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ABSTRACT 

Vibration energy harvesting is a promising alternative for powering wireless electronics in 

many practical applications. Ambient vibration energy in the surrounding space of a target 

application often involves an inescapable randomness in the exciting vibrations, which may 

lead to deterioration of the expected power gains due to insufficient tuning and limited 

optimal designs. Stochastic resonance is a concept that has recently been considered for 

exploiting this randomness towards improving power generation from vibrating systems, 

based on the co-existence of near-harmonic vibrations with broadband noise excitations in a 

variety of practical mechanical systems. This paper is concerned with the optimal conditions 

for stochastic resonance in vibration energy harvesters, exploring the frequently neglected 

effect of realistic architectures of the electrical circuit on the system dynamics and the 

achievable power output. A parametric study is conducted using a numerical Path Integration 

method to compute the response Probability Density Functions of vibration energy 

harvesters, focusing on the effect of standard electrical components; namely, a load resistor, 

a rectifier and a capacitor. It is found that the conditions for stochastic resonance exhibit a 

nonlinear dependence on the weak harmonic excitation amplitude. Moreover, the modified 

nonlinear dissipation properties introduced by the rectifier and the capacitor lead to a trade-

off between the power output and the non-conducting dynamics that is essential in order to 

determine optimal harvesting designs. 

KEYWORDS: Vibration energy harvesting; bi-stable; stochastic resonance; path integration 
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1 INTRODUCTION 

In recent years, Vibration Energy Harvesting (VEH) has attracted significant interest in diverse 

research communities as a potential alternative power source for remote wireless small 

electronics. Numerous sensors, microcontrollers, transceivers, etc., are being installed in 

traditional engineering applications to assist in the operation and control of complex systems, 

offering future opportunities for product refinement, wireless online condition monitoring 

and structural health monitoring. At present, Wireless Sensor Nodes (WSN) are primarily 

powered by batteries, which nonetheless, have a finite lifespan with the requirement for easy 

access for periodic battery replacements. This is not always an easy task that greatly increases 

the associated costs of the technology and, in some cases, it may even negatively affect its 

feasibility. VEH devices are intended to replace batteries for WSNs [1], with a nearly infinite 

lifespan when the stored energy is concerned and the additional benefits of sparing 

hazardous chemicals and of the in-situ generation of clean, green energy. 

VEH devices are resonators that convert energy from mechanical vibrations to electrical 

energy [2] based, in their majority, on piezoelectric elements [3] or electromagnetic induction 

[4]. Interestingly, the normalised generic mathematical models that describe the dynamics of 

each of these transduction options present significant similarities, particularly in terms of the 

optimisation of the electric circuit. This has allowed many researchers to study both systems 

under an archetypal model (see for example [5]), and therefore, the results of this paper are 

easily extendable to each of the major transduction methods as long as the normalised 

parameters are properly interpreted. 

Despite the attractive potential, VEH technology is limited by the need for fine tuning of the 

harvester’s natural frequency to ensure efficient harvesting. Ambient vibrations, though, are 

subject to in-service variations which leads harvesters away from their design resonant point 

with devastating reduction of the achievable power harvesting. Researchers have recently 

proposed the intentional introduction of nonlinearities to overcome this shortcoming [4]-[7]. 

Nonlinearities trigger large response amplitudes over wide frequency ranges due to the 

structure of the so-called backbone curve [4] or due to other nonlinear phenomena [9], such 

as parametric resonance [6], multiple resonances zones [7], vibro-impact dynamics [8]. 

Among the various concepts proposed in the literature, nonlinear harvesters with multi-

stable potential energy have been shown to offer significant improvements [10]. In particular, 

bi-stable harvesters exhibit two major response regimes among others. Intra-well oscillations 

regard trajectories with relatively low energy that are trapped within one of the potential 

energy wells. On the other hand, inter-well or cross-well oscillations occur as soon as the 

oscillator’s trajectories contain enough energy to overcome the energy barrier separating the 

potential energy wells. Typically, cross-well oscillations lead to multiple times higher 
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oscillation amplitudes with respect to intra-well oscillations, with resultant improvements in 

the generated power [11]. The design of the parameters of the potential well, such as the well 

depth, and the oscillator’s damping play a major role in determining the response regime for 

given excitation properties [12]. 

Often, ambient vibrations unfold as a stochastic process due to inherent randomness and 

uncertainties, requiring advanced probabilistic treatment, particularly for nonlinear VEH [13]. 

The joint PDF of nonlinear oscillators is particularly difficult to obtain analytically apart from 

certain exceptions. To overcome this, computational and approximate analytical methods are 

used to study in detail the stochastic dynamics of nonlinear oscillators ([8],[13]-[14]). Cross-

well oscillations of bi-stable energy harvesters have also been proposed for combined 

harmonic and stochastic excitation [15]. McInnes et al [15] proposed the utilisation of 

Stochastic Resonance (SR) [16], a concept which involves the amplification of a weak 

harmonic force under a superimposed broadband noise. In a VEH context, the combined 

action of the weak harmonic excitation with noise leads to enhanced power output under 

resonance-like prescribed forcing conditions, where each of the individual excitations would 

be insufficient to establish cross-well oscillations. Experimental verification of the application 

of SR in VEH has been demonstrated by Zheng et al [17] using a piezoelectric beam with a set 

of a tip magnet and a static facing magnet providing the bi-stable potential energy. Many 

researchers have studied the benefits of SR for VEH, particularly in rotational applications, 

where harmonic excitation is inherently linked with the kinematics of rotary equipment [18]-

[23].  

Recently, the effect of ambient randomness on VEH has been studied via the stochastic 

averaging technique [24]-[25], which has been extended to bi-stable VEH as well [26]. Yang 

et al used stochastic averaging to study the effect of static and periodic modulations on a 

generic electromagnetic bi-stable VEH concept. Liu et al [28] investigated the effect of noise 

filtering on the statistical properties of the harvester’s power, whereas Zhang et al [5] and 

Zhang et al [29] explored the benefits of tri-stable oscillators using stochastic averaging. 

However, the majority of these studies adopted a simplified version of the electric circuit, 

which typically considers only purely resistive elements to close the electric circuit. 

Randomness in the vibrations source and the fundamental oscillatory excursion of this energy 

source, lead to AC induced voltages with frequently varying characteristics. Utilization of the 

generated electricity to power small electronics, such as wireless sensors, should conform to 

practical standards, which prescribe a DC voltage input for this type of electrical loads. 

Therefore a rectifier is essential to convert the generated AC voltage to a standard DC signal. 

Consequently, a stabilising capacitor is also necessary to mitigate voltage fluctuations, which 

could be used for energy storage as well. Realistic circuits have been considered in terms of 
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power management issues [30] and scarcely for response bandwidth considerations [31]-[33]. 

However, the discontinuous current flow and the strong in-cycle nonlinearities lead to 

modified electrical dissipation for the mechanical oscillator, which may have a direct impact 

on the optimal conditions for SR. 

Dai and Harne [30] used an equivalent linearization method to study SR for an experimental 

demonstration of the concept for VEH. This work provided significant insights on the impact 

of the rectifier-capacitor on the VEH efficiency under combined harmonic and stochastic 

excitation. The same authors have extended this work to study the conditions for optimal DC 

power delivery, exploring issues of optimal resistance [33]; This paper focuses on the effect 

of standard architectures of the electric circuit on the establishment of SR and the associated 

impact on the generated power. Section 2 introduces an archetypal model of bi-stable 

electromagnetic VEH in three steps of increasing complexity, starting from purely resistive 

loads and progressively considering the impact of rectifiers and capacitors. Moreover, a brief 

description of the concept of SR is provided for completeness and for easing the reader, 

whereas the background motivation for this paper is showcased via selected random samples. 

The stochastic models are thoroughly analysed using the computational power of a numerical 

Path Integration (PI) approach, which is described in Section 3. Numerical results of the 

nonlinear oscillator’s mean crossing rates over the potential well barrier and the 

corresponding power output are shown in Section 4, based on the individual joint response 

PDFs. Finally, the major conclusions of this paper are summarised in the end. 

2 GENERIC ELECTROMECHANICAL ENERGY HARVESTER 

2.1 Mathematical models 

Let us consider a generic vibration energy harvester as it is depicted in the sketch shown in 

Fig. 1. Among the very diverse harvesting concepts that have been proposed in the literature 

in recent years, one can identify similarities in the construction of the mathematical models 

that are used to study the response of these electromechanical systems to exciting vibrations. 

Specifically, VEHs are modelled as (nonlinear) mechanical oscillators coupled with an electric 

circuit, whereby coupling of the two sub-systems is typically realized through a linear term 

modelling the induced voltage and the exerted Lorenz force. Therefore, the analysis that 

follows is relevant to a broad range of concepts that are designed to operate under stochastic 

resonance. 

 

Figure 1. 

 

The VEH shown in Fig. 1 can be modelled using the governing equations shown in Eq. (1) [30]: 
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𝑚𝑥̈ + 𝑐𝑚𝑥̇ − 𝑘𝑥 + 𝑘3𝑥3 + 𝜅𝐼 = 𝑚𝑥̈𝑏 

𝐿𝐼̇ + 𝑅𝑤𝐼 + 𝑉𝐿 = 𝜅𝑥̇ 
(1) 

where the first equation describes the dynamics of the mechanical oscillator and the second 

one the dynamics of the electric circuit. In Eq. (1), 𝑚 is the oscillator mass, 𝑐𝑚 is the 

mechanical damping coefficient, 𝑘 is the linear stiffness coefficient, 𝑘3 is the nonlinear 

stiffness coefficient, 𝜅 is the electromechanical constant, 𝐼 is the electrical current, 𝑥𝑏 is the 

base excitation, 𝐿 is the coil’s inductance, 𝑅𝑤 is the coil’s electrical resistance, also referred 

to as internal resistance, whereas 𝑉𝐿 is the voltage across the electrical load that the VEH is 

intended to supply power to. 

Typically, mechanical vibrations involve frequencies which render the influence of inductance 

negligible with respect to the resistive loads, i.e. 𝜔𝐿 ≪ 𝑅𝑤  +  𝑅𝐿, which simplifies the second 

equation in an algebraic form. Let us now manipulate Eq. (1) to reduce it to a normalized 

form, neglecting the inductive term. First, we normalise the oscillator’s coordinate with a 

length scale 𝑙𝑐 = √(𝑘/𝑘3 )  by defining 𝑧 = 𝑥/𝑙𝑐 and we adjust the time of the system to 𝜏 =

𝜔𝑛𝑡, where 𝜔𝑛 = √𝑘/𝑚 . Applying these transformations leads to the following: 

 
𝑧′′ + 2𝜁𝑚𝑧′ − 𝑧 + 𝑧3 +

𝜅𝐼

𝑘𝑙𝑐
= 𝑧𝑏

′′ 

𝑅𝑤𝐼 + 𝑉𝐿 = 𝜅𝜔𝑛𝑙𝑐𝑧′ 
(2) 

where the base excitation has been scaled with 𝑙𝑐 as well. At this point, we shall distinguish 

three architectures for the electrical loads that will accompany the remaining sections of this 

paper [30]. Even though researchers have previously considered purely resistive elements in 

the form of electrical damping, these studies have been limited in optimizing the load under 

single frequency excitations. Furthermore, we shall investigate the effect of non-resistive 

components on the conditions that allow the establishment of stochastic resonance via direct 

comparison. 

Case I: Series resistive load 

A large majority in the literature concerning VEHs has treated the electrical load as a simple 

resistive element, connected in series with the exciting coil. With this assumption, the load 

voltage is expressed as 𝑉𝐿 = 𝐼 𝑅𝐿, which if substituted in the second equation of Eq. (2), leads 

to an expression for the electrical current, 𝐼 = 𝜅𝜔𝑛𝑙𝑐𝑧′/(𝑅𝑤 + 𝑅𝐿). Substituting the 

expression for the current in Eq. (2), one is led to the following SDOF governing equation. 

Note that the base acceleration has been replaced by a harmonic term and a delta-correlated 
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Gaussian white noise, 𝜉(𝜏), for which 〈𝜉(𝜏)𝜉(𝜏 + 𝑠)〉 = 𝐷𝛿(𝑠) with 𝐷 = 𝜎2 denoting the 

noise intensity: 

 𝑧′′ + 2(𝜁𝑚 + 𝜁𝑒)𝑧′ − 𝑧 + 𝑧3 = 𝐴𝑛 cos 𝜔𝜏 + 𝜉(𝜏) (3) 

where the electrical damping coefficient given by 𝑐𝑒 = 𝜅2/(𝑅𝑤 + 𝑅𝐿) has been used to define 

an equivalent electrical damping ratio as in 𝜁𝑒 = 𝑐𝑒/𝑐𝑐𝑟 and the critical damping given by 

𝑐𝑐𝑟 = 2√𝑘𝑚. This approach essentially reduces the dimension of the problem since the 

contribution of the electric circuit to the system dynamics is then limited to a passive electrical 

damping term. The above simplification has been used by many researchers in the literature, 

particularly in studies that are concerned with stochastic analyses of the power harvested by 

vibrations, due to the favourable mitigation of expensive computations which is rather 

pertinent in such analyses. In this paper, Case I is used to initially explore the frequency 

conditions that may lead to stochastic resonance. The system in Eq. (3) has been the basis for 

the to-date development of harvesters exploiting stochastic resonance and, as such, it may 

serve as a baseline for the herein investigations. Note that the normalised mean power in this 

case is given by 𝑃𝐿 = 𝐼2𝑅𝐿/𝜅2𝜔𝑛
2𝑙𝑐

2 = 𝑟2𝑧′2/𝑅𝐿 to ease later comparison. 

Case II: Rectifier and resistor 

Typically, low-power electronics, such as those targeted in VEH applications, are standardized 

to accept DC voltage inputs. When a simple ideal resistor closes the coil circuit as in Case I, 

the induced voltage has an alternating profile following the vibrations of the mechanical 

oscillator.  This creates the need to convert the AC induced voltage to a DC signal that is 

suitable for powering the electrical load. The most common approach is to use a typical diode 

bridge rectifier circuit in between the coil and the load, as it is shown in Fig. 1(c). Bridge 

rectifiers allow one way flow of current thus converting the generated alternating voltage to 

a DC signal that is suitable for the considered applications.  

Nevertheless, diodes introduce a voltage drop which depends on the semiconductor material 

that is used. When the induced voltage is less than the diode threshold 𝑉𝑟, the rectifier is off 

and the harvester works in open circuit. Correspondingly, when the voltage overcomes the 

threshold the rectifier is turned on and current flows in the load. Typical values for this 

threshold range from 0.2 V (Schottky diodes) up to 0.7 V (silicon diodes). This effectively acts 

as an on-off switch within each vibration cycle depending on the induced voltage, leading to 

highly nonlinear trajectories with characteristically nonlinear damping properties. From the 

mechanical oscillator’s viewpoint, the off state leads to less energy dissipated and 

consequently higher kinetic energy is stored in the oscillator. On the other hand, the on-off 



8 

 

operation leads to power being harvested only within a proportion of the cycle, thus reducing 

the vibration energy that is converted to electricity. When a rectifier is interposed, the 

governing equations in Eq. (2) take the following form:  

𝑧′′ + 2(𝜁𝑚 + 𝜁𝑒)𝑧′ − 2𝜁𝑒𝑈𝑟sgn(𝑧′) − 𝑧 + 𝑧3 = 𝐴𝑛 cos 𝜔𝜏 + 𝜉(𝜏)         when |𝑧′| > 𝑈𝑟, 
𝑈𝐿 = 𝑟|𝑧′| − 𝑟𝑈𝑟  
 
 
𝑧′′ + 2𝜁𝑚𝑧′ − 𝑧 + 𝑧3 = 𝐴𝑛 cos 𝜔𝜏 + 𝜉(𝜏)                                                    when |𝑧′| ≤ 𝑈𝑟 
𝑈𝐿 = 0, 𝑈𝑂𝐶 = 𝑧′  

(4) 

Where the voltage threshold has been normalized to 𝑈𝑟 = 𝑉𝑟/(𝜅𝜔𝑛𝑙𝑐) and the load voltage 

to 𝑈𝐿 = 𝑉𝐿/(𝜅𝜔𝑛𝑙𝑐). Using these transformations, the condition for the rectifier to conduct, 

i.e. 𝑉𝑂𝐶 > 𝑉𝑟, is expressed in terms of the non-dimensional velocity 𝑧′. Apart from the impact 

of the on-off operation on the overall system damping, one may observe that the voltage 

threshold is also reducing damping in the “on” state, through a negative dry friction term that 

arises in the oscillator’s equation of motion. This complicated response raises the question of 

the impact of the rectifier and its threshold on the conditions that can lead to cross-well 

oscillations under combined deterministic and stochastic excitation. The rectifier affects the 

continuity of the harvested power, which is given by 𝑃𝐿 = (𝑉𝐿
2/𝑅𝐿)/𝜅2𝜔𝑛

2𝑙𝑐
2 = 𝑈𝐿

2/𝑅𝐿 when 

the rectifier conducts, and 𝑃𝐿 = 0 when the circuit is open. 

Case 3: Rectifier, capacitor and resistor 

A characteristic drawback of rectifiers is the so-called rippling output, on top of the voltage 

drop. Full-wave rectifiers essentially mirror the negative part of the induced voltage to the 

positive semi-axis, essentially leading to a load input with a persisting fluctuating profile. This 

is counteracted by the additional integration of suitable capacitors in the output of the 

rectifier, as it is shown in Fig. 1(d). Even though the rippling effect is still present, the capacitor 

charge greatly reduces its magnitude. Proper sizing of the capacitance not only minimizes the 

voltage fluctuations, but it may ensure continuous supply of voltage to the load when the 

rectifier is off. Largely, this parallel RC circuit can effectively convert the alternating harvested 

voltage to a nearly DC signal. When a capacitor is introduced, the system is described by two 

differential equations, given by:  
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𝑧′′ + 2 (𝜁𝑚 +
𝜁𝑒

1 − 𝑟
) 𝑧′ −

2𝜁𝑒(𝑈𝑟 + 𝑈𝐿)sgn(𝑧′)

1 − 𝑟
− 𝑧 + 𝑧3 = 𝐴𝑛 cos 𝜔𝜏 + 𝜉(𝜏) 

𝑈𝐿
′ = 𝑟𝛼(|𝑧′| − 𝑈𝑟) − 𝛼𝑈𝐿 ,                                                                           |𝑧′| > 𝑈𝑟 + 𝑈𝐿 

 

and 

 

𝑧′′ + 2𝜁𝑚𝑧′ − 𝑧 + 𝑧3 = 𝐴𝑛 cos 𝜔𝜏 + 𝜉(𝜏),                                                 |𝑧′| ≤ 𝑈𝑟 + 𝑈𝐿 

𝑈𝐿
′ = −𝛿𝑈𝐿   

𝑈𝑂𝐶 = 𝑧′  

 

(5) 

where the following parameters have been defined: 𝛼 = 1/𝑟𝜔𝑛𝑅𝑤𝐶𝑟 controlling the circuit’s 

impedance and 𝛿 = 1/𝜔𝑛𝐶𝑟𝑅𝐿 representing the capacitor’s discharge rate. In what follows, 

Eqs (3)-(5) will be the basis for investigating the excursion of stochastic resonance in Cases I 

– III and the attached implications for the harvested power. 

2.2 Stochastic resonance 

Consider a general bi-stable mechanical oscillator under combined harmonic and wideband 

stochastic excitation, the dynamics of which are governed by a differential equation similar 

to Eq. (2) if the electrical damping, 𝜁𝑒 , is dropped.  The potential energy of this oscillator 

𝑈(𝑧) = −𝑧2/2 + 𝑧4/4 involves two minima (stable equilibria) and a local maximum 

(unstable equilibrium) at 𝑧 = ±1 and 𝑧 = 0 respectively. The shape of 𝑈(𝑧) formulates two 

potential wells where the oscillator is trapped if the excitation intensity is small. The depth of 

the symmetric potential wells, Δ𝑈 =  |𝑈(0) − 𝑈(1)| = 1/4, defines a barrier that the 

oscillator has to overcome to transit from one well to the other. Combining a weak harmonic 

excitation with a low-intensity stochastic excitation (𝐷 ≪ Δ𝑈) has been shown to trigger 

random transitions between the potential wells [16], even when each of the excitations alone 

would lead to intra-well oscillations trapped by the potential barrier.  

Figure 2. 

The above phenomenon is referred to as stochastic resonance in the literature, since cross-

well response is initiated by the superposition of low-intensity noise on periodic modulations 

of the potential energy. Essentially, SR leads to cross-well oscillations which have been 

extensively studied for VEH due to the high vibration amplitude compared with their mono-

stable counterparts. The application of the weak harmonic excitation periodically modulates 

the potential energy function and the crossing barrier imposed by the corresponding 

potential depth (see Fig. 2). When the noise is synchronized with this modulation in the mean 
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sense, the oscillator jumps between the potential wells leading to the establishment of cross-

well vibrations.  This synchronization occurs when the average waiting time of the oscillator 

in a potential well is half the period of the harmonic excitation, 𝜏𝑠  =  2 𝜏𝑤, or expressed in 

frequencies, 𝜔𝑠  = 𝜋𝑟𝑘, where 𝑟𝑘 is the transition rate between the two potential wells given 

by the well-known Kramer’s rate [34]:  

 𝑟𝑘 =
1

√2𝜋
𝑒(−

Δ𝑈
𝐷

) (6) 

Consequently, the condition for stochastic resonance has been expressed as 

 𝜔𝑠 =
1

√2
𝑒(−

Δ𝑈
𝐷

) (7) 

However, Kramer’s rate has been developed for the crossing problem of overdamped 

particles. Application of Eq. (7) in the herein described problem would lead to extremely low 

values due to the exponent and the assumed weakness of the noise intensity with respect to 

the barrier. Previous applications of SR in the literature concerned with VEH have used the 

limit of Eq. (7), as in 𝜔𝑠,𝑙 = 1/√2, to overcome this deficiency (such as in [17]). Note that 

according to Eq. (7), 𝜔𝑠,𝑙 is also the maximum value that the frequency condition can attain. 

Although a limited number of works has extended this analysis to an underdamped version 

of Kramer’s rate following the deepest descent method [27], this has been shown it is less 

accurate than alternative methods such as Melnikov’s method [35]. Nevertheless, even 

though experimental verification of SR under this forcing condition has been provided (e.g. 

[17],[35]), the application breadth of the above assumptions is unclear. As a demonstration, 

consider the responses shown in Fig. 3, concerning a bi-stable oscillator described by Eq. (2) 

and initially at rest at 𝑧 = 1. Figure 3(a) shows the steady-state deterministic phase space plot 

when the noise is cancelled and for 𝜔 = 𝜔𝑠,𝑙 = 0.707, clearly leading to an intra-well 

attractor. Correspondingly, when only the stochastic term excites the oscillator, the response 

in Fig. 3(b) is mostly trapped within the potential well. Of course, given the wideband property 

of the forcing term, one cannot exclude the possibility of crossings, however this can only be 

realised at very slow crossing rates. When both the weak harmonic and the stochastic terms 

are combined in Fig. 3(c), the oscillator clearly jumps from one well to the other at a frequent 

rate, which is a manifestation of SR. Note that this response is extracted at 𝜔𝑠,𝑙, which has 

been assumed to be the maximum (and most favourable) frequency that SR can occur. 

Nevertheless, if one considers higher frequencies such as up to 𝜔𝑠 = 1, the oscillator 

continues to perform cross-well oscillations under the combined influence of the examined 

excitation, and noteworthy, at increasing rates. This is clearly evident in Fig. 3(c)–(f) where, 
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as the harmonic frequency is increased, the random response is progressively attracted more 

and more by the inter-well vibrations, up to the point that it almost exclusively jumps 

between the wells when 𝜔 = 1. Furthermore, this increase in the crossing rate cannot be 

attributed to a deterministic resonance due to the harmonic term, as the deterministic 

response to this frequency would still be confined in the initiating well, as Fig. 3(a) shows. 

Consequently, optimal design of a vibration energy harvester to fully exploit the benefits of 

SR is subject to the above observation. Conversely, one cannot generalise these observations 

simply based on one realisation of the stochastic response. A formal probabilistic analysis is 

required in order to understand the benefits of SR for VEH beyond Kramer’s rate. The 

following analysis first investigates the effect of the harmonic frequency on the manifestation 

of SR and afterwards, the role of electrical damping is explored for common architectures of 

the electric circuit, which implicates the electrical parameters and the induced current flow. 

A parametric study is conducted in the following sections based on numerically calculating 

the Probability Density Function (PDF) of the harvester response in Cases I – III. The PDF is 

computed via a numerical PI technique, which is briefly described in the next section. 

 

Figure 3 

3 PATH INTEGRATION 

The generic vibration energy harvester models presented in the previous section are studied 

using a numerical PI method to compute the transient and stationary joint response PDF of 

the harvesters described by Cases I – III. Path Integration has been used to compute the 

response PDF of strongly nonlinear oscillators with numerical ([36]-[38]) and analytical 

schemes ([39]-[40]). In fact, the method has been previously used to analyse nonlinear mono-

stable harvesters with hardening springs [39]. Knowledge of the PDF of the mechanical and 

electrical variables 𝑧, 𝑧′ and 𝑈𝐿 can provide superior probabilistic information compared with 

approximate techniques such as stochastic averaging that has been widely employed in the 

past. In fact, the PI approach can reach accurate expressions for the tails of the PDF which are 

closely related to rare events. Moreover, one can extend the analysis of the harvesting 

systems beyond the stationary solution.  

The numerical PI method involves an iterative approach to numerically propagate the 

probability flow of a vibrating system in short time steps, exploiting the assumption that the 

unknown stochastic process has very short memory with respect to the system dynamics, i.e. 

the Markov property is satisfied. Essentially, the method receives an input of initial conditions 

in the form of an initial PDF, which is then propagated forward in time until a stationary 

solution is reached or until the sought transient probabilistic information is collected. This 
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method has been developed as an alternative to finite element methods solving the FPK 

equation, which often involve excessive computational cost.  

Consider, then, the following stochastic differential equation on an n-dimensional Ito process 

𝑿:  

 𝑿̇ = 𝒂(𝑿, 𝑡) + 𝒃(𝑿, 𝑡)𝒁 (8) 

where 𝒂 is the drift matrix and 𝒃 the diffusion matrix, 𝒁 is an m-dimensional vector of 

independent Gaussian white noise stochastic processes. Adapting this to the herein examined 

cases, let us assume that the noise process is one-dimensional, and entering the system 

dynamics only through the n-th equation. Therefore, 𝒃 becomes a vector, for which 𝒃𝑇 =

[0 . . . 𝜎]. The PI method is fundamentally based on the total probability law, which in the case 

of a Markov process reads:  

 𝑝(𝒙(𝑡2), 𝑡2) = ∫ 𝑝(𝒙(𝑡2), 𝑡2|𝒙(𝑡1), 𝑡1)𝑝(𝒙(𝑡1), 𝑡1)
∞

−∞

𝑑𝒙1 (9) 

where it has been assumed that 𝑡2 > 𝑡1. The numerical implementation of Eq. (9) requires an 

assumed input of 𝑝(𝒙(𝑡1), 𝑡1) as the initialisation of the computational problem and an 

expression for the Transitional Probability Density Function (TPDF), 𝑝(𝒙(𝑡2), 𝑡2|𝒙(𝑡1), 𝑡1). The 

latter function has been proven [38] to adopt a degenerate multivariate Gaussian distribution 

if the execution time step is sufficiently small, which is typically true in relevant numerical 

algorithms. Therefore, the TPD takes the following form: 

 𝑝(𝒙2, 𝑡2|𝒙1, 𝑡1) = ∏ 𝛿(𝑥𝑖,2 − 𝑥𝑖,1 − 𝑟𝑖(𝑥𝑖,1, 𝑡1, Δ𝑡)

𝑛−1

𝑖=1

)𝑝̂(𝑥𝑛,2|𝒙1) (10) 

Where 

 𝑝̂(𝑥𝑛,2|𝒙1) =
1

√2𝜋𝐷Δ𝑡
exp {−

[𝑥𝑛,2 − 𝑥𝑛,1 − 𝑟𝑛(𝒙1, 𝛥𝑡)]

2𝐷𝛥𝑡
} (11) 

Where 𝑟𝑗 , 𝑗 = 1 … 𝑛 denotes the deterministic 4th-order Runge–Kutta integration step from 

𝑥𝑛,1 to 𝑥𝑛,2 at a time step of Δ𝑡, 𝐷 = 𝜎2 is the noise intensity and 𝛿(∙) denotes the Dirac-delta 

function. Equations (10) and (11) are closed form expressions which provide the transition 
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characteristics of the probability flow that are necessary to compute 𝑝(𝒙2, 𝑡2). The equations 

of motion described by Eq. (2) and the individual cases represented by Eqs (3)-(5) are used to 

calculate the deterministic Runge-Kutta paths, 𝑟𝑗, by expressing them as a first order vector 

differential equation. Note that the PI method entails the computation of the joint response 

PDF at state space points that are generally not equal to the pre-defined mesh points that are 

used to discretize the state space. Therefore, an interpolation scheme is necessary in order 

to compute the PDF values at any arbitrary point of the system’s state space. In this paper, 

and given the relatively low computational requirements of the considered problems, cubic 

B-splines are used to improve accuracy of the method. 

Iterative application of Eqs (9)-(11) leads to the calculation of the joint PDF at an arbitrary 

time. Nevertheless, the PI method suffers from the so-called curse of dimensionality alike 

most mesh-based computational methods, which presents a challenge when higher order 

vibrational systems are concerned. Fortunately, the vibration energy harvesters that are 

considered in this paper involve relatively low dimensions, which makes the application of 

this version of PI computationally manageable. 

4 NUMERICAL RESULTS 

A numerical parametric analysis is conducted to reveal the influence of the components of 

the electrical circuit on the establishment of stochastic resonance and the achievable 

conversion of vibrations to electrical power. The complexity of the electric circuit is gradually 

increased following the Cases I-III presented in Section 2 to individually focus on the effects 

of the resistive load, the rectifier and a stabilizing/storage capacitor respectively. The generic 

stochastic models in Eq. (3)-(5) are treated with the numerical PI method described in the 

previous section to extract the joint PDF of each system’s response. In order to track the 

establishment of stochastic resonance, we monitor the evolution of bi-directional crossings 

from one potential well to the other. This is achieved by computing the mean crossing rate 

through the potential barrier at 𝑧 = 0. Knowledge of the joint response PDF of the kinematic 

variables 𝑧 and 𝑧’ acquired by the PI method readily allows computation of the crossing rate 

via: 

 𝜈𝑟± = ∫ |𝑧′|𝑝𝑧𝑧′(𝑧 = 0, 𝑧′)

𝑧′

𝑑𝑧′ (12) 

where the absolute value is used to account for crossings in both directions. To simplify the 

crossing rate notation, the ± subscript will be omitted from here onwards. 
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4.1 Resistive load 

The analysis first considers Case I whereby a purely resistive electrical load closes the circuit 

in series with the coil (Fig.1(b)). This is the most simplified version of the system dynamics, 

which has, nevertheless, been used by the majority of researchers to study the harvesting 

potential of various concepts. Herein, this simplified model is used to explore the impact of 

the weak excitation frequency on the conditions for stochastic resonance, following the 

preliminary discussion stemming from Fig (3) that highlighted the observation that the sought 

resonance can potentially be stronger and more robust at frequencies different from those 

given by Kramer’s rate. 

Picking up the thread from the sampling results in Fig. 3, the joint response PDF is computed 

via the PI method using the same parameters that led to the results shown in Figs 3(d) and 

3(f), i.e. for 𝜔 = 0.7 and 𝜔 = 1.0 respectively. The joint PDFs for these two case studies are 

plotted in Fig 5. Evidently, the tentative observation that the frequency close to Kramer’s rate 

leads to weaker resonance with less frequent jumps between the two potential wells is 

confirmed by the full probabilistic information contained within the stationary PDF. A 

homoclinic orbit separates the state space in two major parts: the outer one that leads to 

trajectories performing cross-well oscillations and the inner one where the oscillator is 

trapped within the corresponding well and performing in-well oscillations around its 

equilibrium. With regards to the state space view of the PDFs shown in Fig 4, trajectories 

outside this homoclinic orbit contain enough energy to overcome the potential barrier and 

are therefore more likely to jump to the other well along their path. Consequently, stochastic 

resonance with robust crossings between the two wells is reasonably expected to drive the 

probability density towards the cross-well trajectories outside the homoclinic orbit. Looking 

at the color-coded PDFs at Fig 4, when 𝜔 = 0.7 the majority of the density is concentrated 

around the two stable equilibria implying a tendency of the system to vibrate within each well 

with infrequent crossings. On the other hand, Fig 4(b) clearly shows that the cross-well 

trajectories attract significantly higher part of the probability density, leading to higher 

probability for crossings, which may act as an indication for SR. This is also evident in the 

marginal PDFs of the oscillator’s displacement and velocity in Figs 4(c) and 4(d), where the 

central part of the displacement density involves relatively high values, pointing towards 

increased rate of crossings. Note that the marginal PDFs are also compared with MC 

simulations of 1,000 samples as validation of the accuracy of the applied computational 

method. 

Figure 4 
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Overall, computation of the joint PDF with the PI method has reaffirmed the tentative 

observations originating from the results in Fig. 3. In order to put this observation in a 

quantitative context a wide parametric study is conducted using the PI computation of the 

joint response PDF, monitoring the crossing rate given by Eq. (12). Fig. 5(b) shows the moving 

average of the crossing rate for two case studies where the sets of parameters are chosen in 

a similar way that highlights the impact of the excitation frequency. Note that the moving 

average is used to reduce the crossing rate to a single value per time instance for comparison, 

given that the periodicity of the weak harmonic force leads to periodic variations of the 

crossing rate as it is shown in Fig. 5(a). The crossing rate shows a noteworthy improvement 

for the frequency chosen to be the furthest apart from the previously used frequency 

condition based on Kramer’s rate. The crossing rate when 𝜔 = 0.9 is around four times the 

corresponding rate at 𝜔 = 0.75. This essentially implies that the harvester would spend, on 

average and when stationary conditions have been reached, four times longer time on cross-

well oscillations which are highly favourable for VEH with respect to their in-well 

counterparts. 

Figure 5 

A broader picture of the system dynamics and the relationship between stochastic resonance 

and the harmonic frequency can be given by constructing frequency response curves of the 

mean crossing rate. The crossing rate is computed across a wide frequency range, 𝜔 =

[0.5, 1.5] for various values of the harmonic amplitude, 𝐴𝑛, until the PDF reaches stationarity 

and, thereafter, the average value over one excitation period is recorded and plotted in Figure 

6 for comparison. Alongside the crossing rate, the mean power output delivered to the 

electrical load is calculated, using the mathematical expressions pertaining to Case I. 

Evidently, the mean crossing rate is not resonating at the previously assumed 𝜔 = 0.707. This 

is only true for very weak amplitudes, which, nevertheless, have a minor importance for 

energy harvesting due to the very low achieved rate of crossings. As the excitation amplitude 

is increased the maximum crossing rate, i.e. resonant conditions, occurs at higher 

frequencies. This is very similar to the hardening behaviour of nonlinear springs. In fact, the 

parametric analysis in Fig. 6 shows that a locus analogous to the so-called backbone curve is 

forming, connecting the maxima of the plotted curves. A similar trend is observed when the 

mean power output is concerned, shown in Fig. 6(b). In fact, the initial assumption that 

tracking the mean crossing rate could essentially relate to the harvested power is reaffirmed. 

This highlights the nonlinear dependence of the conditions for stochastic resonance on the 

overall energy of the vibrating system, which can potentially have significant implications for 

the optimal design of vibration energy harvesters based on stochastic resonance. Although 

this analysis regards a simplified version of an energy harvester model, the effect of the 
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excitation frequency and the overall system energy on the conditions for SR points towards 

the relationship between damping and the input excitation amplitude as a factor for 

determining a harvester’s optimal design. Recalling that the presented results regard 

normalised quantities, this effect is particularly important in relatively stiff applications where 

the reported difference in the optimal frequency can take values at the scale of tens of Hz. 

Figure 6 

We also note that this is an effect that originates from the structure of the system’s 

conservative dynamics. If one were to examine the effect of increasing noise-to-damping 

ratio, a distinctively different picture is obtained. Figure 7 shows a similar parametric analysis 

as the one that is shown in Fig 6, only that the noise intensity is gradually increased for a fixed 

harmonic amplitude. The diffusing effect of noise quickly overtakes any tendency of the 

resonance curve to be shifted towards higher frequencies. Although the maximum crossing 

rate and the corresponding power output do indeed preserve a dependence on the excitation 

frequency, its impact on the optimal design of a vibration energy harvester is far less 

important. 

Figure 7 

4.2 Rectifier with a resistive load 

The results in Section 4.1 have indeed elucidated a nonlinear dependence of the conditions 

for SR on the harmonic excitation frequency and the overall system energy. However, the 

structure of the electric circuit was excruciatingly simplified. A step towards a more realistic 

representation is added in the system complexity by interposing a rectifier between the coil 

and the load, leading to the models given for Case II. 

Full wave diode bridge rectifiers conduct current unidirectionally, effectively converting AC 

voltage to DC, which is necessary for powering small electronics. However, rectifiers come 

with an efficiency which is represented by their voltage drop, 𝑉𝑟. This ranges from 0.7 V for 

silicon diodes down to 0.2 V for germanium diodes and Schottky diodes. The voltage drop 

modifies the damping properties of the harvester within each cycle leading to a highly 

nonlinear problem which involves lightly damped dynamics when the rectifier is off and 

stronger damping forces when the rectifier conducts and power is generated. This leads to 

higher probability for jumps between the two wells when the voltage threshold increases, as 

Fig. 8(a) shows. Three values of the normalised threshold 𝑈𝑟 are considered and the 

frequency response of the crossing rate is plotted. Firstly, one may observe that the threshold 

has a very minor effect on the optimal frequency, which is very close to the frequency 

obtained by Case I. However, the modified dissipation characteristics cause substantial 
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differences in the expected value of the crossing rate. Although in Case I this would imply 

better harvesting performance, the presence of the rectifier limits the trajectories from which 

electrical energy is extracted. The reduced damping and the limitation of harvesting within a 

proportion of the trajectories leads to the combined effect on the mean power shown in Fig 

8(b). Contrary to Case I, increasing crossing rates (as the voltage drop increases in magnitude) 

are accompanied by a reduction of the mean extracted power due to the complicated balance 

between the lower dissipation properties of the non-conducting trajectories and the 

associated load current blocking. 

A closer investigation of the damping properties reveals that the optimal load is subject to 

the realised diode voltage drop. Figures 8(c) and 8(d) show the crossing rates and the 

normalised mean power (〈𝑃〉/〈𝑃〉𝑚𝑎𝑥  ) for various values of the load resistance that controls 

the electrical damping. Note that the power is expressed in this way since the intermittent 

voltage in the load would lead to a misleading comparison in absolute numbers. Moreover, a 

comparison based on the absolute power output would be less informative than exploring 

the effect of the rectifier on the optimal load. However, this problem will be addressed by the 

addition of a capacitor in the next section. 

A well-known proven approach based on the Case I dynamics would suggest that the optimal 

load should match the mechanical damping coefficient. This is true for low thresholds as 

energy dissipation converges to Case I. Nevertheless, as the voltage drop increases leading to 

lighter overall equivalent damping, the optimal load needs to be adjusted to the 

corresponding equivalent damping. In fact, Fig 8(d) shows that the diodes with higher voltage 

drop lead to reduced optimal load resistance, which is consistent with the overall weaker 

damping forces. Note also that the rectified power is more robust with respect to its optimal 

load. The baseline Case I results in Fig. 8(d) show that the power output drops faster when 

the electrical load deviates from its optimal value. Increasing 𝑈𝑟 on the other hand leads to 

more balanced power output with respect to the electrical load resistance. 

However, the present architecture has been used only to explore the impact of the voltage 

drop on the harvested power, since the excessive voltage ripples in the output side of the 

rectifier would make it an unviable option. This problem can be solved by adding a parallel 

stabilising capacitor, which is investigated in the next section. The capacitor would also ensure 

continuous supply of voltage to the load.  

Figure 8 



18 

 

4.3 Rectifier with a capacitor and a resistive load 

When a capacitor is added to the output of the rectifier in parallel the harvester dynamics are 

governed by Eq. (5). The analysis using the PI technique in this case leads to disproportionally 

high computational cost due to the discontinuity in the 𝑧′, 𝑈𝐿 state space. In order to mitigate 

this, Eq. (5) is further simplified using the generalised harmonic functions for the 

displacement and velocity. This procedure has been employed for energy harvesting 

oscillators in the past, particularly when a stochastic averaging approach is used. Following 

Zhang et al [41], the differential equation of the voltage in Eq. (5) for conducting rectifier can 

be solved assuming a slow varying amplitude and frequency of the mechanical oscillator to 

give the steady state solution:  

 𝑈𝐿 = 𝑟𝛼 (
𝛼

𝜔𝑠(𝐻)2 + 𝛼2
𝑧′ +

𝜔𝑠(𝐻)2

𝜔𝑠(𝐻)2 + 𝛼2
(𝑧 − 𝑧𝑒𝑞)) 𝑠𝑔𝑛(𝑧′) − 𝑟𝑈𝑟 (13) 

where 𝜔𝑠(𝐻) is the energy-dependent frequency of the oscillator and 𝐻 its total mechanical 

energy. In the above approximate equation, it has been assumed that the contribution of the 

displacement 𝑧 to the sign of the open circuit voltage is weak enough to be neglected, 

recalling that this analysis is carried out under the condition |𝑧′| > 𝑈𝑟 + 𝑈𝐿. Substituting this 

in the first equation in Eq. (5) and simplifying we get:  

𝑧′′ + 2[𝜁𝑚 + 𝐷𝑒]𝑧′ − 2𝜁𝑒𝑈𝑟sgn(𝑧′) − (1 + 𝐴)𝑧 + 𝐴𝑧𝑒 + 𝑧3 = 𝐴𝑛 cos 𝜔𝜏 + 𝜉(𝜏), 

|𝑧′| > 𝑈𝑟 + 𝑈𝐿 

and 
 

𝑧′′ + 2𝜁𝑚𝑧′ − 𝑧 + 𝑧3 = 𝐴𝑛 cos 𝜔𝜏 + 𝜉(𝜏),                                                    |𝑧′| ≤ 𝑈𝑟 + 𝑈𝐿 

𝑈𝐿
′ = −𝛿𝑈𝐿   

𝑈𝑂𝐶 = 𝑧′  

(14) 

with 

 

𝐷𝑒(𝜔𝑠(𝐻)) =
𝜁𝑒

1 − 𝑟
(1 −

𝛼2𝑟

𝜔𝑠(𝐻)2 + 𝛼2
) 

𝐴(𝜔𝑠(𝐻)) =
2𝜁𝑒𝑟𝛼

1 − 𝑟

𝜔𝑠(𝐻)2

𝜔𝑠(𝐻)2 + 𝛼2
 

𝑧𝑒 = {
±1,      𝐻 < 𝐻ℎ𝑜𝑚

0, 𝐻 ≥ 𝐻ℎ𝑜𝑚
 

 

 

 

(15) 
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The functionals in Eq. (15) give rise to an energy-dependent damping ratio and a modulation 

of the potential energy. In the previous two cases, the overall resistance (internal and load) 

would control the magnitude of the electrical damping ratio with an inversely proportional 

relationship. This attribute leads to optimisation of the load resistance, such that the electrical 

damping matches the mechanical one. However, 𝐷𝑒(𝜔𝑠(𝐻)) has a more complex 

dependence on the electrical parameters and the oscillator frequency. In fact, a parametric 

analysis with respect to 𝑟, 𝐻 and 𝐶𝑟, shown in Fig. 9, reveals that the frequency (energy 𝐻) 

may have a significant impact on the instantaneous damping ratio, particularly when the 

oscillator trajectories diverge from the homoclinic orbit that separates intra-well from inter-

well vibrations. Furthermore, there is a distinctive additional feature with respect to 

resistance. Although 𝜁𝑒  for all cases is inversely proportional to 𝑅𝐿, Fig 9(b) shows that as 𝑟 →

1 , the instantaneous damping ratio 𝐷𝑒 is more sensitive to the oscillator energy, which may 

inflict considerably stronger dissipation per oscillation cycle with respect to the one expected 

from Case I. As 𝑟 descreases, the effect of the frequency diminishes and the damping ratio 

asymptotically approaches the corresponding value of 𝜁𝑒  from Cases I and II. For constant 𝑅𝑤 

(i.e. non-trivial 𝛼), this essentially means that the load resistance has an additional effect on 

damping compared with the previous two cases. The overall realised damping would then 

depend on the combined effect of 𝑅𝐿 on the magnitude of 𝜁𝑒   (given by Case I and Eq. (3)) and 

on the scaling factor of 𝐷𝑒 in Eq. (15). Although the energy-dependent variations vanish as 

𝑟 → 0, 𝜁𝑒  is simultaneously increased leading to more robust damping values. This is a 

manifestation of the combined influence of the resistance 𝑅𝐿, which needs to be considered 

for VEH systems with RC shunts. On the other hand, if the total resistance 𝑅𝑤 + 𝑅𝐿 is constant 

(i.e. the electrical damping ratio 𝜁𝑒  is constant across all 𝑟’s), variations of 𝑟 lead to different 

values of 𝑅𝑤 and, consequently, to considerable variations of 𝛼. In fact, as 𝑟 → 1 under 

constant ratio 𝜁𝑒 , 𝛼 → 0 and 𝐷𝑒(𝜔𝑠(𝐻)) → 𝜁𝑒, which is also true for 𝑟 → 0, revealing an 

intermediate critical value for 𝑟 where damping is unfavourably maximised. Figure 9(c) shows 

the variation of 𝐷𝑒 for selected energy values, where a maximum damping ratio is clearly 

realised. The effect of stronger dissipation is observed in the calculated mean crossing rate 

for this case in Fig. 10(a). It is observed that increasing 𝑟 leads to less frequent crossings 

between wells, which however, does not necessarily lead to reduced mean power (see Fig 

10(b)). The load voltage is proportional to resistance, which is shown from the almost linearly 

increasing power for 𝑟 ∈ (0.8, 0.9) where the crossing rate is almost constant. As soon as 

stronger dissipation is induced by higher values of 𝑟, the mean power saturates to maximum 

value, which is found very close to 𝑟 = 1. 

The above discussion reveals two different strategies for maintaining a low electrical damping 

ratio. Selecting the highest possible 𝑅𝐿 (𝑟 → 1) does not necessarily lead to optimal power 

output because of the damping alterations. In fact, the optimal resistance for power 
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generation stemming from Case I might have to be limited by ratio 𝑟 such that damping 

remains sensible. For example, a value of 𝑟 = 0.8 leads to nearly constant damping ratio 

across all energies and close to the value from Case I, whereas 𝑟 = 0.9975 brings frequency-

dependent variations up to 12 times. A strategy for maintaining stochastic resonance should 

therefore carefully consider the proportion of each resistor to mitigate excessive damping. 

Furthermore, the capacitance may considerably affect energy dissipation. Observing Eq. (15), 

the influence of 𝑟 → 1 can be cancelled if 𝛼 ≫ Ω(𝐻), which can be configured with low values 

of 𝐶𝑟. Fig. 9(d),(e) show the damping ratio against 𝐶𝑟 and 𝐻 for 𝑟 = 0.9957. It is observed 

that 𝐷𝑒 is almost constant across the whole range of 𝐻, with the exception of trajectories 

near the homoclinic orbit where the value of the damping ratio asymptotically approaches 𝜁𝑒. 

Effectively the capacitance may cancel the in-cycle, energy-dependent fluctuations of the 

instantaneous damping ratio, as Fig. 9(e) shows; however, it can also lead to excessive overall 

disspation, as Fig. 10(b),(d) reveal. The capacitor is used to regulate the fluctuations of the 

rectifier voltage output. Moreover, an intuitive approach is to use this for energy storage as 

well, in order to mitigate potential shortages in the supply of the harvester. Nevertheless, 

increasing the capacitance may lead to dramatic damping ratios to the order of 𝜁𝑒/(1 − 𝑟), 

which would adversely affect the amplitude of vibrations. Interestingly, the damping ratio 

remains relatively unaffected below a threshold value of 𝐶𝑟, which in the case study 

presented in Fig 9(d) is close to 10𝜇𝐹. Monitoring the crossing rate and the corresponding 

mean power in a parametric analysis with respect to 𝐶𝑟 shown in Fig. 10(b),(d), this critical 

capacitance is found to greatly affect the magnitude of the harvested power. A capacitance 

below the threshold can lead to strong stochastic resonance with amplified power output 

with respect to higher capacitance. Higher 𝐶𝑟 may offer larger storage and better elimination 

of the voltage ripples, however, excessive capacitance can rapidly decrease the harvested 

power. This effectively can inform designers of a maximum 𝐶𝑟, which offers the largest energy 

storage capacity without dissipating the oscillator’s stochastic resonance. Interestingly, the 

response at the critical capacitance not only maintains stochastic resonance, but it 

corresponds to optimal harvested power as well. 

5 CONCLUSIONS 

This paper has demonstrated the effect of the electrical load of a vibration energy harvester 

on the manifestation of stochastic resonance and the corresponding implications for 

harvested power. A numerical Path Integration method has been used to compute the joint 

response Probability Density Function of the harvester under various configurations and 

parameter variations. The mean crossing rate between the two wells of the bi-stable potential 

energy has been used as an indicator of the strength of stochastic resonance. It has been 
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shown that the optimal harmonic frequency has a nonlinear dependence on the system 

overall energy. Moreover, the indispensable usage of a rectifier and a capacitor has been 

shown to inflict considerable variations on the optimal electrical damping. The rectifier 

activation threshold weakens the electrical dissipation of the oscillator energy, which, 

although it leads to more frequent jumps between the wells, leads to lower average power 

extraction. Notably, the threshold value modifies the optimal load resistance for maximum 

power output. Furthermore, the addition of a capacitor to stabilise the voltage ripples and to 

act as energy storage has been found to level out fluctuations of the damping ratio when the 

rectifier conducts, whereas a maximum capacitance has been revealed for strong stochastic 

resonance. This capacitance also corresponds to the optimal combination of harvested power 

and energy storage, informing designers for the most favourable selection of capacitors. 
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Fig. 1. (a) Schematic of the mechanical bi-stable oscillator and the coupled electric circuit; (b) 
simplified purely resistive electrical load corresponding to Case I; (c) circuit with rectifier 
depicting Case II; (d) rectified power with stabilising capacitor (Case III). 
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Fig. 2. Modulations of the bi-stable potential energy 𝑈(𝑧) by a weak periodic signal of period 
𝑇.  
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Fig. 3. Samples of the displacement response of the bi-stable harvester governed by Eq. (2) 
with stable equilibria at 𝑧 = ±1 shown by dashed red lines. (a) Deterministic phase space plot 
for 𝜔 = 0.7 and 𝜔 = 1.0; (b) wideband excitation with 𝐷 = 0.001; and response to combined 
harmonic with wide-band excitation for 𝐷 = 0.001 and: (c) 𝜔 = 0.7; (d) 𝜔 = 0.8; (e) 𝜔 =
0.9; (f) 𝜔 = 1.0.  
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Fig. 4. Joint response PDF, 𝑝𝑧𝑧′, for 𝐴𝑛 = 0.1, 𝐷 = 0.001 and (a) 𝜔 = 0.7; (b) 𝜔 = 1.0; 
comparison of (c) 𝑝𝑧 and (d) 𝑝𝑧′  against M  C simulations (1,000 samples) for 𝜔 = 1.0; 
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Fig. 5. (a) Stationary time history of the crossing rate, 𝜈𝑟, for 𝐴𝑛=0.08 and 𝜔=0.9; (b) 
Complete time history of the moving mean of the crossing rate averaged over one period for 
𝐴𝑛 = 0.08 and 𝜔 = 0.9 (––––––––); 𝐴𝑛 = 0.05 and 𝜔 = 0.75 (– – – – –). 

 

 

 

Fig. 6. (a) Crossing rates for Case I with 𝑅𝐿 = 17 k𝛺 and 𝐷 = 0.001 for varying 𝐴𝑛; (b) 
corresponding mean power output   
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Fig. 7. (a) Crossing rates versus harmonic excitation frequency for Case I with 𝑅𝐿 = 17 k𝛺 
and 𝐴𝑛 = 0.05 for varying 𝐷 as per the displayed legend; (b) corresponding mean power 
output.  
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Fig. 8. (a) Crossing rates versus harmonic excitation frequency for Case II with 𝑅𝐿 = 17 k𝛺 
and 𝐴𝑛 = 0.05 for varying rectifier threshold 𝑈𝑟 as per the displayed legends; (b) 
corresponding mean power output. (c) Crossing rates and (d) mean power output against load 
resistance for various values of the rectifier voltage drop and 𝐴𝑛 = 0.05, 𝜔 = 0.775. 
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Fig. 9. Parametric variation of the damping ratio 𝐷𝑒 with respect to: (a) resistance ratio 𝑟 and 
energy 𝐻 for 𝐶𝑟 = 10−5 F; (b) energy 𝐻 for selected 𝑟 values; (c) resistance ratio 𝑟 under 
constant 𝜁𝑒; (d) capacitance 𝐶𝑟 and energy 𝐻 for 𝑟 = 0.9959 and: (e) contour plot of 𝐷𝑒. 

 

(a) (b) 

(c) (d) 

(e) 



33 

 

 

Fig. 10.  Mean crossing rate 𝜈𝑟 (a),(b) and mean power 〈𝑃〉 (c),(d) corresponding to Case III and 
Eqs (14) and (15) against resistance ratio 𝑟 (left column) and capacitance 𝐶𝑟 (right column).  
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