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Abstract 

Deterministic models of complex flows are challenging and computationally expensive.  We 

propose here, for the first time, a computationally efficient data-driven Lagrangian stochastic 

approach to predict liquid flow inside a mechanically agitated vessel.  The model relies on the 

input of a short driver data set to predict the full flow field.  We investigate the capability of 

zeroth, first and second order models over a wide range of flow conditions including different 

impeller configurations and rotational speeds.  The first and second order models provide good 

predictions of local flow properties, with the first order model being slightly superior.  The 

technique is also capable of predicting flow well outside the range of experimental conditions. 

 

Keywords: fluid flow, Lagrangian trajectory, mixing, PEPT, stirred vessel, stochastic model. 
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1. Introduction 

Numerous process industries depend on the mixing of liquids and particle-liquid mixtures 

including the manufacture of pharmaceuticals, foods, cosmetics, plastics, minerals, nuclear and 

petroleum industries.  Mixing operations are often conducted in mechanically agitated vessels 

and understanding of the complex flow dynamics in these processing units is vital for the 

effective design of products and processes.  Various theoretical approaches exist for modelling 

of mixing flows, including different computational fluid dynamics (CFD) techniques.  With 

the advancement of computing capability, models for describing turbulence are getting 

increasingly more reliable.  In particular, with the aid of high-powered computing, turbulence 

can be determined using direct numerical simulation (DNS).  By using a mesh with elements 

smaller than the Kolmogorov length scale, DNS solves the Navier-Stokes equations directly 

without a turbulence model down to the Kolmogorov time scale.  This deterministic approach 

is extremely computationally expensive and is not practical for most engineering applications.  

As a result, the majority of Eulerian numerical deterministic approaches such as Reynolds 

averaged Navier-Stokes (RANS) or large eddy simulation (LES) utilise a turbulence model, 

and include time-averaging or space-filtering (Joshi & Nayak 2019).  

 

Alternatively, turbulence can be handled by using a Lagrangian stochastic model (LSM) in 

combination with Eulerian methods.  In a LSM, the positions are advanced in space over a 

given time step and are subject to random perturbations, defined by the Wiener process 

(Gardiner, 2004).  These hybrid methods often give good results whilst reducing computational 

expense.  For example, using a RANS simulation where turbulence velocities were calculated 

using a LSM, Marshall & Sala (2011) obtained accurate predictions of the growth of algae in 

photobioreactor flows at a fraction of the computational cost of a DNS simulation.  By contrast, 

a fully Lagrangian method can be used without relying on Eulerian data generated from a 

RANS or LES simulation.  Israelsson et al. (2006) compared three techniques of Lagrangian 

modelling for environmental applications; forward Gaussian puff tracking (FGPT), backward 

Gaussian puff tracking (BGPT), and LSM (referred to as random walk particle tracking, 

RWPT).  They showed that out of the three methods, the LSM was applicable to complex 

velocity or diffusivity fields and produced more accurate results than Eulerian methods, even 

though it was not the most computationally efficient. 

 

Dehling et al. (2007) used a fully-Lagrangian computational approach to model slug rise in a 

fluidised bed.  Generally, the study showed good agreement with experimental data, especially 
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with a single type of particle.  When a second type of particle was introduced, there was more 

deviation.  However, the authors suggested the system would be difficult if not impossible to 

model using a deterministic approach.  The method was later improved by Farzaneh et al. 

(2011) who used a multigrid approach to model fuel mixing in fluidised beds.  The fuel and 

inert particles having a distinct size and density difference would be difficult to model using 

Dehling et al.’s approach.  The multigrid approach yielded good agreement of average 

trajectories of fuel particles with experimental data under a variety of conditions.  Recently, 

Rezavand et al. (2019) reported a fully-Lagrangian computational model for the integration of 

mixing and biochemical reactions in anaerobic digestion.  The 2D domain was discretised into 

particles, each containing the information of biologically active compounds.  The continuity 

and momentum equations were discretised using smooth particle hydrodynamics (SPH) along 

with the Fickian advection-diffusion equation.  The result was a discretised Lagrangian set of 

equations not involving the Eulerian framework, affording the benefit of direct observation of 

the impact of mixing on biogas production, information that would otherwise be lost through 

an Eulerian scheme.  Predictions were in good agreement with experimental data.  

 

The RWPT model was also adopted by Nordam et al. (2019) who compared the application of 

a LSM against Eulerian methods to the vertical transport of buoyant material in a water column.  

The LSM was capable of capturing the discrete Lagrangian flow behaviour of oil droplets, fish 

eggs, and microplastics by using a large ensemble of particles to describe the effects of 

advection and diffusion.  Particles were progressed in time with a random perturbation, using 

a random walk algorithm known as the Visser scheme.  Excellent agreement was obtained 

between the stochastic and deterministic models, due to the importance given to the boundary 

conditions in the Lagrangian scheme. 

 

An alternative hybrid method also exists, whereby a Eulerian field is already available to 

impose Lagrangian particles into.  This method is often used in environmental studies; see for 

example Gleicher et al. (2014) and Ferrero & Oettl (2019).  The former study used a LSM to 

model the dispersion of pathogenic spore particles that cause disease in plant canopies, whilst 

the latter built on the LSM by implementing the Langevin equations proposed by Thomson 

(1987) to include the effects of concentration-variance dissipation.  Results in both cases 

demonstrated the LSM’s high potential to predict the movement of particles in a known 

velocity field, without the computational cost of a deterministic approach.  This approach has 

also been exploited in engineering applications.  Matos et al. (2018) illustrated the ability of a 
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LSM to track particles to describe the front of a fluid in a confined impinging jet reactor, with 

the aid of a transient Eulerian velocity field from a CFD simulation.  The model allowed for 

the calculation of interfacial area generation, which was found to grow at an exponential rate 

in chaotic flows and at a linear rate in steady flows.  Therefore, it appears that the LSM strategy 

in a known velocity field is likely to be suitable for dealing with mixing problems, with the 

added benefit of low computational cost. 

 

The data-driven LSM technique has not been used to model mixing systems.  In this study, we 

propose a simple yet accurate approach to model turbulent single-phase flow in a mechanically 

agitated mixing vessel.  The Eulerian velocity fields are experimentally determined using a 

positron emission particle tracking (PEPT) technique.  By applying a LSM to these 

experimental flow fields, a simplified data-driven model is developed to predict flow 

behaviour. 

 

2. Experimental 

2.2 Mixing vessel apparatus 

The flow and mixing of single-phase water was studied in a mixing vessel of diameter T = 288 

mm and a liquid height H = T, as illustrated in Fig. 1a.  Agitation was achieved using a 6-blade 

45o pitched-blade turbine (PBT) or a 6-blade Rushton disc turbine (RDT) of diameter D = T/2, 

impeller blade width W = T/10, baffle width B = T/10 and impeller clearance Cimp = T/4 for 

PBT and T/3 for RDT.  The pitched blade turbine was operated in either up-pumping (PBTU) 

or down-pumping mode (PBTD).  A radioactively-labelled resin tracer particle was used to 

track the flow.  The resin particle was made neutrally-buoyant by adding salt to the water to 

match its density.  Experiments were run at different impeller rotational speeds (100-500 rpm) 

to determine in each case the long-term trajectory of the liquid. 

 

2.2 Positron emission particle tracking 

PEPT is a non-intrusive method by which a positron emitting tracer particle is accurately 

tracked within process equipment, providing three-dimensional space and time data for a long-

term Lagrangian trajectory (Barigou 2004, Sadrmomtaz et al., 2007).  PEPT is able to image 

flow in opaque fluids and opaque equipment, unlike optical methods such as particle image 

velocimetry (PIV) and laser Doppler velocimetry (LDV), but with comparable accuracy 

(Pianko-Oprych et al., 2009).  In PEPT each component in a multiphase flow can be tracked 

individually to determine its 3D Lagrangian trajectory.  PEPT has been extensively used to 
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study flow and mixing in stirred vessels.  More details of the technique can be found in our 

earlier papers (Guida et al., 2010a, 2010b & 2011). 

 

3. Lagrangian stochastic modelling 

Stochastic models are used to predict various outcomes of a given system by applying random 

perturbations to pre-determined variables.  As few processes are deterministic, stochastic 

models can be utilised to give the probability of a certain result.  This use of probability can be 

exploited, for example, to model the Brownian motion of particles or fluid parcels and has 

previously been used to predict propagation of atmospheric pollutants (Bergin & Milford, 

2000), diffusion in oceanography (Ruplo, 2006) and dissipation of odours (Ferrero & Oettl, 

2019).  Deterministic models for complex flow system are challenging and computationally 

demanding.  Instead, stochastic models adopt a simplified structure, greatly reducing 

computational cost whilst having the ability to predict complex flow characteristics.  In 

consequence, this approach seems to have potential for modelling fluid flows, in particular 

inside stirred mixing vessels.  In a LSM, fluid parcel positions are advanced in space over a 

given time step via random perturbations.  The basic structure of a LSM algorithm is depicted 

in Fig. 2 and discussed in detail in the section below. Simulation time is similar to the run time 

of an actual experiment, for example, to compute a one hour trajectory the computational time 

is around one hour for a first order model. 

 

3.1. Input velocity field 

The Lagrangian stochastic model is data driven, i.e., experimental 3D mean velocities from the 

system form the basis of the operation of the model (Fig. 2).  An initial particle position is set 

and is advanced in space over a given time step.  Depending on the order of the model, different 

flow parameters are subjected to random perturbations defined by the Wiener process and 

described by a Gaussian distribution with unit variance (Gardiner 2004).  For the model to yield 

suitable results, an appropriate experimental velocity field must be used.  Here, Lagrangian 

PEPT velocity data acquired in a stirred vessel were converted to a Eulerian velocity field.  By 

dividing the vessel volume into a grid of equal volume cells, as shown in Fig. 1b, the local 

time-averaged velocity of each flow component was obtained inside each cell (Fig. 1c). 

 

Grid mesh density requires careful selection, given the way LSM re-calculates the position of 

the particle when it leaves (i.e., collides with) the system boundary.  Thus, optimising the cell 

size near the wall of the vessel is vital for simulations.  Too coarse a mesh leads to the cell 
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nearest the wall being too large.  The average velocity in such a cell is often directed towards 

the boundary away from the centre of the tank. If LSM calculates the particle to be in this cell, 

it is likely to collide with the vessel wall and require re-calculation of position.  If a collision 

model is used, the particle is again likely to enter the same cell due to its size, resulting in a 

repeating process of the particle colliding with the vessel wall.  The opposite case can also pose 

an issue, as the trajectory data from a PEPT experiment have a finite number of positions and 

in many cases will not occupy all cells in a mesh if their size is very small.  This results in a 

‘zero’ cell; a cell which has no velocity associated with it.  If the particle enters a cell with no 

velocity associated with it, it will remain stationary in the cell for the duration of the simulation, 

as shown further below (Equations 1-9).  Mesh size is dependent on the time step selected for 

the model and in an ideal scenario, the particle should move into an adjacent cell to prevent 

any repeating movement especially at the boundary.  As the mean temporal resolution of the 

experimental PEPT data is 5 ms, this value was assigned as the time step for the model and a 

mesh density study was conducted on sample experimental trajectories to establish a suitable 

grid for the model. 

 

In general, the aim of LSM is to be able to use a short experimental particle trajectory to predict 

the long-term trajectory of the particle under similar conditions.  In this case, the particle in 

question is the PEPT tracer particle used to track the liquid motion inside the stirred vessel.  A 

trajectory length of 5 min was selected as an input to the model as it was sufficient for a particle 

tracer to visit the majority of the computational grid cells and find a representative velocity 

field.  Fig. 3 illustrates the number of detected positions in each mesh cell under different 

experimental conditions.  Mesh size was adjusted in the r and z-directions with a set number 

of cells in the θ-direction.  Once appropriate cell dimensions were determined for the r and z-

directions, the number of cells in the θ-direction was adjusted and assessed in the same way. 

 

Determining the ideal mesh density is a compromise.  Increasing the number of cells improves 

the fidelity of the velocity field but increases the risk of cells with no detection points and, 

hence, missing local velocity values.  A cell with no detections cannot be used in the model as 

it results in stalling of the model particle and causes the model to fail.  Reducing the number 

of cells, on the other hand, can also be detrimental as it may reduce resolution to the point 

where the local velocity field is no longer a true representation of the actual flow.  Fig. 3 shows 

the effect of varying the grid mesh density on the number of detected positions in each cell.  

All cells contain detected positions when Nr = 5 and Nz = 10.  Fewer detections tend to be found 
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near the top of the vessel because liquid agitation is less intense in this region.  Increasing the 

number of cells in both directions results in fewer detected positions per cell, with increasingly 

more ‘zero’ cells appearing near the top and the centre of the vessel (Nr = 20, Nz = 40).  These 

numerical tests led to an optimised grid of 2400 equal volume cells where Nθ = 12, Nr = 10 and 

Nz = 20, which yielded the highest resolution for the velocity field with the fewest cells 

containing zero detections. To prevent the failure of the model, as pointed out above, where a 

‘zero’ cell is found, the cell is assigned an estimated velocity value using a linear 3D grid 

interpolation. 

 

3.2. Model equations 

There are three orders of stochastic model to describe the motion of a particle over time: zeroth, 

first and second order (Fig. 2).  The form of these models used in this study, was adopted from 

the oceanography works of Ruplo (2006) and LaCasce (2008).  Along with velocity field 

information, LSM requires knowledge of decorrelation times when utilising a first or second 

order model.  Velocity and acceleration time signals obtained from the experimental PEPT 

trajectory were used to estimate these decorrelation times (Guida et al., 2010b).  Decorrelation 

times for velocity and acceleration were calculated in each direction over 1 min intervals along 

a 5 min trajectory, as summarised in Table 1, and an average value taken.  LSM uses this 

information to scale the amount of stochastic noise added to the system, with an inverse 

relationship.  If decorrelation times are short, i.e. the system decorrelates and loses its memory 

quickly which reflects a high degree of stochasticity, thus the stochastic noise added is large.  

By contrast, if the time taken to decorrelate is large, the level of turbulence is less and therefore 

less stochastic noise is added. 

 

The zeroth order model is the simplest variation of LSM, where particle position is progressed 

using the following set of equations (Ruplo, 2006; LaCasse, 2008): 

𝑥𝑖
𝑡+𝑑𝑡 = 𝑥𝑖

𝑡 + 𝑑𝑥𝑖
𝑑𝑡  (1) 

𝑑𝑥𝑖
𝑑𝑡 =  𝑈𝑖̅𝑑𝑡 + √2𝑈𝑖̅

2
 (𝑑𝑤𝑑𝑡)2 (2) 

where, xi and 𝑈𝑖̅ are, respectively, the particle position and mean particle velocity in the i-

direction, and dwdt is the Wiener process for the time step dt, which is discretised as follows: 
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𝑑𝑤𝑑𝑡  ≈ √𝑑𝑡 𝑁(0,1) (3) 

where, N(0,1) is a normal distribution with a mean of 0 and unit variance.   

 

In the first order model, Eq. (2) above is replaced by the following equations: 

𝑑𝑥𝑖
𝑑𝑡 = (𝑢𝑖

𝑡+𝑑𝑡 +  𝑈𝑖̅)𝑑𝑡 (4) 

𝑢𝑖
𝑡+𝑑𝑡 = 𝑢𝑖

𝑡 + 𝑑𝑢𝑖
𝑑𝑡 (5) 

𝑑𝑢𝑖
𝑑𝑡 =  −

𝑢𝑖
𝑡

𝑇𝑢,𝑖
𝑑𝑡 +  √

2𝑈𝑖̅
2

𝑇𝑢,𝑖
 𝑑𝑤𝑑𝑡 (6) 

where, ui  and Tu,i  are, respectively, the local velocity and the velocity decorrelation time in 

the i-direction.   

 

In the second order model, Eq. (6) above is replaced by the following equations: 

𝑑𝑢𝑖
𝑑𝑡 = 𝑎𝑖

𝑡+𝑑𝑡 −
𝑢𝑖

𝑡

𝑇𝑢,𝑖
 (7) 

𝑎𝑖
𝑡+𝑑𝑡 = 𝑎𝑖

𝑡 + 𝑑𝑎𝑖
𝑑𝑡 (8) 

𝑑𝑎𝑖
𝑑𝑡 =  −

𝑎𝑖
𝑡

𝑇𝑎,𝑖
𝑑𝑡 +  √2𝑈𝑖̅

2 𝑇𝑎,𝑖 + 𝑇𝑢,𝑖

𝑇𝑎,𝑖𝑇𝑢,𝑖
 (𝑑𝑤𝑑𝑡)−1 (9) 

where, ai and Ta,i are, respectively, the local acceleration and the acceleration decorrelation 

time in the i-direction. 

 

3.3. Boundary collision 

Due to the nature of LSM, the simulated tracked particle is able to leave the solid boundary of 

the flow field if not restricted.  A check is conducted after each new particle position is 

computed, as illustrated in the algorithm flowchart (Fig. 2).  If the particle is outside of the flow 

domain (in this case the stirred vessel), then there are two possible methods for re-inserting it 

into the flow: 
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(i) Random particle injection (RPI): the particle position outside the boundary is discarded and 

replaced with a random position within the boundary, and the LSM is re-initiated. 

 

(ii) Collision model (CM): the previous position and current position are used to calculate the 

particle’s momentum and, thus, a new particle position inside the flow domain is computed 

assuming an elastic collision with the vessel wall. 

 

In this case, given the high frequency of boundary collisions with the vessel wall, the RPI 

method resulted in numerous kinks in the particle trajectory leading to erroneous results.  In 

contrast, the CM method yielded a much more realistic trajectory.  Thus, experimental PEPT 

particle-wall interactions were analysed and results were implemented into the collision model. 

 

Lagrangian data obtained from PEPT experiments are in the form of discrete space-time 

positions of a tracer particle.  Some collisions can be easily identified as a clear interaction with 

the vessel wall is observed.  There are, however, collisions which are hidden in the data as they 

occur between the recordings of space-time data of the tracer but these cannot be included in 

collision modelling because of the missing information. 

 

Particle-wall collisions can be compared by analysing the ratio between tracer velocity before 

and after the collision, using an arbitrary collision factor Cf which can be defined in either of 

two ways, as follows: 

 

𝐶𝑓 =
𝑣2

𝑣1
 (10) 

 

where, v1 is the total velocity of the particle prior to collision with the vessel wall, and v2 is the 

total velocity of the particle after collision with the vessel wall; or alternatively taking into 

consideration the angle of collision with the vessel wall  

 

𝐶𝑓 =
1

tan(𝜙)
 (11) 

 

where,  is defined as: 
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tan(𝜙) =
‖𝐯𝐢  × 𝐯𝐫‖

𝐯𝐢  ⋅ 𝐯𝐫
 (12) 

 

where, vi and vr are the particle incident and rebound velocity vectors, respectively.  A Cf value 

< 1 indicates a collision angle larger than 45o, and Cf > 1 indicates a collision angle smaller 

than 45o.   

 

Typical experimental data are plotted in Fig. 4, showing a distribution of Cf values for both 

definitions of Cf.  The mean Cf value in Fig. 4(a) is close to 1, indicating perfectly elastic 

collisions irrespective of the ratio of local values of the shear and normal velocities and the 

particle-wall contact angles.  The data in Fig. 4(b) shows a mean Cf value close to 0, i.e.    

90o, indicating again almost perfectly elastic collisions.  It should be noted that the value of Cf 

is affected not only by the nature of the collision, but also by the oncoming flow which may 

impart additional momentum to the bouncing particle.  A sensitivity analysis of LSM-predicted 

time-averaged velocity profiles in cells adjacent to the vessel wall to the value of Cf adopted is 

presented in Fig. 5.  Despite the wide range of Cf  values tested, the LSM-predicted velocity 

field close to the vessel wall was not sensitive to the definition of Cf or the value adopted.  

Based on this sensitivity analysis, it was clear that either definition Cf could be used with no 

significant effects on the predicted velocity profiles.  Therefore, Eq. (10) was adopted in all the 

calculations as it was less computationally demanding, with an arbitrary value Cf = 1. 

 

4. Results and discussion 

LSM was used to calculate three-dimensional Lagrangian fluid trajectories in a mixing vessel.  

The zeroth order model (Eqs. 1-2) failed to produce sufficiently accurate predictions, thus,  

detailed analyses are presented here only for the first and second order models, denoted, 

respectively, by 1LSM and 2LSM.  The computations were executed in MATLAB with a time 

step dt = 5 ms, of the same order as the data acquisition time step achieved in PEPT.  The time 

to compute a 40 min long trajectory via 1LSM was ~ 30 min, whilst 2LSM took nearly twice as 

long.  Such a computational cost is very small in comparison with all known deterministic 

models.  

 

In order to evaluate the performance of the approach, detailed quantitative comparisons of LSM 

predictions and PEPT experiments were conducted throughout the stirred vessel.  The 

azimuthally averaged distributions of local velocity were compared at six different axial and 
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radial planes.  Axial (vertical) planes were examined from the tip of the impeller (r = 0.5R) to 

the vicinity of the vessel wall (r = 0.87R).  Radial (horizontal) planes were examined from the 

bottom of the vessel (z = 0.03H) to the top of the vessel (z = 0.97H), including a plane just 

below the impeller (z = 0.17H) and a plane just above the impeller (z = 0.38H). 

 

4.1. Predicting long-term trajectories from short-term LSM driver trajectories 

The potential benefit of using a stochastic model is the ability to use small sets of Lagrangian 

trajectory data pertaining to specific flow conditions to predict long-term trajectories.  Here, 

we investigate the effects of the size of the initial data set used to drive the LSM on the accuracy 

of the predictions.  The plots in Fig. 6 show the velocity profiles for 300 rpm PBTD predicted 

on the basis of short-term PEPT trajectories within the range 1 – 10 min.  Results show that 

even a 1 min driver trajectory is generally adequate despite significant errors in some regions 

of the flow.  Using a 3 min driver trajectory, the agreement between prediction and experiment 

is good throughout the flow domain.  Beyond 3 min, there is no significant improvement in 

prediction accuracy.  This minimum driver trajectory length depends slightly on the flow 

conditions, in particular the speed of the impeller.  It tends to increase at lower impeller speeds 

as less data points are acquired per unit time, and reduce at higher speeds as the data acquisition 

rate is higher.   Tests conducted at 100 rpm showed that 3 min was still satisfactory, but at 500 

rpm this could be reduced down to 2 min.  Erring on the safe side, we used 5 min driver 

trajectories throughout the rest of this study. 

 

4.2. Model validation 

To validate the 1LSM and 2LSM models, extensive PEPT experiments were conducted using 

the PBTD impeller running at speeds within the range 100 - 500 rpm.  Experimental PEPT 

trajectories of 5 min length were used to drive the models (Fig. 2).  The LSMs were used to 

produce 40 min long trajectories which were then compared to equivalent PEPT trajectories.   

 

4.2.1. Velocity profiles 

Azimuthally averaged profiles of local velocity components (vr, vz, v) predicted by 1LSM and 

2LSM are compared to PEPT data in Figs. 7-9 for the sample case of PBTD running at 300 

rpm.  Overall, both models were capable of predicting the velocity components well in all 

regions of the vessel across the whole range of impeller speeds used.  Compared to PEPT, as 

observed in the vertical velocity profiles, 2LSM tends to underpredict v and vz somewhat along 
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the horizontal impeller plane (Fig. 7, Fig. 8).  Such underpredictions are also reflected in the 

horizontal velocity profiles close to the impeller plane (e.g., z = 0.17H, 0.38H), but they are 

overall less significant in the case of vr (Fig. 9).  In contrast, the 1LSM model does not suffer 

from these errors.  It should be noted, however, that these regions contain intense turbulence 

and high liquid velocities and the experimental measurements themselves are subject to some 

uncertainty, as shown in our previous work (Pianko-Oprych et al., 2009; Liu & Barigou, 2013). 

 

Results show that the second order model is more prone to velocity errors than the first order 

model.  This is due to the higher order calculations (Eqs. 7-9) involved which tend to amplify 

any errors in the initial experimental data used to drive the model.  Both models, however, are 

capable of predicting the velocity information with reasonable accuracy in all three directions, 

with 1LSM being moderately better.  Henceforth, the velocity profiles will be discussed in 

terms of total velocity. 

 

4.2.2. Occupancy 

Occupancy is defined as the fraction of the total experimental time (t) a tracer particle spends 

in each grid cell during the experiment.  This definition is subject to bias due to the density of 

the grid and probability of tracer presence in the cells.  Instead an ergodic time (tE) is defined 

which is the time a tracer would spend in a cell assuming the flow is ergodic, thus (Guida et 

al., 2010a, 2010b, 2011; Liu & Barigou, 2013, 2015): 

  

tE = t / Nc                         (13)  

 

where, Nc is the total number of grid cells.  Thus, the local occupancy can be defined as: 

 

𝑂𝐸 =
∆𝑡

𝑡𝐸
 (14) 

 

where, Δt is the time the tracer spends inside a given cell.  Azimuthally-averaged plots of 

radially-averaged and axially-averaged occupancy are presented in Fig. 10.  The experimental 

measurements show that the local occupancy distribution is quasi-uniform, and this is well 

predicted by both LSM models. 
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4.3. Effects of impeller configuration 

In addition to the PBTD, discussed above, which is a mixed-flow 6-blade 45o pitched-blade 

turbine (PBT) pumping down, we also tested the LSM models using the PBT in up-pumping 

mode (PBTU) as well as a radial-flow 6-blade Rushton disc turbine (RDT) for a rotational 

speed of 300 rpm.  Between them, the flows generated by these impeller configurations 

represent most of the standard agitation conditions encountered in mixing vessels.  Total 

velocity results for the PBTU, presented in Fig. 11, show that 2LSM exhibits some significant 

underpredictions in the bottom half of the vessel below the impeller plane, especially near the 

bottom and the wall.  1LSM exhibits only minor underpredictions in this region and overall 

performs moderately better than 2LSM throughout the vessel. 

 

Results for the RDT impeller are depicted in Fig. 12.  Similar observations can be made as for 

the PBTD and PBTU above.  Due to the radial flow nature of the RDT, the largest prediction 

errors occur just below and just above the impeller plane but, overall, both models perform 

well in the rest of the vessel.  In conclusion, 1LSM and 2LSM  are capable of predicting single-

phase flow in a stirred vessel regardless of impeller configuration with generally good 

accuracy, with 1LSM slightly surpassing 2LSM.  Therefore, in the rest of this study, we will 

focus solely on 1LSM. 

 

4.4. Prediction of flow conditions outside range of experimental measurements 

The data used to drive the LSM can be manipulated to predict flow conditions well outside the 

range of experimental measurements.  For instance, velocity information from a 5 min 

experimental trajectory obtained at 100 rpm with PBTD was multiplied by the ratio vtip,500 rpm / 

vtip, 100 rpm, and then fed to the 1LSM to predict the long-term trajectory corresponding to 500 

rpm for the same PBTD.  Results presented in Fig. 13 demonstrate a generally good agreement 

between predictions and experiment, the only significant errors (underestimations) being 

mainly confined to the bottom half of the vessel below the impeller plane.  These errors may 

be attributed to the decorrelation times used in the LSM which were obtained from the 100 rpm 

experiment, resulting in a stochastic scaling which may not accurately represent the flow in the 

500 rpm experiment, particularly in the high turbulence regions near the impeller.  

Nevertheless, the fact that the LSM can predict flow conditions far beyond the range of 

experimental measurements with such a level of accuracy is a significant achievement. 

 

5. Conclusion 
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The application of a data-driven Lagrangian stochastic model based on random walk particle 

tracking to single-phase flow in a mechanically agitated vessel has been studied for the first 

time.  Both first and second order models provide good predictions of local flow velocity and 

tracer particle occupancy, with the first order model being slightly superior.  The performance 

of the model was studied under a range of flow conditions including different impeller 

configurations and rotational speeds.  The model is also capable of predicting flow well outside 

the range of experimental conditions, for example, using initial driver data from a lower 

impeller speed to predict flow at a much higher speed.  The technique relies on the initial input 

of a small set of experimental data to drive the model.  Generally, a driver trajectory on the 

order of 1 min length is sufficient to enable adequate prediction of long-term flow trajectories.  

In addition to its accuracy, the LSM approach proposed here has the added advantage of being 

computationally efficient compared to existing modelling techniques.     

 

Nomenclature 

Symbols 

a particle acceleration (m s-2) 

B baffle width (m) 

Cf collision factor 

Cimp impeller clearance (m) 

D impeller diameter (m) 

dt time step (s) 

dw Wiener process (s1/2) 

H height of suspension (m) 

Nc total number of cells 

Nr number of cells in radial direction 

Nz number of cells in axial direction 

Nθ number of cells in azimuthal direction 

OE local occupancy 

 particle- vessel wall collision angle  

Δt time spent by tracer particle in a cell (s) 

T tank diameter (m) 

Tu, Ta velocity and acceleration decorrelation time (s) 

tE ergodic time (s) 
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t∞ total experimental time (s) 

u particle velocity (m s-1) 

𝑈̅ mean particle velocity (m s-1) 

v total velocity (m s-1) 

v1,v2 total particle velocity prior to/after collision with vessel wall (m s-1)  

vi, vr particle incident/rebound velocity vector (m s-1) 

vcell local time-averaged velocity  

vtip impeller tip velocity (m s-1) 

W impeller width (m) 

x  particle position (m) 

Abbreviations 

CM  collision model 

LSM  Lagrangian stochastic model/modelling 

PBT  pitched blade turbine 

PBTD  pitched blade turbine, down-pumping 

PBTU  pitched blade turbine, up-pumping 

PEPT  positron emission particle tracking 

RDT   Rushton disc turbine 

RPI  random particle injection 

RWPT  random walk particle tracking 
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Figure and Table captions 

Fig. 1.  Schematic of experimental setup: (a) mixing vessel and PEPT -ray detectors;  (b) 

computational grid consisting of Nr cells in the r-direction, Nz cells in the z-direction and N  

cells in the −direction; (c) method of calculation of local time-averaged velocity vcell in the ith 

cell. 

 

Fig. 2.  Flowchart of LSM algorithm: showing collision model (CM) and random particle 

injection (RPI) methods of re-inserting model particles into the domain. 
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Fig. 3.  Effect of grid mesh density on number of detected positions in each cell: Sample results 

shown are based on 5 min-long experimental PEPT trajectories for one layer of cells in the -

direction (N = 12); white cells have no detected positions; agitation speed = 300 rpm, PBTD 

configuration. 

 

Fig. 4.  Histograms of PEPT particle tracer-wall collision factor, Cf, for experiments using 

PBTD configuration at 100 and 500 rpm: (a) 𝐶𝑓 =
𝑣2

𝑣1
;  (b) 𝐶𝑓 =

1

tan(𝜙)
. 

 

Fig. 5.  Sensitivity analysis of LSM-predicted time-averaged velocity profiles in cells 

adjacent to the vessel wall to the value of Cf adopted:  experimental and modelling data 

shown are for 40 min trajectory obtained at 300 rpm with PBTD configuration: (a) 𝐶𝑓 =
𝑣2

𝑣1
;  

(b) 𝐶𝑓 =
1

tan(𝜙)
. 

 

Fig. 6.  Effects of length of LSM driver trajectory on azimuthally averaged profiles of total 

velocity predicted: PEPT and 1LSM compared at 300 rpm with PBTD configuration. 

 

Fig. 7.  Azimuthally averaged profiles of local θ-velocity component: PEPT, 1LSM and 2LSM 

compared at 300 rpm with PBTD configuration. 

 

Fig. 8.  Azimuthally averaged profiles of local z-velocity component: PEPT, 1LSM and 2LSM 

compared at 300 rpm with PBTD configuration. 

 

Fig. 9.  Azimuthally averaged profiles of local r-velocity component: PEPT, 1LSM and 2LSM 

compared at 300 rpm with PBTD configuration. 

 

Fig. 10.  Azimuthally averaged plots of (a) radially-averaged and (b) axially-averaged 

occupancy: PEPT, 1LSM and 2LSM compared at 300 rpm with PBTD configuration. 

 

Fig. 11.  Azimuthally averaged profiles of total velocity: PEPT, 1LSM and 2LSM compared at 

300 rpm with PBTU configuration. 

 

Fig. 12.  Azimuthally averaged profiles of total velocity: PEPT, 1LSM and 2LSM compared at 

300 rpm with RDT configuration. 

 

Fig. 13.  Azimuthally averaged profiles of total velocity for 500 rpm PBTD predicted on the 

basis of 5 min initial data from 100 rpm PBTD experiment: PEPT and 1LSM. 

 

Table 1. Velocity and acceleration decorrelation times for minute intervals of experimental at 

500 rpm PBTD PEPT data. 
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(a) (b) 

 

𝑣𝑐𝑒𝑙𝑙
𝑖 =

∑ 𝑣𝑛 𝑑𝑡𝑛

∑ 𝑑𝑡𝑛
 

 

where, vn and dtn are, respectively, local 

velocity and local time step for position n 

(c) 

 

 

Fig. 1.  Schematic of experimental setup: (a) mixing vessel and PEPT -ray detectors;  (b) 

computational grid consisting of Nr cells in the r-direction, Nz cells in the z-direction and N  

cells in the −direction; (c) method of calculation of local time-averaged velocity vcell in the ith 

cell. 

 



20 

 

 
 

 

 

Fig. 2.  Flowchart of LSM algorithm: showing collision model (CM) and random particle 

injection (RPI) methods of re-inserting model particles into the domain. 
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Fig. 3.  Effect of grid mesh density on number of detected positions in each cell: Sample results 

shown are based on 5 min-long experimental PEPT trajectories for one layer of cells in the -

direction (N = 12); white cells have no detected positions; agitation speed = 300 rpm, PBTD 

configuration. 
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(a) 

 
 

(b) 

 
 

 

Fig. 4.  Histograms of PEPT particle tracer-wall collision factor, Cf, for experiments using 

PBTD configuration at 100 and 500 rpm: (a) 𝐶𝑓 =
𝑣2

𝑣1
;  (b) 𝐶𝑓 =

1

tan(𝜙)
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(a) 

 
 

(b) 

 
 

 

Fig. 5.  Sensitivity analysis of LSM-predicted time-averaged velocity profiles in cells 

adjacent to the vessel wall to the value of Cf adopted:  experimental and modelling data 

shown are for 40 min trajectory obtained at 300 rpm with PBTD configuration: (a) 𝐶𝑓 =
𝑣2

𝑣1
;  

(b) 𝐶𝑓 =
1

tan(𝜙)
. 
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Fig. 6.  Effects of length of LSM driver trajectory on azimuthally averaged profiles of total 

velocity predicted: PEPT and 1LSM compared at 300 rpm with PBTD configuration. 
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Fig. 7.  Azimuthally averaged profiles of local θ-velocity component: PEPT, 1LSM and 2LSM 

compared at 300 rpm with PBTD configuration. 
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Fig. 8.  Azimuthally averaged profiles of local z-velocity component: PEPT, 1LSM and 2LSM 

compared at 300 rpm with PBTD configuration. 
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Fig. 9.  Azimuthally averaged profiles of local r-velocity component: PEPT, 1LSM and 2LSM 

compared at 300 rpm with PBTD configuration. 
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(a) (b) 

 

 

 

Fig. 10.  Azimuthally averaged plots of (a) radially-averaged and (b) axially-averaged 

occupancy: PEPT, 1LSM and 2LSM compared at 300 rpm with PBTD configuration. 
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Fig. 11.  Azimuthally averaged profiles of total velocity: PEPT, 1LSM and 2LSM compared at 

300 rpm with PBTU configuration. 
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Fig. 12.  Azimuthally averaged profiles of total velocity: PEPT, 1LSM and 2LSM compared at 

300 rpm with RDT configuration. 
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Fig. 13.  Azimuthally averaged profiles of total velocity for 500 rpm PBTD predicted on the 

basis of 5 min initial data from 100 rpm PBTD experiment: PEPT and 1LSM. 
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Table 1. Velocity and acceleration decorrelation times for minute intervals of experimental at 

500 rpm PBTD PEPT data. 

 

 

 Decorrelation time (ms) 

T (min) 𝒗𝒙 𝒗𝒚 𝒗𝒛 𝒂𝒙 𝒂𝒚 𝒂𝒛 

0-1 40 57 24 23 24 23 

1-2 38 60 25 23 23 23 

2-3 42 69 25 24 24 23 

3-4 41 63 25 25 24 23 

4-5 42 64 25 24 24 23 

average 

value 
41 63 25 24 24 23 

 

 


