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Abstract

Controllers for autonomous systems that operate in safety-
critical settings must account for stochastic disturbances. Such
disturbances are often modeled as process noise, and common
assumptions are that the underlying distributions are known
and/or Gaussian. In practice, however, these assumptions may
be unrealistic and can lead to poor approximations of the true
noise distribution. We present a novel planning method that
does not rely on any explicit representation of the noise distri-
butions. In particular, we address the problem of computing
a controller that provides probabilistic guarantees on safely
reaching a target. First, we abstract the continuous system
into a discrete-state model that captures noise by probabilistic
transitions between states. As a key contribution, we adapt
tools from the scenario approach to compute probably approx-
imately correct (PAC) bounds on these transition probabilities,
based on a finite number of samples of the noise. We capture
these bounds in the transition probability intervals of a so-
called interval Markov decision process (iMDP). This iMDP
is robust against uncertainty in the transition probabilities, and
the tightness of the probability intervals can be controlled
through the number of samples. We use state-of-the-art ver-
ification techniques to provide guarantees on the iMDP, and
compute a controller for which these guarantees carry over
to the autonomous system. Realistic benchmarks show the
practical applicability of our method, even when the iMDP
has millions of states or transitions.

1 Introduction
Consider a so-called reach-avoid problem for an unmanned
aerial vehicle (UAV), where the goal is to reach a desirable
region within a given time horizon, while avoiding certain un-
safe regions (Baier and Katoen 2008; Clarke, Emerson, and
Sistla 1986). A natural formal model for such an autonomous
system is a dynamical system. The state of the system re-
flects the position and velocity of the UAV, and the control
inputs reflect choices that may change the state over time (Ku-
lakowski, Gardner, and Shearer 2007). The dynamical system
is linear if the state transition is linear in the current state and
control input. Our problem is to compute a controller, such
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that the state of the UAV progresses safely, without entering
unsafe regions, to its goal (Åström and Murray 2010).

However, factors like turbulence and wind gusts cause
uncertainty in the outcome of control inputs (Blackmore et al.
2010). We model such uncertainty as process noise, which is
an additive random variable (with possibly infinitely many
outcomes) in the dynamical system that affects the transition
of the state. Controllers for autonomous systems that operate
in safety-critical settings must account for such uncertainty.

A common assumption to achieve computational tractabil-
ity of the problem is that the process noise follows a Gaussian
distribution (Park, Serpedin, and Qaraqe 2013), for example
in linear-quadratic-Gaussian control (Anderson and Moore
2007). However, in realistic problems, such as the UAV oper-
ating under turbulence, this assumption yields a poor approx-
imation of the uncertainty (Blackmore et al. 2010). Distribu-
tions may even be unknown, meaning that one cannot derive
a set-bounded or stochastic representation of the noise. In this
case, it is generally hard or even impossible to derive hard
guarantees on the probability that a given controller ensures
a safe progression of the system’s state to the objective.

In this work, we do not require that the process noise
is known. Specifically, we provide probably approximately
correct (PAC) guarantees on the performance of a controller
for the reach-avoid problem, where the distribution of the
noise is unknown. As such, we solve the following problem:

Given a linear dynamical system perturbed by additive
noise of unknown distribution, compute a controller un-
der which, with high confidence, the probability to satisfy
a reach-avoid problem is above a given threshold value.

Finite-state abstraction. The fundamental concept of our
approach is to compute a finite-state abstraction of the dy-
namical system. We obtain such an abstract model from a
partition of the continuous state space into a set of disjoint
convex regions. Actions in this abstraction correspond to con-
trol inputs that induce transitions between these regions. Due
to the process noise, the outcome of an action is stochastic,
and every transition has a certain probability.

Probability intervals. Since the distribution of the noise
is unknown, it is not possible to compute the transition prob-
abilities exactly. Instead, we estimate the probabilities based



on a finite number of samples (also called scenarios) of the
noise, which may be obtained from a high fidelity (blackbox)
simulator or from experiments. To be robust against estima-
tion errors in these probabilities, we adapt tools from the
scenario approach (also called scenario optimization), which
is a methodology to deal with stochastic convex optimization
in a data-driven fashion (Campi and Garatti 2008; Garatti and
Campi 2019). We compute upper and lower bounds on the
transition probabilities with a desired confidence level, which
we choose up front. These bounds are PAC, as they contain
the true probabilities with at least this confidence level.

Interval MDPs. We formalize our abstractions with the
PAC probability bounds using so-called interval Markov de-
cision processes (iMDPs). While regular MDPs require pre-
cise transition probabilities, iMDPs exhibit probability in-
tervals (Givan, Leach, and Dean 2000). Policies for iMDPs
have to robustly account for all possible probabilities within
the intervals, and one usually provides upper and lower
bounds on maximal or minimal reachability probabilities
or expected rewards (Hahn et al. 2017; Puggelli et al. 2013;
Wolff, Topcu, and Murray 2012). For MDPs with precise
probabilities, mature tool support exists, for instance, via
PRISM (Kwiatkowska, Norman, and Parker 2011). In this
work, we extend the support of PRISM to iMDPs.

Iterative abstraction scheme. The tightness of the prob-
ability intervals depends on the number of noise samples.
Hence, we propose an iterative abstraction scheme, to iter-
atively improve these intervals by using increasing sample
sizes. For the resulting iMDP, we compute a robust policy
that maximizes the probability to safely reach the goal states.
Based on a pre-defined threshold, we decide whether this
probability is unsatisfactory or satisfactory. In the former
case, we collect additional samples to reduce the uncertainty
in the probability intervals. If the probability is satisfactory,
we use the policy to compute a controller for the dynamical
system. The specified confidence level reflects the likelihood
that the optimal reachability probability on the iMDP is a
lower bound for the probability that the dynamical system sat-
isfies the reach-avoid problem under this derived controller.

Contributions. Our contributions are threefold: (1) We
propose a novel method to compute safe controllers for dy-
namical systems with unknown noise distributions. Specif-
ically, the probability of safely reaching a target is guaran-
teed, with high confidence, to exceed a pre-defined threshold.
(2) We propose a scalable refinement scheme that incremen-
tally improves the iMDP abstraction by iteratively increasing
the number of samples. (3) We apply our method to multiple
realistic control problems, and benchmark against two other
tools: StocHy and SReachTools. We demonstrate that the
guarantees obtained for the iMDP abstraction carry over to
the dynamical system of interest. Moreover, we show that
using probability intervals instead of point estimates of prob-
abilities yields significantly more robust results.

Related work
Reachability analysis. Verification and controller synthe-
sis for reachability in stochastic systems is an active field of

research in safety-critical engineering (Abate et al. 2008;
Lavaei et al. 2021). Most approaches are based on for-
mal abstractions (Alur et al. 2000; Lahijanian, Anders-
son, and Belta 2015; Soudjani and Abate 2013) or work
in the continuous domain directly, e.g., using Hamilton-
Jacobi reachability analysis (Bansal et al. 2017; Herbert
et al. 2017) or optimization (Rosolia, Singletary, and Ames
2020). Several tools exist, such as StocHy (Cauchi and Abate
2019), ProbReach (Shmarov and Zuliani 2015) and SReach-
Tools (Vinod, Gleason, and Oishi 2019). However, the major-
ity of these methods require full knowledge of the models.

We break away from this literature in putting forward ab-
stractions that do not require any knowledge of the noise
distribution, via the scenario approach. It has been used for
the verification of Markov decision processes (MDPs) with
uncertain parameters (Cubuktepe et al. 2020), albeit only for
finite-state systems. SReachTools also exhibits a sampling-
based method, but relies on Hoeffding’s inequality to obtain
confidence guarantees (Sartipizadeh et al. 2019), so the noise
is still assumed to be sub-Gaussian (Boucheron, Lugosi, and
Massart 2013). By contrast, the scenario approach is com-
pletely distribution-free (Campi and Garatti 2018). Moreover,
SReachTools is limited to problems with convex safe sets (a
restrictive assumption in many problems) and its sampling-
based methods can only synthesize open-loop controllers.
Further related are sampling-based feedback motion plan-
ning algorithms, such as LQR-Trees. However, sampling in
LQR-Trees relates to random exploration of the state space,
and not to stochastic noise affecting the dynamics as in our
setting (Reist, Preiswerk, and Tedrake 2016; Tedrake 2009).

Alternatives to the scenario approach. Monte Carlo
methods (e.g. particle methods) can also solve stochastic
reach-avoid problems (Blackmore et al. 2010; Lesser, Oishi,
and Erwin 2013). These methods simulate the system via
many samples of the uncertain variable (Smith 2013). Monte
Carlo methods approximate stochastic problems, while our
approach provides bounds with a desired confidence level.

In distributionally robust optimization (DRO), decisions
are robust with respect to ambiguity sets of distributions (Esfa-
hani and Kuhn 2018; Goh and Sim 2010; Wiesemann, Kuhn,
and Sim 2014). While the scenario approach uses samples of
the uncertain variable, DRO works on the domain of uncer-
tainty directly, thus involving potentially complex ambiguity
sets (Garatti and Campi 2019). Designing robust policies for
iMDPs with known uncertainty sets was studied by Puggelli
et al. (2013), and Wolff, Topcu, and Murray (2012). Hybrid
methods between the scenario approach and robust optimiza-
tion also exist (Margellos, Goulart, and Lygeros 2014).

PAC literature. The term PAC refers to obtaining, with
high probability, a hypothesis that is a good approximation of
some unknown phenomenon (Haussler 1990). PAC learning
methods for discrete-state MDPs are developed in Brafman
and Tennenholtz (2002), Fu and Topcu (2014), and Kearns
and Singh (2002), and PAC statistical model checking for
MDPs in Ashok, Kretı́nský, and Weininger (2019).

Safe learning methods. We only briefly discuss the emerg-
ing field of safe learning (Brunke et al. 2021; Garcı́a and



Fernández 2015). Recent works use Gaussian processes for
learning-based model predictive control (Hewing, Kabzan,
and Zeilinger 2020; Koller et al. 2018) or reinforcement
learning with safe exploration (Berkenkamp et al. 2017), and
control barrier functions to reduce model uncertainty (Taylor
et al. 2020). Safe learning control concerns learning unknown,
deterministic system dynamics, while imposing strong as-
sumptions on stochasticity (Fisac et al. 2019). By contrast,
our problem setting is fundamentally different: we reason
about stochastic noise of a completely unknown distribution.

2 Foundations and Outline
A discrete probability distribution over a finite set X is a
function prob : X → [0, 1] with

∑
x∈X prob(x) = 1. The

set of all distributions over X is Dist(X ), and the cardinal-
ity of a set X is |X|. A probability density function over a
random variable x conditioned on y is written as p(x|y). All
vectors x ∈ Rn, n ∈ N, are column vectors and denoted by
bold letters. We use the term controller when referring to
dynamical systems, while we use policy for (i)MDPs.

2.1 Linear dynamical systems
We consider discrete-time, continuous-state systems, where
the progression of the n-dimensional state x ∈ Rn depends
linearly on the current state, a control input, and a process
noise term. Given a state xk at discrete time step k ∈ N, the
successor state at time k + 1 is computed as

xk+1 = Axk +Buk + qk + wk, (1)

where uk ∈ U ⊂ Rp is the control input at time k, A ∈
Rn×n and B ∈ Rn×p are appropriate matrices, qk ∈ Rn
is a deterministic disturbance, and wk ∈ Rn is an arbitrary
additive process noise term. We consider piecewise-linear
feedback controllers of the form φ : Rn × N → U , which
map a state xk ∈ Rn and a time step k ∈ N to a control input
uk ∈ U . The controller may be time-dependent, because we
consider control objectives with a finite time horizon.

The random variable wk ∈ ∆ is defined on a probability
space (∆,D,P), with σ-algebra D and probability measure
P defined over D. We do not require the sample space ∆
and probability measure P to be known explicitly. Instead,
we employ a sampling-based approach, for which it suffices
to have a finite number of N independent and identically
distributed (i.i.d.) samples of the random variable, and to
assume that its distribution is independent of time. Due to
the process noise wk, the successor state xk+1 is a random
variable at time k. We denote the probability density function
over successor states as pwk

(xk+1 | x̂k+1), where x̂k+1 =
Axk +Buk + qk is its noiseless value.

Remark 1 (Restriction to linear systems). Our methods are
theoretically amenable to nonlinear systems, albeit requiring
more advanced 1-step reachability computations unrelated
to our main contributions. Hence, we restrict ourselves to the
linear system in Eq. (1). We discuss extensions to nonlinear
systems in Sect. 6.

Problem statement. We consider control objectives that
are expressed as (step-bounded) reach-avoid properties. A

reach-avoid property ϕKx0
is satisfied if, starting from state

x0 at time k = 0, the system reaches a desired goal region
XG ⊂ Rn within a finite time horizon of K ∈ N steps, while
avoiding a critical region XC ⊂ Rn. We write the probability
of satisfying a reach-avoid property ϕKx0

under a controller φ
as Prφ(ϕKx0

). We state the formal problem as follows.

Compute a controller φ for the system in Eq. (1) that,
with high confidence, guarantees that Prφ(ϕKx0

) ≥ η,
where η ∈ [0, 1] is a pre-defined probability threshold.

2.2 Markov decision processes
A Markov decision process (MDP) is a tuple M =
(S,Act, sI , P ) where S is a finite set of states, Act is a fi-
nite set of actions, sI is the initial state, and P : S ×Act ⇀
Dist(S ) is the (partial) probabilistic transition function. We
call (s, a, s′) with probability P (s, a)(s′) > 0 a transition.
A deterministic (or pure) policy (Baier and Katoen 2008)
for an MDPM is a function π : S∗ → Act, where S∗ is a
sequence of states. The set of all possible policies forM is
denoted by ΠM. Note that we leave out rewards for brevity,
but our approach is directly amenable to expected reward
properties (Baier and Katoen 2008).

A probabilistic reach-avoid property Prπ(ϕKsI ) for an
MDP describes the probability of reaching a set of goal states
SG ⊂ S within K ∈ N steps under policy π ∈ Π, while
avoiding a set of critical states SC ⊂ S, where SG∩SC = ∅.
An optimal policy π∗ ∈ ΠM for MDP M maximizes the
reachability probability:

π∗ = arg max
π∈ΠM

Prπ(ϕKsI ). (2)

We now relax the assumption that probabilities are precisely
given. An interval Markov decision process (iMDP) is a
tuple MI = (S,Act, sI ,P) where the uncertain (partial)
probabilistic transition function P : S × Act × S ⇀ I is
defined over intervals I = {[a, b] | a, b ∈ (0, 1] and a ≤ b}.
iMDPs define sets of MDPs that vary only in their transi-
tion function. In particular, for an MDP transition function
P , we write P ∈ P if for all s, s′ ∈ S and a ∈ Act we
have P (s, a)(s′) ∈ P(s, a)(s′) and P (s, a) ∈ Dist(S ). For
iMDPs, a policy needs to be robust against all P ∈ P . We
employ value iteration to compute a policy π∗ ∈ ΠMI for
iMDPMI that maximizes the lower bound on the reachabil-
ity probability Prπ(ϕKsI ) within horizon K:

π∗ = arg max
π∈ΠMI

Prπ(ϕKsI ) = arg max
π∈ΠMI

min
P∈P

Prπ(ϕKsI ). (3)

Note that deterministic policies suffice to obtain optimal
values for (i)MDPs (Puterman 1994; Puggelli et al. 2013).

2.3 Our iterative abstraction scheme
Our proposed approach is shown in Fig. 1. We choose a fixed
state-space partition and confidence level up front, and select
an initial number of samples N (note that extensions to vari-
able confidence levels or partitions are straightforward). As
explained in Sect. 3 and 4, we then abstract the dynamical
system as an iMDP using N samples of the noise. For the



Linear dynamical system
xk+1 = Axk+Buk+qk+wk

Abstract iMDP
MI = (S,Act, sI ,P)

Guarantees on iMDP
Policy π∗ and Prπ

∗
(ϕKsI )

Continuous controller
φ : X × N → U

Partition R Confidence level
1− β

Property
ϕKsI

Sample and
abstract

Compute robust
optimal policy

Prπ
∗
(ϕKsI ) < η m

Increase sample size: N ← γN
Prπ

∗
(ϕKsI ) ≥ η ¢

Extract π∗

Apply controller
(and terminate)

Figure 1: Our iterative approach between abstraction and
verification, where N is the number of samples used for the
abstraction, and η is the threshold reachability probability.

iMDP, we compute an optimal policy π∗ that maximizes the
probability of satisfying the given property, as per Eq. (3).
If the maximum reachability probability under this policy is
above the required threshold η, we compute the correspond-
ing controller φ for the dynamical system, and terminate the
scheme. If the maximum probability is unsatisfactory (i.e.
below η), we obtain additional samples by increasing N by a
fixed factor γ > 1. The updated iMDP has tighter probability
intervals, but may also have more transitions. Since the states
and actions of the iMDP are independent of N , they are only
computed once, in the first iteration. In general we cannot
guarantee a priori that the property is satisfiable up to the
given value of η, so we also terminate the scheme after a fixed
number of iterations, in which case no output is returned.

3 Finite-State MDP Abstraction
First, we describe how we partition the state space into a set
of discrete convex regions. We then use this partition to build
a finite-state abstraction of the dynamical system in Eq. (1).

3.1 State space discretization
We choose a partition R of the continuous state space Rn
into a set of disjoint regions that represent a bounded portion
X ⊂ Rn. In addition, we define a single absorbing region ra,
representing Rn\X . We number the regions inR from 1 to
|R|, and define a function T : Rn → {1, 2, . . . , |R|, |R|+1}
that maps a continuous state x ∈ Rn to one of the regions in
partitionR through the index of that region, or to |R|+ 1 if
x ∈ ra = Rn\X . Thus, the absorbing region ra captures the
event that the continuous state leaves the bounded portion of
the state space over which we plan. For convenience, we also
define the inverse mapping as Ri = T−1(i).

We consider the regions inR to be n-dimensional bounded,
convex polytopes. In particular, convex polytope Ri is the
solution set of m linear inequalities parameterized by Mi ∈
Rm×n and bi ∈ Rm, yielding Ri =

{
x ∈ Rn |Mix ≤ bi

}
.

In addition, the following assumption allows us to translate
properties for the dynamical system to properties on the
iMDP abstraction:
Assumption 1. The continuous goal region XG and critical
region XC are aligned with the union of a subset of regions
in R, i.e. XG = ∪i∈IRi and XC = ∪j∈JRj for index sets
I, J ⊂ {1, 2, . . . , |R|}.

3.2 MDP abstraction
We formalize the dynamical system discretized under par-
tition R as an MDP M = (S,Act, sI ,P), by defining its
states, actions, and transition probabilities (cf. ensuing para-
graphs). We assume the initial state sI ∈ S is known, and we
capture time constraints by the bounded reach-avoid property.

States. The set of states is S = {si | i = 1, . . . , |R|} ∪
{sa}, where discrete state si represents all continuous states
xk for which T (xk) = i. Then, the MDP consists of |S| =
|R|+ 1 states: one for every region in partitionR, plus one
state sa corresponding to the absorbing region ra. State sa is
a deadlock, meaning the only transition leads back to sa.

Actions. Discrete actions correspond to the execution of
a control input uk ∈ U in the dynamical system in Eq. (1).
We define q ∈ N MDP actions, so Act = {a1, . . . , aq}.
Recall that the noiseless successor state of xk is x̂k+1 =
Axk +Buk + qk. Every action aj is associated with a fixed
continuous target point dj ∈ Rn, and is defined such that its
noiseless successor state x̂k+1 = dj . While not a restriction
of our approach, we define one action for every MDP state,
and choose the target point to be the center of its region.

The MDP must form a correct abstraction of the dynam-
ical system. Thus, action aj only exists in an MDP state si
if, for every continuous state xk ∈ Ri, there exists a control
uk ∈ U , such that x̂k+1 = dj . To impose this constraint, we
define the one-step backward reachable set G(dj):

G(dj) = {x ∈ Rn | dj = Ax+Buk+qk, uk ∈ U}. (4)

Then, action aj exists in state si if and only if Ri ⊆ G(dj).
Note that the existence of an action in an MDP state merely
implies that for every continuous state in the associated re-
gion, there exists a feasible control input that induces this
transition. The following assumption asserts that the regions
inR can indeed be contained in the backward reachable set.

Assumption 2. The backward reachable set G(dj) has a
non-empty interior, which implies that matrix B is full row
rank, i.e., rank(B) = n, where n = dim(x) in Eq. (1).

For many systems, we may group together multiple dis-
crete time steps in Eq. (1), such that Assumption 2 holds
(see Badings et al. (2021b, Sect. 6) for more details). To com-
pute the actual control uk in state xk at time k, we replace
xk+1 by dj in Eq. (1) and solve for uk, yielding:

uk = B+(dj − qk −Axk), (5)

with B+ the pseudoinverse of B. It is easily verified that for
every state where action aj is enabled, there exists a uk such
that Eq. (5) holds (depending on B, it may not be unique).

Transition probability intervals. We want to determine
the probability P (si, al)(sj) to transition from state si to
state sj upon choosing action al. In the abstraction, this
is equivalent to computing the cumulative density function
of the distribution over the successor state xk+1 under the
polytope Rj associated with state sj . The probability density
function pwk

(xk+1 | x̂k+1 = dj) captures the distribution
over successor states xk+1, which depends on the process



noise wk. By denoting Pwk
(xk+1 ∈ Rj) as the probability

that xk+1 takes a value in discrete region Rj , we write:

P (si, al)(sj) = Pwk
(xk+1 ∈ Rj)

=

∫
Rj

pwk
(xk+1 | x̂k+1 = dj)dxk+1.

(6)

Recall that the probability density function pwk
(·) is un-

known, making a direct evaluation of Eq. (6) impossible.
Instead, we use a sampling-based approach to compute prob-
ability intervals as explained in Sect. 4.

4 Sampling-Based Probability Intervals
We introduce a sampling-based method to estimate the tran-
sition probabilities in Eq. (6), based on a finite set of N
observations w(i)

k ∈ ∆, i = 1, . . . , N of the process noise.
Each sample has a unique index i = 1, . . . , N and is associ-
ated with a possible successor state xk+1 = x̂k+1+w

(i)
k . We

assume that these samples are available from experimental
data or simulations, and are thus obtained at a low cost.

Assumption 3. The noise samples w(i)
k ∈ ∆, i = 1, . . . , N

are i.i.d. elements from (∆,P), and are independent of time.

Due to the samples being i.i.d., the set w(1)
k , . . . ,w

(N)
k of

N samples is a random element from the probability space
∆N equipped with the product probability PN .

As an example, we want to evaluate the probability
P (si, al)(sj) that state-action pair (si, al) induces a transi-
tion to state sj . A naive frequentist approach to approximate
the probability would be to determine the fraction of the sam-
ples leading to this transition, using the following definition.
Definition 1. The cardinality N in

j ∈ {0, . . . , N} of the index
set of the samples leading to xk+1 ∈ Rj is defined as

N in
j =

∣∣∣{i ∈ {1, . . . , N} | (x̂k+1 + w
(i)
k ) ∈ Rj}

∣∣∣. (7)

Similarly, we define N out
j = N − N in

j as the number of

samples for which x̂k+1 + w
(i)
k is not contained in Rj .

Note that N in
j and N out

j depend on both the sample set
and the action. The frequentist approach is simple, but may
lead to estimates that deviate critically from their true values
if the number of samples is limited (we illustrate this issue
in practice in Sect. 5.1). In what follows, we introduce our
method to be robust against such estimation errors.

4.1 Bounds for the transition probabilities
We adapt methods from the scenario approach (Campi and
Garatti 2018) to compute intervals of probabilities instead
of precise estimates. For every probability P (si, al)(sj), we
compute an upper and lower bound (i.e. an interval) that con-
tains the true probability in Eq. (6) with a high confidence.
We formalize the resulting abstraction as an iMDP, where
these probability intervals enter the uncertain transition func-
tion P : S × Act × S ⇀ I. As the intervals are PAC, this
iMDP is a robust abstraction of the dynamical system.

First, we introduce the concept of risk (or violation proba-
bility), which is a measure of the probability that a successor
state is not in a given region (Campi and Garatti 2008).

Definition 2. The risk Pwk
(xk+1 /∈ Rj) that a successor

state xk+1 is not in region Rj is

Pwk
(xk+1 /∈ Rj) = P{wk ∈ ∆ : x̂k + wk /∈ Rj}

= 1− Pwk
(xk+1 ∈ Rj).

(8)

Crucially for our approach, note that P (si, al)(sj) =
Pwk

(xk+1 ∈ Rj). The scenario approach enables us to
bound the risk that the optimal point of a so-called scenario
optimization problem does not belong to a feasible set R̃ de-
fined by a set of constraints when we are only able to sample
a subset of those constraints. By formulating this optimiza-
tion problem such that R̃ is closely related to a region Rj , we
obtain upper and lower bounds on the risk over Rj , and thus
also on the corresponding transition probability (we refer
to Badings et al. (2021a, Appendix A) for details on the sce-
nario optimization problem). Importantly, this result means
that we can adapt the theory from the scenario approach to
compute transition probability intervals for our abstractions.

Based on this intuition, we state the main contribution of
this section, as a non-trivial variant of Romao, Margellos,
and Papachristodoulou (2020, Theorem 5), adapted for our
context. Specifically, for a given transition (si, al, sj) and the
corresponding number of samples N out

j outside of region Rj
(as per Def. 1), Theorem 1 returns an interval that contains
P (si, al)(sj) with at least a pre-defined confidence level.
Theorem 1 (PAC probability intervals). For N ∈ N samples
of the noise, fix a confidence parameter β ∈ (0, 1). Given
N out
j , the transition probability P (si, al)(sj) is bounded by

PN
{

¯
p ≤ P (si, al)(sj) ≤ p̄

}
≥ 1− β, (9)

where
¯
p = 0 if N out

j = N , and otherwise
¯
p is the solution of

β

2N
=

N out
j∑

i=0

(
N

i

)
(1−

¯
p)i

¯
pN−i, (10)

and p̄ = 1 if N out
j = 0, and otherwise p̄ is the solution of

β

2N
= 1−

N out
j −1∑
i=0

(
N

i

)
(1− p̄)ip̄N−i. (11)

For the proof and technical details of this theorem, we
refer to Badings et al. (2021a, Appendix A). Theorem 1
states that with a probability of at least 1− β, the probability
P (si, al)(sj) is bounded by the obtained interval. Impor-
tantly, this claim holds for any ∆ and P, meaning that we can
bound the probability in Eq. (6), even when the probability
distribution of the noise is unknown.

4.2 Practical use of Theorem 1
We describe how we apply Theorem 1 to compute probability
intervals of the iMDPs. For every state-action pair (si, al),
we obtain N samples of the noise, and we determine N out

j for
every j ∈ {1, . . . , |R|, |R|+ 1}. Then, we invoke Theorem 1
for every possible successor state sj ∈ S, to compute the
bounds on P (si, al)(sj). Fig. 2 shows this process, where
every tick is a successor state xk+1 under a sample of the
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[
¯
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N in
j /N : 0.34 0.18 0.42

Figure 2: Bounds [
¯
p, p̄] on the probabilities P (s, a)(sj) for

3 regions j ∈ {1, 2, 3}, using N = 100 samples (black
ticks) and β = 0.01. The distribution over successor states is
pwk

(·). Point estimate probabilities are computed as N in
j /N .

Algorithm 1: Sampling-based iMDP abstraction.
Input: Linear dynamical system; property ϕKsI (threshold η)
Params: PartitionR; confidence lvl. β; increment factor γ
Output: Controller φ

1: Define iMDP states S and set of enabled actions Act
2: Let initial number of samples N = N0,
3: Let iteration limit zmax and z = 0
4: while Prπ

∗
(ϕKsI ) < η and z < zmax do

5: for all actions a in Act do
6: for all successor states s in S do
7: Compute PAC interval on probability P (·, a)(s)
8: end for
9: end for

10: Generate iMDPMI = (S,Act, sI ,P) for N samples
11: Compute π∗ and Prπ

∗
(ϕKsI ) onMI using PRISM

12: Let N = γN
13: end while
14: return piece-wise linear controller φ based on π∗

noise. This figure also shows point estimates of the probabil-
ities, derived using the frequentist approach. If no samples
are observed in a region, we assume that P (si, al)(sj) = 0.

Interestingly, our method is in practice almost as simple
as the frequentist approach, but has the notable advantage
that we obtain robust intervals of probabilities. Note that
Eq. (10) and (11) are cumulative distribution functions of
a beta distribution with parameters N out

j + 1 (or N out
j ) and

N−N out
j (orN−N out

j −1), respectively (Campi and Garatti
2018), which can directly be solved numerically for

¯
p (or

p̄). To speed up the computations at run-time, we apply a
tabular approach to compute the intervals for all relevant
values of N , β, and k up front. We refer to Badings et al.
(2021a, Appendix A.2) for an example of how the number of
samples controls the tightness of the intervals.

Figure 3: UAV problem (goal in green; obstacles in red), plus
trajectories under the optimal iMDP-based controller from
x0 = [−14, 0, 6, 0,−6, 0]>, under high and low turbulence.

5 Numerical Examples
We implement our iterative abstraction method in Python,
and tailor the model checker PRISM (Kwiatkowska, Norman,
and Parker 2011) for iMDPs to compute robust optimal poli-
cies. We present a pseudocode of our method in Algorithm 1.
At every iteration, the obtained iMDP is fed to PRISM, which
computes the optimal policy associated with the maximum
reachability probability, as per Eq. (3). Our codes are avail-
able via https://gitlab.science.ru.nl/tbadings/sample-abstract,
and all experiments are run on a computer with 32 3.7GHz
cores and 64 GB of RAM. We report the performance of our
method on: (1) a UAV motion control, (2) a building temper-
ature regulation, and (3) a spacecraft rendezvous problem. In
all benchmarks, we use Theorem 1 with β = 0.01, and apply
the iterative scheme with γ = 2, starting at N = 25, with an
upper bound of 12, 800 samples.

5.1 UAV motion planning
We consider the reach-avoid problem for a UAV operating
under turbulence, which was introduced in Sect. 1. Our goal is
to compute a controller that guarantees (with high confidence)
that the probability to reach a goal area, while also avoiding
unsafe regions, is above a performance threshold of η = 0.75.
We consider a horizon of 64 time steps, and the problem
layout is displayed in Fig. 3, with goal and critical regions
shown in green and red, respectively. We model the UAV as
a system of 3 double integrators (see Badings et al. (2021a,
Appendix B) for details). The state xk ∈ R6 encodes the
position and velocity components, and control inputs uk ∈
R3 model actuators that change the velocity. The effect of
turbulence on the state causes (non-Gaussian) process noise,
which we model using a Dryden gust model (Bøhn et al. 2019;
Dryden 1943). We compare two cases: a) a low turbulence
case, and 2) a high turbulence case. We partition the state
space into 25, 515 regions.
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Figure 4: Reachability guarantees on the iMDPs (blue) and
MDPs (orange) for their respective policies, versus the result-
ing empirical (simulated) performance (dashed lines) on the
dynamical system. Shaded areas show the standard deviation
across 10 iterations. The empirical performance of the MDPs
violates the guarantees; that of the iMDPs does not.

Scalability. We report the model sizes and run times in Bad-
ings et al. (2021a, Appendix B.2). The number of iMDP states
equals the size of the partition. Depending on the number of
samples N , the iMDP has 9 − 24 million transitions. The
mean time to compute the set of iMDP actions (which is
only done in the first iteration) is 15 min. Computing the
probabilities plus the verification in PRISM takes 1− 8 min,
depending on the number of samples N .

Accounting for noise matters. In Fig. 3, we show state
trajectories under the optimal iMDP-based controller, under
high and low turbulence (noise). Under low noise, the con-
troller prefers the short but narrow path; under high noise,
the longer but safer path is preferred. Thus, accounting for
process noise is important to obtain controllers that are safe.

iMDPs yield safer guarantees than MDPs. To show the
importance of using robust abstractions, we compare, under
high turbulence, our robust iMDP approach against a naive
MDP abstraction. This MDP has the same states and actions
as the iMDP, but uses precise (frequentist) probabilities. The
maximum reachability probabilities (guarantees) for both
methods are shown in Fig. 4. For every value of N , we apply
the resulting controllers to the dynamical system in Monte
Carlo simulations with 10, 000 iterations, to determine the
empirical reachability probability. Fig. 4 shows that the non-
robust MDPs yield poor and unsafe performance guarantees:
the actual reachability of the controller is much lower than
the reachability guarantees obtained from PRISM. By con-
trast, our robust iMDP-based approach consistently yields
safe lower bound guarantees on the actual performance of
controllers. The performance threshold of Prπ

∗
(ϕKsI ) ≥ 0.75

is guaranteed for N = 3, 200 samples and higher.

5.2 Building temperature regulation
Inspired by Cauchi and Abate (2018), we consider a temper-
ature control problem for a building with two rooms, both
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20 °C from any initial state, for either 50 or 800 samples.
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Figure 6: Maximum lower bound probabilities to reach the
goal zone temperature of 21 °C from any initial state within
64 steps, for our approach (N = 12, 800) and StocHy.

having their own radiator and air supply. Our goal is to maxi-
mize the probability to reach a temperature of 20 °C in both
zones within 32 steps of 15 minutes. The state xk ∈ R4 of the
system (see Badings et al. (2021a, Appendix C) for details)
reflects the temperatures of both zones and radiators, and
control inputs uk ∈ R4 change the air supply and boiler tem-
peratures in both zones. The deterministic heat gain through
zone walls is modeled by the disturbance qk ∈ R4. The noise
wk ∈ R4 has a Gaussian distribution (but this assumption is
not required for our approach). We partition the state space
into 35, 721 regions: 21 values for zone temperatures and 9
for radiator temperatures.

More samples means less uncertainty. In Fig. 5, we show
(for fixed radiator temperatures) the maximum lower bound
probabilities obtained from PRISM, to reach the goal from
any initial state. The results clearly show that better reacha-
bility guarantees are obtained when more samples are used
to compute the iMDP probability intervals. The higher the
value of N , the lower the uncertainty in the intervals, leading
to better reachability guarantees. Notably, the largest iMDP
has around 200 million transitions, as reported in Badings
et al. (2021a, Appendix C.2).

5.3 Benchmarks to other control synthesis tools
StocHy. We benchmark our method on a building temper-
ature problem against StocHy (Cauchi and Abate 2019), a
verification and synthesis tool based on formal abstractions
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Figure 7: Simulated state trajectories for the spacecraft ren-
dezvous problem, under low and high noise covariance. Our
feedback controllers are more robust, as shown by the smaller
error in the state trajectories over time (the Voronoi method
under high covariance failed to generate a solution).

(see Badings et al. (2021a, Appendix D.1) for details on the
setup and results). Similar to our approach, StocHy also de-
rives robust iMDP abstractions. However, StocHy requires
precise knowledge of the noise distribution, and it discretizes
the control input space of the dynamical system, to obtain
a finite action space. The maximum probabilities to reach
the goal zone temperature from any initial state obtained for
both methods are presented in Fig. 6. The obtained results
are qualitatively similar, and close to the goal temperature,
our lower bound reachability guarantees are slightly higher
than those obtained from StocHy. However, when starting at
temperatures close to the boundary (e.g. at both low radiator
and zone temperature), the guarantees obtained from our ap-
proach are slightly more conservative. This is due to the fact
that our approach relies on PAC guarantees on the transition
probabilities, while StocHy gives straight probabilistic out-
comes. While both methods yield results that are qualitatively
similar, our approach is an order of magnitude faster (45 min
for StocHy, vs. 3− 9 s for our approach; for detailed results,
see Badings et al. (2021a, Appendix D.1 and Table 1).

SReachTools. We apply our method to the spacecraft ren-
dezvous benchmark (see Fig. 7) of SReachTools (Vinod,
Gleason, and Oishi 2019), an optimization-based toolbox for
probabilistic reachability problems (we refer to Badings et al.
(2021a, Appendix D.2 and Table 2) for more details). While
we use samples to generate a model abstraction, SReachTools
employs sample-based methods over the properties directly.
Distinctively, SReachTools does not create abstractions (as in
our case) and is thus generally faster than our method. How-
ever, its complexity is exponential in the number of samples
(versus linear complexity for our method). Importantly, we de-
rive feedback controllers, while the sampling-based methods
of SReachTools compute open-loop controllers. Feedback
controllers respond to state observations over time and are,
therefore, more robust against strong disturbances from noise,
as also shown in Fig. 7.

6 Concluding Remarks and Future Work
We have presented a novel sampling-based method for ro-
bust control of autonomous systems with process noise of
unknown distribution. Based on a finite-state abstraction, we
have shown how to compute controllers with PAC guarantees
on the performance on the continuous system. Our experi-
ments have shown that our method effectively solves realistic
problems and provides safe lower bound guarantees on the
performance of controllers.

Nonlinear systems. While we have focused on linear dy-
namical systems, as discussed in Remark 1, we wish to de-
velop extensions to nonlinear systems. Such extensions are
non-trivial and may require more involved reachability com-
putations (Bansal et al. 2017; Chen, Ábrahám, and Sankara-
narayanan 2013). Specifically, the main challenge is to com-
pute the enabled iMDP actions via the backward reachable
set defined in Eq. (4), which may become non-convex under
nonlinear dynamics. Note that computing the PAC probability
intervals remains unchanged, as the scenario approach relies
on the convexity of the target set only, and not on that of
the backward reachable set. Alternatively, we may apply our
method on a linearized version of the nonlinear system. How-
ever, in order to preserve guarantees, one must then account
for any linearization error.

State space discretization. The discretization of the state
space influences the quality of the reachability guarantees: a
more fine-grained partition yields an abstraction that is a more
accurate representation of the dynamical system, but also
increases the computational complexity. In the future, we plan
to employ adaptive discretization schemes to automatically
balance this trade-off, such as in Soudjani and Abate (2013).

Safe exploration. Finally, we wish to incorporate other un-
certainties in Eq. (1), such as state/control-dependent process
noise, or measurement noise. Moreover, we may drop the
assumption that the system matrices are precisely known,
such that we must simultaneously learn about the unknown
deterministic dynamics and the stochastic noise. Learning
deterministic dynamics is common in safe learning con-
trol (Brunke et al. 2021), but enabling safe exploration re-
quires strong assumptions on stochastic uncertainty. This is a
challenging goal, as it conflicts with our assumption that the
distribution of the process noise is completely unknown.
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