
 
 

University of Birmingham

A useful technique for piecewise deterministic
Markov decision processes
Guo, Xin; Zhang, Yi

DOI:
10.1016/j.orl.2020.11.002

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Guo, X & Zhang, Y 2021, 'A useful technique for piecewise deterministic Markov decision processes',
Operations Research Letters, vol. 49, no. 1, pp. 55-61. https://doi.org/10.1016/j.orl.2020.11.002

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 07. May. 2024

https://doi.org/10.1016/j.orl.2020.11.002
https://doi.org/10.1016/j.orl.2020.11.002
https://birmingham.elsevierpure.com/en/publications/133cc8f6-c11a-49dc-9b03-defafcf501b2


A useful technique for piecewise deterministic Markov decision

processes∗

Xin Guo † and Yi Zhang ‡

Abstract: This note presents a technique that is useful for the study of piecewise deterministic
Markov decision processes (PDMDPs) with general policies and unbounded transition intensities.
This technique produces an auxiliary PDMDP from the original one. The auxiliary PDMDP pos-
sesses certain desired properties, which may not be possessed by the original PDMDP. We apply this
technique to risk-sensitive PDMDPs with total cost criteria, and comment on its connection with the
uniformization technique.

Keywords: Continuous-time Markov decision processes. Piecewise deterministic Markov decision
processes. Unbounded transition intensities.

AMS 2000 subject classification: Primary 90C40, Secondary 60J75

1 Introduction

This note concerns the optimal control of piecewise deterministic Markov processes, where the state
evolves according to a deterministic and uncontrolled flow between two consecutive jumps, and the
transition intensities and post-jump distributions are controlled. Below it will be termed as a piecewise
deterministic Markov decision process or simply a PDMDP.

A powerful method of studying PDMDPs is to reduce it to an equivalent discrete-time Markov
decision process (DTMDP) by inspecting the PDMDP at each of its jump moments and regarding
the (possibly relaxed) control function used during a sojourn time as an action in the DTMDP. This
method comes back to [20], where it was applied to time non-homogeneous continuous-time Markov
decision processes (CTMDPs). (A (homogeneous) CTMDP is a PDMDP, where the state does not
change between two consecutive jumps, whereas a time non-homogeneous CTMDP can be viewed
as a PDMDP with a specific flow.) Some subsequent applications of this method can be found in
e.g., [1, 3, 4, 12, 21]. The action space in the induced DTMDP, as a set of measurable mappings, is
in general a more complicated object than the action space in the original PDMDP. The reason for
applying this reduction is to gain access to the rich toolbox of known results on DTMDPs that have
been studied since 1950s.

It is appreciated that the theory of DTMDPs is better established when the underlying DT-
MDP model satisfies some compactness-continuity conditions, see [14, 15, 16]. One example of such
compactness-continuity conditions is that the action space is a compact Borel space, the loss function
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is lower semicontinuous in the action, and the transition kernel possesses a strong Feller property with
respect to the action, i.e., it maps each bounded measurable function on the state space to a function,
which is jointly measurable in the state and action, and also continuous in the action.

However, even if the original PDMDP satisfies a natural set of compactness-continuity conditions,
see Condition 3.1 below, it can happen that the transition kernel in the induced DTMDP fails to
satisfy the desired continuity condition. We demonstrate this in Example 3.1 below. On the other
hand, it turns out that this inconvenience does not appear if the transition intensities of the PDMDP
are strongly positive, i.e., bounded away from zero by a constant, see Proposition 3.2.

For CTMDPs with general policies and unbounded transition rates, a different way was proposed
in [7] and extended in [9] to reduce the continuous-time problems to DTMDPs, whose action space
is the same as the one in the original CTMDP. This method is based on a formula observed in [5],
which connects the expected sojourn time with the probability distribution of actions made at the
jump epochs. The application of this formula for that purpose is valid if the transition intensities are
strongly positive, but could be invalid otherwise, see [7, 13, 17].

The contribution of this paper is that we present a technique, which produces an auxiliary PDMDP
model satisfying the following: a) the performance in the original PDMDP can be replicated by a
corresponding policy in the auxiliary PDMDP; b) the transition intensities in the auxiliary PDMDP
are strongly positive, and its induced DTMDP satisfies the desired compactness-continuity conditions
if so does the original PDMDP. Then as an application, we extend some optimality results for risk-
sensitive PDMDPs with total cost criteria, which were previously obtained in [12] under the extra
requirement on the transition intensities being strongly positive. This requirement is omitted here
with the help of the proposed technique. The technique in this note is similar to the technique in
[17]. In greater detail, the technique in [17] is based on introducing an additional Poisson process
after each jump, whereas here a (controlled) non-homogeneous Poisson process is introduced after
each jump. Besides, the technique in [17] produces an auxiliary CTMDP model, which was shown
to replicate the (total) occupation measures in the original model. For risk-sensitive problems, the
performance measures cannot be readily written as integrals of the cost rate with respect to the
occupation measures.

For CTMDPs with uniformly bounded transition intensities, the uniformization technique also
produces new CTMDP models, in which the performance measure in the original model can be repli-
cated. It is usually justified under stationary policies. Based on the uniformization technique, one
may reduce CTMDPs to equivalent DTMDPs, see e.g [2, 18]. The technique in this paper can be used
to justify the reduction method based on uniformitarian for PDMDPs with general policies.

The rest of this paper is organized as follows. In Section 2 we describe the PDMDP model. In
Section 3 we present and prove the main statements.

2 Description of PDMDP model

Let (S,B(S)) be a nonempty standard Borel state space, (A,B(A)) be a nonempty standard Borel
action space, and q stand for a signed kernel q(dy|x, a) on B(S) given (x, a) ∈ S × A such that
q̃(ΓS |x, a) := q(ΓS \ {x}|x, a) ≥ 0 for all ΓS ∈ B(S), q(S|x, a) = 0, and q̄x := supa∈A qx(a) <∞, where
qx(a) := −q({x}|x, a) is the transition intensity. The signed kernel q is also called the transition rate.
Between two consecutive jumps, the state of the process evolves according to a measurable mapping
φ from S × [0,∞) to S, see (2) below. It is assumed that for each x ∈ S

φ(x, t+ s) = φ(φ(x, t), s), ∀ s, t ≥ 0; φ(x, 0) = x, (1)

and t→ φ(x, t) is continuous. Unless stated otherwise, we consider Borel σ-algebras on metric spaces,
and the term of measurability is always understood in the Borel sense. Finally let the cost rate c be
a [0,∞)-valued measurable function on S ×A.
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For the rest of this paper, it is convenient to introduce the following notations. Let P(A) be the
space of probability measures on B(A). For each µ ∈ P(A), we put

qx(µ) :=

∫
A
qx(a)µ(da),

q̃(dy|x, µ) :=

∫
A
q̃(dy|x, a)µ(da),

c(x, µ) :=

∫
A
c(x, a)µ(da).

Condition 2.1 For each x ∈ S,
∫ t

0 qφ(x,s)ds < ∞, and
∫ t

0 supa∈A c(φ(x, s), a)ds < ∞, for each t ∈
[0,∞).

Condition 2.1 is assumed to hold throughout this paper. The integrals in Condition 2.1 are well defined
because the integrands are nonnegative and universally measurable.

Now we briefly describe the PDMDP with the system primitives {S,A, q, φ, c}. Let us take the
sample space Ω by adjoining to the countable product space S × ((0,∞)× S)∞ the sequences of the
form

(x0, θ1, . . . , θn, xn,∞, x∞,∞, x∞, . . . ),

where x0, x1, . . . , xn belong to S, θ1, . . . , θn belong to (0,∞), and x∞ /∈ S is the isolated point. We
equip Ω with its Borel σ-algebra F .

Let t0 := 0 =: θ0, and for each n ≥ 0, and each element ω := (x0, θ1, x1, θ2, . . . ) ∈ Ω, let
hn := (x0, θ1, . . . , θn, xn), tn := tn−1 + θn, and t∞(ω) := limn→∞ tn. Then, (Ω,F) is the canonical
sample space of the marked point process (tn, xn) with the mark space S, and θn = tn − tn−1 is the
sojourn time, where the convention of ∞ − ∞ := ∞ is in use. Define the process, which evolves
according to the flow φ during a sojourn time:

ξt =

{
φ(xn, t− tn), if tn ≤ t < tn+1;
x∞, if t∞ ≤ t,

(2)

where x∞ /∈ S is an isolated cemetery point. The process is controlled through its local characteristics
as follows.

A policy π is given by a sequence (πn) such that, for each n = 0, 1, 2, . . . , πn(da|hn, s) is a stochastic
kernel on A given hn, s with s > 0, and for each ω = (x0, θ1, x1, θ2, . . . ) ∈ Ω, t > 0,

π(da|ω, t) := I{t ≥ t∞}δa∞(da) (3)

+
∞∑
n=0

I{tn < t ≤ tn+1}πn(da|hn, t− tn),

defines a P(A ∪ {a∞})-valued (relaxed) control process, where a∞ /∈ A is some isolated point. If for
some measurable mapping ϕ from S to A such that πn(da|x0, θ1, . . . , θn, x, t) ≡ δϕ(x)(da), then the
policy π = (πn) is called deterministic stationary and is identified with the mapping ϕ.

A policy π and an initial state x define a probability measure P γx on the canonical sample space,
under which P πx (x0 = x) = 1, and the conditional distribution of (θn+1, xn+1) given hn satisfies for all
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Γ1 ∈ B((0,∞)), Γ2 ∈ B(S),

P πγ (θn+1 ∈ Γ1, xn+1 ∈ Γ2|hn)

=

∫
Γ1

e−
∫ t
0

∫
A qφ(xn,s)(a)πn(da|hn,s)ds

×
∫
A
q̃(Γ2|φ(xn, t), a)πn(da|hn, t)dt,

P πγ (θn+1 =∞, xn+1 = x∞|hn)

= e−
∫∞
0

∫
A qφ(xn,s)(a)πn(da|hn,s)ds (4)

on {xn ∈ S}.
The proposed technique in this paper will be applied to the risk-sensitive optimal control problem

for the PDMDP with a total cost criterion, which is to minimize over all policies π:

V (x, π) := Eπx

[
e
∫∞
0

∫
A c(ξt,a)π(da|ω,t)dt

]
= Eπx

[
e
∑∞
n=0

∫ tn+1
tn

∫
A c(φ(xn,s−tn),a)πn(da|hn,s−tn)ds

]
.

Here
∫ tn+1

tn
is understood as

∫
(tn,tn]

⋂
R, and we put c(x∞, a) ≡ 0. The value function is defined by

V ∗(x) = infπ V (x, π) for all x ∈ S. We shall call the above system primitives {S,A, q, φ, c} and the
corresponding optimal control problem the “original model”, to distinguish it from the auxiliary model
that will appear later.

We also apply the technique to justifying the uniformization technique for PDMDPs with the
expected long run average cost defined by

V (x, π) := lim
T→∞

Eπx

[∫ T
0

∫
A c(ξt, a)π(da|ω, t)dt

T

]
.

3 Main result

3.1 Observation and auxiliary model

In what follows, let us fix λx(a) as some measurable function in (x, a) ∈ S×A satisfying λx(a) ≥ δ > 0
for all (x, a) ∈ S ×A, λx := supa∈A λx(a) <∞ for all x ∈ S, and

∫ t
0 λφ(x,s)ds <∞ for each t ∈ [0,∞)

and x ∈ S.
We introduce an auxiliary model {S̆, A, q̆, φ̆, c̆} defined in terms of the system primitives of the

original model as well as the strongly positive function λ. When there is a danger of confusion, we
shall primarily use breves to signify the auxiliary model. Without special explanations, all the objects
signified with breves are understood similarly to their counterparts without breves.

If λx(a) ≡ λ > 0 is a constant, then roughly speaking, the auxiliary model arises from inserting
additional inspections of the state process during each sojourn time in the original model (up to
the moment of explosion) taking place in an independent Poisson process with rate λ. The changes
in the second coordinate of the state in the auxiliary model take place at and only at each of such
inspection epochs, which will be recorded as “fictitious” jumps and generate strongly positive transition
intensities.

The state space is S̆ = S × {−1, 1}, endowed with the product topology, where {−1, 1} is with
the discrete topology. The action space is A. The transition rate q̆ on B(S̆) given S̆ ×A is defined as
follows: q̆(dy×{−i}|(x, i), a) = λx(a)δx(dy), q̆(dy×{i}|(x, i), a) = q(dy|x, a)−λx(a)δx(dy) with δx(dy)
being the Dirac measure concentrated on the singleton {x}, so that q̆(x,i)(a) = q̆(S̆ \{(x, i)}|(x, i), a) =
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q̆(S \ {x} × {−1, 1}|(x, i), a) + q̆(S × {−i}|(x, i), a) = qx(a) + λx(a) for all (x, i) ∈ S̆, a ∈ A. In
other words, the auxiliary model has strongly positive transition intensities. The flow is defined by
φ̆((x, i), t) = (φ(x, t), i). The cost rate is c̆((x, i), a) = c(x, a) ∀ (x, i) ∈ S̆, a ∈ A. Let V̆ ((x, i), π̆) =

Ĕπ̆(x,i)[e
∫∞
0 c̆(ξ̆t,a)π̆(da|ω̆,t)dt].

Definition 3.1 Consider the canonical sample space of the marked point process (t̆n, xn, in), and a
sample path ω̆ = ((x0, i0), θ̆1, (x1, i1), . . . , θ̆n, (xn, in), . . . ). We say a mark (xl, il) (l ≥ 1) is immediately
after a fictitious jump if il = −il−1, or equivalently, xl = φ(xl−1, θ̆l), where θ̆l is the sojourn time before
the mark (xl, il). A mark that is not immediately after a fictitious jump is called immediately after an
honest jump. We regard (x0, i0) as a mark immediately after an honest jump.

Using the notation in the above definition, we may consider out of (t̆n, xn, in) another process (τ(m), x(m), i(m))
with τ(0) := 0 by counting only the points with marks immediately after honest jumps. If τ(m) = ∞
for some m, then we put τ(m+1) = ∞ and x(m+1) = (x∞, i(0)). Since (x0, i0) is regarded as a mark
immediately after an honest jump, x0 = x(0) and i0 = i(0). Since i(m) = i(0) for all m ≥ 0 almost surely
in (τ(m), x(m), i(m)), with i(0) being fixed we may simply consider the marked point process (τ(m), x(m))
instead of (τ(m), x(m), i(m)).

Part (a) of the next statement is a generalization of Theorem 2.1 of [19].

Theorem 3.1 Suppose Condition 2.1 is satisfied. For each policy π = (πn) in the original PDMDP
model, there is a policy π̆ = (π̆n) in the auxiliary PDMDP model such that for all x ∈ S and i ∈ {−1, 1}:

(a) The distribution of the marked point process (τ(m), x(m)) under P̆ π̆(x,i) coincides with the distribu-

tion of the process (tm, xm) under P πx .

(b) V (x, π) = V̆ ((x, i), π̃) and V (x, π) = V̆ ((x, i), π̆).

Proof. We will make use of the notation in Definition 3.1 freely.
(a) Let a policy π = (πn) for the original model be fixed. Consider the corresponding policy

π̆ = (π̆n) in the auxiliary model defined as follows. For the n-history

h̆n = ((x0, i0), θ̆1, (x1, i1), . . . , (xn−1, in−1), θ̆n, (xn, in))

in the auxiliary model, let m = m(h̆n) be the number of honest jumps over (0, t̆n] within h̆n, so that
if we count the initial mark (i0, x0) as immediately after an honest jump, then there are m+ 1 marks
immediately after honest jumps within h̆n. Then we define

π̆n(da|h̆n, t) = πm(da|x0, τ(1), x(1), τ(2) − τ(1), . . . ,

τ(m) − τ(m−1), x(m), t+ t̆n − τ(m)) ∀ t > 0. (5)

Consequently, for each n,m ≥ 0 and for each t ∈ (0,∞) satisfying t ∈ (t̆n, t̆n+1] ⊆ (τ(m), τ(m+1)],
we have

π̆(da|ω̆, t) = π̆n(da|h̆n, t− t̆n) = πm(da|x0, τ(1), x(1),

τ(2) − τ(1), . . . , τ(m) − τ(m−1), x(m), t− τ(m)), (6)

where the first equality is by (3) applied to π̆.
For brevity, below we put

q̃(dy|φ(x(m), t), πm) :=

∫
A
q̃(dy|φ(x(m), t), a)

πm(da|x(0), τ(1), x(1), τ(2) − τ(1), . . . , x(m), t),

q(dy|φ(x(m), t), πm) :=

∫
A
q(dy|φ(x(m), t), a)

πm(da|x(0), τ(1), x(1), τ(2) − τ(1), . . . , x(m), t),

5



and qφ(x(m),t)(πm) := q̃(S|φ(x(m), t), πm). We similarly understand the notation λφ(x(m),t)(πm), (λ +

q)φ(x(m),t)(πm) and c(φ(x(m), t), πm).

Now let us show that the distribution of the marked point process (τm, xm) under P̆ π̆(x,i0) coincides
with the distribution of the marked point process in the original model under P πx . To this end, in view
of (4), x(0) = x0 and τ(0) = 0, it is sufficient to show that

P̆ π̆(x,i)(x(m+1) ∈ Γ, τ(m+1) − τ(m) ∈ [0, T ]|x(0), τ(1),

x(1), . . . , τ(m) − τ(m−1), x(m))

=

∫ T

0
q̃(Γ|φ(x(m), t), πm)e

−
∫ t
0 qφ(x(m),s)

(πm)ds
dt (7)

on {τ(m) < ∞} for each T > 0, Γ ∈ B(S) and m ≥ 0. Equality (7) would be justified once we show
that

P̆ π̆(x,i)(x(m+1) ∈ Γ, τ(m+1) − τ(m) ∈ [0, T ],

exactly n ficticious jumps over [τ(m), τ(m+1)]| x(0),

τ(1), x(1), . . . , τ(m) − τ(m−1), x(m))

=

∫ T

0

(
∫ vn+1

0 λφ(x(m),s)(πm)ds)n

n!
q̃(Γ|φ(x(m), vn+1), πm)

×e−
∫ vn+1
0 (λ+q)φ(xm,s)(πm)dsdvn+1.

Indeed, the expression on the left-hand side of the previous equality can be written as∫ T

0

∫ T−r1

0
· · ·
∫ T−

∑n
i=1 ri

0
q̃(Γ|φ(x(m),

n∑
i=1

ri + t), πm)

×

 n∏
j=1

λ
φ(x(m),

∑j
i=1 ri)

(πm)


×e−

∫∑n
i=1 ri+t

0 (λ+q)φ(x(m),s)
(πm)ds

dtdrn−1 . . . dr1

With the change of variables: r1 → v1, r1 + r2 → v2, . . . ,
∑n

i=1 ri → vn,
∑n

i=1 ri + t → vn+1, the
previous integral can be written as∫ T

0

∫ T

v1

· · ·
∫ T

vn

q̃(Γ|φ(x(m), vn+1), πm)

×

 n∏
j=1

λφ(x(m),vj)(πm)


×e−

∫ vn+1
0 (λ+q)φ(x(m),s)

(πm)ds
dvn+1 . . . dv2dv1,
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which, by the Fubini theorem, coincides with∫ T

0

∫ vn+1

0

∫ vn+1

v1

· · ·
∫ vn+1

vn−1

n∏
j=1

λφ(x(m),vj)(πm)

dvndvn−1 . . . dv2dv1 q̃(Γ|φ(x(m), vn+1), πm)

×e−
∫ vn+1
0 (λ+q)φ(x(m),s)

(πm)ds
dvn+1

=

∫ T

0

∫
{0≤v1≤v2≤···≤vn≤vn+1}

n∏
j=1

λφ(x(m),vj)(πm)

dv1dv2 . . . dvn q̃(Γ|φ(x(m), vn+1), πm)

×e−
∫ vn+1
0 (λ+q)φ(x(m),s)

(πm))ds
dvn+1

=

∫ T

0

(
∫ vn+1

0 λφ(x(m),s)(πm)ds)
n

n!
q̃(Γ|φ(x(m), vn+1), πm)

×e−
∫ vn+1
0 (λ+q)φ(xm,s)(πm)dsdvn+1,

as required, where for the last equality, one may either recognize it as a known fact, or more directly,
recall that if Z = (X(1), . . . , X(n)) is the order statistic of i.i.d. [0,∞)-valued continuous random
variables X1, . . . , Xn with the common marginal p.d.f. f , then n!

∏n
i=1 f(ti) for t1 ≤ t2 ≤ · · · ≤ tn

defines the joint density of Z, so that∫
{0≤t1≤t2≤···≤tn≤t}

n!

n∏
i=1

f(ti)dt1 . . . dtn

= P (X(n) ≤ t) = P (X1 ≤ t)n =

(∫ t

0
f(s)ds

)n
.

Part (a) is thus proved.
(b) It follows that

V̆ ((x, i0), π̆) = Ĕπ̆(x,i0)[e
∫∞
0 c̆(ξ̆t,a)π̆(da|ω̆,t)dt]

= Ĕπ̆(x,i0)

[
e
∑∞
m=0

∫ τ(m+1)
τ(m)

c(φ(x(m),s−τ(m)),πm),πm)ds
]

= V (x, π),

where the second equality holds by the assumed local integrability of λφ(x,s) in s > 0, (6) and the
definition of c̆, and the last equality follows from part (a). The last assertion follows similarly from
Theorem 3.1(a) and

V (x, π) = lim
T→∞

1

T
Eπx

[ ∞∑
n=0

∫ tn+1∧T

tn∧T

×
∫
A
c(φ(xn, s− tn), a)πn(da|hn, s− tn)ds

]
,

where tn ∧ T := min{tn, T}. 2

Remark 3.1 (a) By Theorem 3.1(b), V̆ ∗(x) ≤ V ∗(x) for each x ∈ S.
(b) By inspecting the proof of Theorem 3.1 (see especially (5) and (6) therein), one can tell that for
a deterministic stationary policy in the auxiliary model, which depends on (x, i) ∈ S × {−1, 1} only
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through x ∈ S, and is identified by a measurable mapping ϕ from S to A, V̆ ((x, i), ϕ) = V (x, ϕ) for
all x ∈ S and i ∈ {−1, 1}. Therefore, if such a deterministic stationary policy ϕ is optimal in the
auxiliary model, then so is it in the original model, and V ∗(x) = V̆ ∗(x) = V̆ ((x, i), ϕ) = V (x, ϕ) for
each x ∈ S.

3.2 Application to risk-sensitive PDMDPs

In this subsection, S and A are topological Borel spaces. A topological Borel space is a topological
space that is homeomorphic to a Borel subset (endowed with the relative topology) of a Polish space.
Let B(S) and B(A) be the Borel σ-algebras on S and A. We endow P(A) with the standard weak
topology. The results in the previous subsection are all applicable.

Let us introduce a natural set of compactness-continuity conditions on the original PDMDP.

Condition 3.1 (a) For each bounded measurable function f on S and each x ∈ S,
∫
S f(y)q̃(dy|x, a)

is continuous in a ∈ A.
(b) For each x ∈ S, the (nonnegative) function c(x, a) is lower semicontinuous in a ∈ A.
(c) The action space A is a compact metric space.

The usefulness of the auxiliary PDMDP also partially lies in the next observation.

Lemma 3.1 Let λx(a) ≡ λ > 0 be a constant. If the original PDMDP model satisfies Conditions 2.1
and 3.1, then the auxiliary model satisfies the corresponding versions of Conditions 2.1 and 3.1, too.

Proof. We only verify the version of Condition 3.1(a). For any bounded measurable function f on S̆,
it holds that ∫

S̆
f(y, j)˜̆q(d(y, j)|(x, i), a)

=

∫
S̆
f(y, j)q̆(d(y, j)|(x, i), a) + f(x, i)q̆(x,i)(a)

=

∫
S
f(y, i)(q(dy|x, a)− λδx(dy)) +

∫
S
f(y,−i)λδx(dy)

+f(x, i)(λ+ qx(a))

=

∫
S
f(y, i)q̃(dy|x, a)− qx(a)f(x, i)− λf(x, i)

+λf(x,−i) + f(x, i)(λ+ qx(a))

=

∫
S
f(y, i)q̃(dy|x, a) + λf(x,−i),

which is clearly continuous in a ∈ A when the original model satisfies Condition 3.1. 2

The following statement was obtained in Theorem 3.1 and Remark 3.1 of [12].

Proposition 3.1 Suppose Conditions 2.1 and 3.1 are satisfied. In addition, inf(x,a)∈S×A qx(a) > 0.
(See the discussions below Proposition 3.2 regarding this additional assumption.) Then the following
assertions hold.

(a) The value function V ∗ is the minimal [1,∞]-valued measurable solution to the following opti-
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mality equation:

−(V (φ(x, t))− V (x)) (8)

=

∫ t

0
inf
a∈A

{∫
S
V (y)q̃(dy|φ(x, τ), a)

−(qφ(x,τ)(a)− c(φ(x, τ), a))V (φ(x, τ))
}
dτ

∀ t ∈ [0,∞), x ∈ S∗;
V (x) <∞ ∀ x ∈ S∗; V (x) =∞ ∀ x /∈ S∗

with S∗ := {x ∈ S : V ∗(x) < ∞}. In particular, V ∗(φ(x, t)) is absolutely continuous in t for
each x ∈ S∗.

(b) Any measurable mapping ϕ from S to A such that

inf
a∈A

{∫
S
V ∗(y)q̃(dy|x, a)

−(qx(a)− c(x, a))V ∗(x)}

=

∫
S
V ∗(y)q̃(dy|x, ϕ(x))

−(qx(ϕ(x))− c(x, ϕ(x)))V ∗(x), ∀ x ∈ S∗.

defines a deterministic stationary optimal policy in the original model. Such measurable selectors
ϕ exist.

The proof of Proposition 3.1 in [12] is based on the study of a DTMDP model induced by the
PDMDP model by inspecting the PDMDP at each of its jump moments and regarding the relaxed
control functions used during a sojourn time as the actions in the DTMDP. The first coordinate in the
state space of the induced DTMDP records the most recent sojourn time, and the second coordinate
records the state in the PDMDP immediately after the corresponding jump. More precisely, the
DTMDP induced by the PDMDP {S,A, q, φ, c} is specified by the following system primitives:

• The state space is X := ((0,∞)×S)∪{(∞, x∞)}. Whenever the topology is concerned, (∞, x∞)
is regarded as an isolated point in X.

• The action space is A := R, where R is the space of P(A)-valued measurable mappings ρ =
(ρt(da)) on (0,∞). Two elements in R that coincide almost everywhere are not distinguished.
We endow R with the Young topology, which is the weakest topology with respect to which the
function

∫∞
0

∫
A f(t, a)ρt(da)dt is continuous in ρ ∈ R for each strongly integrable Carathéodory

function f on (0,∞) × A . Here a real-valued measurable function f on (0,∞) × A is called a
strongly integrable Carathéodory function if for each fixed t ∈ (0,∞), f(t, a) is continuous in
a ∈ A, and for each fixed a ∈ A, supa∈A |f(t, a)| is integrable in t, i.e.,

∫∞
0 supa∈A |f(t, a)|dt <∞.

According to Section 43 of [4], see Proposition 43.3 therein, if A is a compact metric space, then
so is R (with a compatible metric).

• The transition kernel p on B(X) from X×A is given for each ρ = (ρt(da))t>0 ∈ A by

p(Γ2 × Γ1|(θ, x), ρ)

:=

∫
Γ2

e−
∫ t
0 qφ(x,s)(ρs)dsq̃(Γ1|φ(x, t), ρt)dt,

∀ Γ1 ∈ B(S),Γ2 ∈ B((0,∞))

x ∈ S, θ ∈ (0,∞),
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p({(∞, x∞)}|(θ, x), ρ) := e−
∫∞
0 qφ(x,s)(ρs)ds for all x ∈ S, θ ∈ (0,∞), p({(∞, x∞)}|(∞, x∞), ρ) :=

1. (Recall that the notation q(dy|x, ρt) =
∫
A q(dy|x, a)ρt(da) is in use.)

• The cost function l is a [0,∞]-valued measurable function on X×A×X given for all ((θ, x), ρ, (τ, y)) ∈
X×A×X by

l((θ, x), ρ, (τ, y))

:=

∫ ∞
0

I{s < τ}c(φ(x, s), ρs)ds.

For the induced DTMDP {X,A, p, l}, following the reasoning in the proof of Lemma 3.2 of [3] and
Chapter 4 of [4], one can see the following statement, which is important for the reasoning in [12].

Proposition 3.2 Under Conditions 2.1 and 3.1, for each (θ, x) ∈ X and (τ, y) ∈ X, ρ ∈ A →
l((θ, x), ρ, (τ, y)) is lower semicontinuous, and A is a compact metric space. If in addition, the tran-
sition intensities are strongly positive, then for each (θ, x) ∈ X, ρ ∈ A →

∫
X f(z)p(dz|(θ, x), ρ) is

continuous for each bounded measurable function f on X.

The strong positivity requirement on the transition intensities is important to the correctness of
the previous proposition. This requirement was unfortunately missing and overlooked in [12]. Indeed,
the proof of Lemma 4.1 of [12] made use of the strong Feller property of the transition kernel p in the
induced DTMDP, which could fail to hold without this additional requirement, as demonstrated in
Example 3.1. More precisely, if the transition intensities are not strongly positive, then it can happen
that

∫
X f(z)p(dz|(θ, x), ρ) is not continuous for some bounded measurable function f on X.

Example 3.1 Suppose S is any finite set (endowed with discrete topology), and A = [0, 1], which
is a compact metric space, qx(a) = a and c(x, a) ≡ 0, and φ(x, t) ≡ x. Evidently, Conditions 2.1
and 3.1 are satisfied by this PDMDP model. Consider ρ ∈ A and (ρ(n)) ⊆ A defined as follows: for

each t ≥ 0, ρ
(n)
t (da) = δ 1

n
(da), and ρt(da) = δ0(da). Then for each strongly integrable Carathéodory

function g(t, a),
∫∞

0 g(t, ρ
(n)
t )dt −

∫∞
0 g(t, ρ

(0)
t )dt =

∫∞
0 (g(t, 1

n) − g(t, 0))dt → 0 as n → ∞, by using

the dominated convergence theorem. Thus, ρ(n) → ρ as n → ∞. (Recall that A is endowed with the
Young topology.) Now for f(t, x) ≡ 0 on (0,∞) × S and f(∞, x∞) = 1,

∫
X f(z)p(dz|(θ, x), ρ(n)) =

e−
∫∞
0 qx(ρ

(n)
s )ds = e−

∫∞
0

1
n
ds = 0 < 1 = e−

∫∞
0 0ds =

∫
X f(z)p(dz|(θ, x), ρ).

As an application of Theorem 3.1 (more precisely, Remark 3.1 drawn from it), we may remove the
redundant condition on the strong positivity of the transition intensities from Proposition 3.1.

Corollary 3.1 Under Conditions 2.1 and 3.1, the assertions stated in Proposition 3.1 all hold without
the requirement inf(x,a)∈S×A qx(a) > 0.

Proof. The statement follows from Remark 3.1 and applying Proposition 3.1 to the auxiliary model
with a constant λx(a) ≡ λ > 0, which is legitimate in view of Lemma 3.1 and that the transition
intensities in the auxiliary model are strongly positive. The details are as follows.

Step 1. We show that the value function V̆ ∗((x, i)) in the auxiliary PDMDP model depends on
(x, i) only through x, and can thus be identified as V̆ ∗(x).

For this, we will apply the following result from [12]: under the conditions in Proposition 3.1,
including that the transition intensities are strongly positive:
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• The value function V ∗ in the original model is the minimal [1,∞]-valued measurable solution to
the optimality equation V = T ◦ V , where for all x ∈ S

T ◦ V (x) (9)

:= inf
ρ∈R

{∫ ∞
0

e−
∫ τ
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))ds(∫

S
V (y)q̃(dy|φ(x, τ), ρτ )

)
dτ

+e−
∫∞
0 qφ(x,s)(ρs)dse

∫∞
0 c(φ(x,s),ρs)ds

}
.

Here and below, e−
∫∞
0 qφ(x,s)(ρs)dse

∫∞
0 c(φ(x,s),ρs)ds := 0 whenever e−

∫∞
0 qφ(x,s)(ρs)ds = 0.

• The value function V ∗ can be obtained from the successive approximation: V ∗(x) = limn→∞ T ◦
V0(x) with V0(x) ≡ 1.

According to Lemma 3.1 and that the transition intensities in the auxiliary model are strongly
positive (minorized by λ), we may apply the result just quoted above to the auxiliary model and
conclude that V̆ ∗ is the minimal [1,∞]-valued measurable function to the following equation

V̆ ((x, i)) = inf
ρ∈R

{∫ ∞
0

e
∫ θ
0 c̆(φ̆((x,i),s),ρs)ds

×e−
∫ θ
0 q̆φ̆((x,i),s)(ρs)ds

×
(∫

S̆
V̆ ((y, j))˜̆q(d(y, j)|φ̆((x, i), θ), ρθ)

)
dθ

}
= inf

ρ∈R

{∫ ∞
0

e
∫ θ
0 c(φ(x,s),ρs)dse−

∫ θ
0 (qφ(x,s)(ρs)+λ)ds

×
(∫

S
q̃(dy|φ(x, θ), ρθ)V̆ ((y, i))

+λV̆ ((φ(x, θ),−i))
)
dθ
}
.

Moreover, V̆ ∗ is the pointwise limit of the sequence of functions {V̆n}∞n=0 with

V̆0((x, i)) :≡ 1,

V̆n+1((x, i)) := inf
ρ∈R

{∫ ∞
0

e
∫ θ
0 c(φ(x,s),ρs)ds

×e−
∫ θ
0 (qφ(x,s)(ρs)+λ)ds

(∫
S
q̃(dy|φ(x, θ), ρθ)V̆n((y, i))

+λV̆n((φ(x, θ),−i))
)
dθ
}
.

An inductive argument reveals that V̆n+1((x, i)) does not depend on i for all n ≥ 0 and thus V̆ ∗((x, i))
does not depend on i. Below, we write V̆ ∗(x) for V̆ ∗((x, i)).

Step 2. Again by Lemma 3.1 and that the transition intensities in the auxiliary model are strongly
positive, we apply Proposition 3.1(b) to the auxiliary model to obtain a deterministic stationary
optimal policy ϕ. It is possible to take ϕ, which only depends on x ∈ S (independent on i ∈ {−1, 1})
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because for each (x, i) ∈ S̆∗ := {x ∈ S : V̆ ∗(x) <∞}× {−1, 1},∫
S̆
V̆ ∗(y)˜̆q(d(y, j)|(x, i), a)− (q̆(x,i)(a)

−c̆((x, i), a))V̆ ∗(x))

=

∫
S
V̆ ∗(y)q̃(dy|x, a)− (qx(a)− c(x, a))V̆ ∗(x))

does not involve i ∈ {−1, 1}, where the equality holds by the definition of q̆ and c̆ and a similar
calculation as the one in the proof of Lemma 3.1.

Step 3. Step 2 and Remark 3.1(b) imply V̆ ∗(x) = V ∗(x). Note that the optimality equations for
both the original model and the auxiliary model are the same and given by (8), the statement of this
corollary follows from applying Proposition 3.1 to the auxiliary model again. 2

We end this subsection with the following remarks.

Remark 3.2 (a) One may modify Condition 3.1 by requiring φ(x, t) to be continuous in (x, t), and re-
placing its (a) by (a’): For each bounded continuous function f on S, (x, a) ∈ S×A→

∫
S f(y)q̃(dy|x, a)

is continuous; and (b) by (b’): c(x, a) is lower semicontinuous in (x, a) ∈ S × A. Under the resulting
condition, which is often termed as (W), a version of the assertions of Proposition 3.1 and Corollary
3.1 still holds, where V ∗ is the minimal [1,∞]-valued lower semicontinuous solution to (3.1). A further
extension of (W) would be to allow the set of admissible actions depending on the current state, and
instead of (b’) and the compactness of A, one requires the cost function to be K-inf-compact. The
concept of K-inf-compactness was introduced in [10], see also [11]. We do not consider this extension
here for simplicity.
(b) The problem of V (x, π)→ minπ is for a risk-averse controller; one may consider the problem

W (x, π) := Eπx

[
e−

∫∞
0

∫
A c(ξt,a)π(da|ω,t)dt

]
→ max

π

for a risk-seeking controller. Let its value function be denoted by W ∗. Then suitable versions of
Proposition 3.1 and Corollary 3.1 hold for this risk-seeking problem. E.g., W ∗ is a solution to

−(V (φ(x, t))− V (x))

=

∫ t

0
sup
a∈A

{∫
S
V (y)q̃(dy|φ(x, τ), a)

−(qφ(x,τ)(a) + c(φ(x, τ), a))V (φ(x, τ))
}
dτ

∀ t ∈ [0,∞), x ∈ S,

and a deterministic stationary optimal policy exists. Again, a suitable version also holds when Condi-
tion 3.1 is replaced by (W), in which case, W ∗ will be upper semicontinuous.
(c) Consider the DTMDP {X̆,A, p̆, l̆}, which is the same as the one defined below Proposition 3.1
except that it is now induced by the auxiliary model instead of the original model. The state in X̆
is in the form (θ, x, i), but one may get rid of the coordinate i from the state, since it is inessential
information, see [8]. The performance of any policy in the original DTMDP can be reproduced by a
policy in the DTMDP with i removed from the state. The transition probability in the new DTMDP is

given by e−
∫ t
0 (λ+q)φ(x,s)(ρs)ds(λφ(x,t)(ρt)δφ(x,t)(dy) + q̃(dy|φ(x, t), ρt))dt. This DTMDP also satisfies the

desired properties similar to those described in Proposition 3.2.

3.3 Connection with uniformization techinque

Uniformization technique is useful in reducing a CTMDP with a uniformly bounded transition rate
to an equivalent DTMDP problem. We may use the observation in Subsection 3.1 to justify this
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technique for PDMDPs with the average criterion V (x, π). Assume that supx∈S qx < K for a constant
K > 0. For simplicity we assume that the cost rate c is bounded. For the auxiliary model, we put
λx(a) = K − qx(a) for all (x, a) ∈ S so that q̆x(a) ≡ K. Theorem 3.1(b) asserts that for any policy π,

there is some policy π̆ in the auxiliary model such that V (x, π) = V̆ ((x, i), π̆). The reasoning in the
proof of Lemma 2.2 of [6] shows that

V̆ (x, i) = lim
N→∞

1

N
Ĕ(x,i)

[
N−1∑
n=0

K

∫ ∞
0

e−Ks

×
∫
A
c(φ(xn, s), a)π̆n(da|h̆n, s)ds

]
The above expression is the long run average cost in the DTMDP {X̆,A, p̆, l̆}, which is the same as the

one introduced below Proposition 3.1 except for l̆((θ, x, i), ρ, (τ, y, j)) := K
∫∞

0 e−Ksc(φ(x, s), ρs)ds =:

l̆(x, ρ), and that it is induced by the auxiliary model instead of the original model, hence justifying
the different notation. Any policy π̆ in the auxiliary model is identified with a policy in this DTMDP.
Thus, we reduce the PDMDP problem with average criterion to a similar DTMDP problem. Moreover,
according to Theorem 2 of [8], we may get rid of the inessential information (θ, i) from the state (θ, x, i)
and the original problem is reduced to a similar problem for a simpler DTMDP with state space S,
action space A, the transition probability given by

Q(dy|x, ρ) =

∫ ∞
0

e−Kt(K − qφ(x,t)(ρt))δφ(x,t)(dy)

+q̃(dy|φ(x, t), ρt))dt

and the cost function l̆(x, ρ). Any deterministic stationary optimal policy for this DTMDP problem
produces an optimal policy in the original PDMDP problem.
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