette flow is
based on the fluid being confined between two cylinders, one
of which rotates (in our case, the outer one) giving steady and
unidirectional laminar flow.’>**' We tracked the LD signal at
310 nm and are clearly able to see the magnitude of the LD
spectra increasing monotonically with rotation speed and
hence shear magnitude (Figures S9 and S10). The lack of any
degradation of signals at high shear indicates that the foldamer
assembly is not destabilized by the higher shear rates we apply
and that we have remained in the laminar flow regimes even
for the lower-water-content samples. Thus, the unexpectedly
rigid structures we observed (see above) for the loose helix
regime (10—20% water) are also stable pointing to larger
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complexity of the foldamer assemblies than originally
concluded on the basis of CD and absorbance spectroscopy.

B CONCLUSIONS

In this work, we have used the complementarity of absorbance,
CD, LD, and TEM to investigate the structures formed from
self-assembled foldamers designed to form helical structures.
This, as far as we are aware, is the first time flow LD has been
used to aid the characterization of synthetic polymer
structures. We are able to estimate approximate orientations
of the polymer EDTMs and hence of the polymer backbone
and investigate the rigidity and stability of structures formed
under different DMF/water ratios.

Based upon our absorbance, CD, LD, and EM studies, we
therefore propose that from 0 to 9% H,O, the polymers are
unfolded and unstructured. As the amount of water increases
to 10—20%, the structure develops into a loose helical structure
that does not give rise to an excitonic CD signal but is chiral.
The magnitude of the negative LD signal and the TEM images
provide evidence that a stable fairly rigid supramolecular
structure is already present at 10—20% H,O. The helices
formed (right-handed for S-1) have a small pitch (10—15°)
and assemble vertically and laterally, so the polymer monomers
are approximately perpendicular to the fiber axis.

As the water concentration increases to above 20%, the
foldamers adopt a tighter wound helical conformation that
gives rise to an excitonic Cotton effect in CD and evidence of
twisted superhelical structures in TEM. The superhelix
organization (see Figure 4E) tilts the planes of the monomer
units, so the average EDTM is 54.7° from the fiber axis with a
resulting positive LD signal of larger intensity. Given the
propensity of the S-1 monomer to form right-handed helices at
a lower water content and the requirements of the sign of the
Cotton effect and the sign of the LD, we deduce that the
hexagons and pentagons locally stack vertically with their own
kind (see Figure 4F).

The continued increase of water shows a drop in the LD
signal, which from EM can be seen to be a result of spherical
aggregate formation and loss of most of the high-aspect-ratio
structures. The reason for this behavior is most likely the
limited water solubility of the foldamers with a tetra(ethylene
glycol) solubilizing moiety.
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