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• Whole-cell models require data about each molecule and molecular interaction8

• Data is increasingly available, but its scattered organization hinders modeling9
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Abstract16

Despite substantial potential to transform bioscience, medicine, and bioengineering, whole-
cell models remain elusive. One of the biggest challenges to whole-cell models is assembling
the large and diverse array of data needed to model an entire cell. Thanks to rapid advances
in experimentation, much of the necessary data is becoming available. Furthermore, inves-
tigators are increasingly sharing their data due to growing recognition of the importance of
research that is transparent and reproducible to others. However, the scattered organization
of this data continues to hamper modeling. Toward more predictive models, we highlight
the challenges to assembling the data needed for whole-cell modeling and outline how we
can overcome these challenges by working together to build a central data warehouse.

Introduction17

More comprehensive and more predictive models of cells are broadly perceived as vital for18

understanding, controlling, and designing biology. For example, whole-cell models would19

likely help scientists conduct experiments in silico with unprecedented control and resolution20

[1], help physicians precisely treat each patient’s unique genomics [2], and help bioengineers21

rationally design synthetic cells [3].22

Recently, scientists have taken several steps toward whole-cell models, producing large-scale23

models of Mycoplasma genitalium [4, 5], Mycoplasma mycoides [6], Escherichia coli [7–10],24

Saccharomyces cerevisiae [11, 12], and human epithelial cells [13] among others. Researchers25

have also begun to explore how whole-cell models could help guide personalized medical26

decisions [14] and design synthetic cells [15, 16].27

Despite substantial interest, whole-cell models remain elusive due to numerous challenges,28

including integrating vast information about diverse biochemical processes [17], accounting29

for the structure and organization of cells and their numerous components [18, 19]; simulat-30

ing [20], calibrating [21, 22], visualizing [23, 24], and validating [23, 24] high-dimensional,31

computationally-expensive, hybrid models; and developing models collaboratively [25, 26].32

Toward a framework for whole-cell modeling, we and others have summarized these chal-33

lenges [23, 24, 27, 28].34

To help focus efforts to accelerate whole-cell modeling, we recently surveyed the community35
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about the bottlenecks to progress [28]. Most respondents expressed that the main immediate36

barrier to more predictive models is insufficient experimental data and knowledge.37

Undeniably, we do not yet have enough data to completely model a cell. As a result, complete38

models of entire cells are not presently feasible. Nevertheless, we believe that significantly39

more comprehensive models can already be constructed by leveraging the substantial data40

that is already available. Thus, in our opinion, the practical bottleneck to better models41

is not our limited experimental capabilities, but the scattered organization of our existing42

data. Furthermore, as our experimental capabilities continue to expand rapidly, we believe43

that it is critical to begin to develop whole-cell modeling capabilities now so that we are44

prepared to realize whole-cell models when sufficient data is available.45

To focus efforts to address this bottleneck, here we explore the data that is already available46

and how we can best leverage it for whole-cell modeling. First, we outline the data that47

is needed for whole-cell modeling. Second, we highlight exemplary resources that already48

provide key data. Third, we assess the challenges to moving beyond these resources. Finally,49

we present a roadmap to assembling a data warehouse for whole-cell modeling. We firmly50

believe that such a warehouse would accelerate the development of more predictive models.51

The mountain of data needed to model an entire cell52

Modeling an entire cell will likely require similarly comprehensive experimental data. At a53

minimum, this will likely include (a) the sequence of the cell’s genome; (b) data about the54

structure of its genome, such as the location of each replication origin, promoter, and termi-55

nator; (c) information about the structure, abundance, turnover, and spatial distribution of56

each molecule in the cell; (d) information about each molecular interaction that can occur57

in the cell, including the molecules that participate in each interaction and the catalysis,58

rate, thermodynamics, and duration of each interaction; and (e) global information about59

the temporal dynamics and spatial organization of the cell, such as the organization of its60

life cycle, its size, shape, and subcellular organization.61

To enable modelers to best leverage this data, this data should be accompanied by detailed62

metadata about its semantic meaning and provenance. At a minimum, each experimental63

observation should be accompanied by metadata about the molecule or molecular process64

which was measured, the genetic and environmental context in which the measurement was65

conducted, the methods used to collect and reduce the data, the individuals who collected66

and processed the data, and the dates when the data was collected and reduced.67

The sea of data that could be repurposed for whole-cell modeling68

Compared to the experimental capabilities of an individual lab or even a consortium, this69

laundry list of data seems insurmountable. Without a quantum leap forward in automation70

or a massive increase in funding, we expect the data needed for whole-cell modeling to exceed71

the experimental capabilities of most labs for the foreseeable future.72
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Although little data has been explicitly collected for whole-cell modeling, the scientific liter-73

ature already contains substantial relevant data. Furthermore, much of this data is already74

publicly accessible due to an increasing culture of data sharing. Taken together, we believe75

that substantial data can be repurposed for more comprehensive models.76

Exemplary data resources that we believe can be repurposed for whole-cell modeling include,77

but are not limited to, the Protein Data Bank (PDB) [29], ECMDB [30], YMDB [31], PaxDB78

[32], PSORTdb [33], BRENDA [34], and SABIO-RK [35] (Table 1). ECMDB and YMBD79

contain thousands of measurements of the concentrations of metabolites in E. coli and S.80

cerevisiae. PaxDB contains over 1 million measurements of the abundances of proteins81

in over 50 organisms. PSORTdb contains over 10,000 measurements of the localization of82

proteins in over 400 organisms, as well as predicted localizations for over 15,000 organisms.83

Together, BRENDA and SABIO-RK contain over 300,000 kinetic parameters for thousands84

of metabolic reactions. In our experience, BioNumbers [36] is also a valuable resource for data85

that is outside the scope of repositories for specific types of data. For example, BioNumbers86

contains data about the rates of non-metabolic processes such as DNA damage and RNA87

polymerization; the fluxes of the exchange of nutrients into and out of cells; and the sizes,88

densities, and growth rates of cells, which are not contained in other repositories.89

In addition to repurposing data for whole-cell modeling, foundational research is also needed90

to expand our experimental capabilities. While our capabilities to characterize the tran-91

scriptome and proteome have advanced rapidly over the past 20 years, our capabilities to92

characterize the metabolome, single cell variation, and temporal dynamics continue to lag.93

For example, additional capabilities to characterize the composition and dynamics of the94

metabolome could enable more complete flux balance analysis models.95

The challenges to reusing data for whole-cell modeling96

While substantial data is already available for whole-cell modeling, unfortunately, most of97

this data is not readily accessible. The challenges to utilizing the existing data are several-98

fold. First, the existing data is distributed over a wide range of organisms and experimental99

conditions. As a result, only a small amount of data is available for each organism and100

experimental condition. One potential solution to this data sparsity is to leverage data from101

closely related organisms and conditions. However, few databases have been designed to help102

investigators search for such related data. Literature search engines such as Google Scholar103

and PubMed have also not been designed to help investigators find such related data.104

Second, our existing data is organized heterogeneously. Our existing data is scattered across105

many databases, as well as many individual journal articles. Additionally, the existing106

databases provide different interfaces and APIs. Furthermore, the existing data is described107

with many different formats, identifier systems, and ontologies. The effort required to deal108

with this heterogeneity distracts investigators from modeling.109

Third, many databases and articles only provide minimal metadata or minimally structured110

metadata. The lack of detailed metadata is part of why it is difficult to find measurements111
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of related organisms and conditions. The lack of detailed, consistently structured metadata112

also makes it challenging to interpret and integrate data accurately.113

Fourth, a significant amount of data is not available in any reusable form. Despite increasing114

emphasis on data sharing and reuse [75], many results are still reported without their under-115

lying data. One contributing factor is the lack of domain-specific formats and databases for116

many types of data. Such shared infrastructure makes it easier for authors to share data and117

easier for other investigators to reuse it. In the absence of such infrastructure, authors often118

have little incentive to share data, and reviewers often have low expectations for data shar-119

ing. Furthermore, with notable exceptions for genetic and structural data, many journals120

still have porous guidelines that permit publication without sharing the underlying data.121

Emerging tools for sharing, discovering, and reusing data122

Efforts to make data easier to share, discover, and reuse for whole-cell modeling and other123

research are underway. This includes the development of standard formats and ontologies for124

describing data, central databases for storing data, and tools for discovering specific data.125

Here, we highlight some of the most relevant emerging resources for whole-cell modeling.126

Formats for exchanging data for whole-cell modeling127

Three notable formats for capturing some of the data and knowledge needed for whole-cell128

modeling include the Investigation/Study/Assay tabular (ISA-Tab) format [53], the Mul-129

ticellular Data Standard (MultiCellDS) [76], and BioPAX [66]. ISA-Tab is ideal for high-130

dimensional data, such as transcriptome-wide measurements of RNA turnover rates, which131

lack more specific formats. MultiCellDS is an emerging format intended to capture a digi-132

tal “snapshot” of a cell line, encompassing measurements of its metabolome, transcriptome,133

proteome, and phenotype, as well as metadata about the environmental context of each mea-134

surement and the methods used to collect it. BioPAX is a format for describing knowledge135

about the molecules and molecular interactions inside cells.136

In our experience, whole-cell modeling requires both quantitative and relational data about137

multiple aspects of a cell. To capture this information for our first models, we developed138

the WholeCellKB schema [77]. Simultaneously, Lubitz and colleagues developed SBTab139

[78], a tabular format with similar goals. As we began to explore additional models, we140

realized that many modelers both want to be able to use spreadsheets to quickly assemble141

datasets and use computer programs to quality control their datasets and incorporate them142

into models. To meet this need, we recently merged the concepts behind WholeCellKB and143

SBTab into ObjTables [79], a set of tools that make it easy for modelers to use user-friendly144

spreadsheets to integrate data, define schemas for rigorously validating their data, and parse145

linked spreadsheets into data structures that are conducive to modeling. SEEK provides an146

online environment for managing datasets organized as spreadsheets [80].147

6



Formats for critical metadata for whole-cell modeling148

As we discussed above, structured metadata is critical for understanding and merging data.149

Because cells contain millions of distinct molecular species [81] due to combinatorial bio-150

chemical processes such as post-transcriptional and post-translational modification and com-151

plexation, we think that it is particularly important for datasets to concretely describe the152

molecules and molecular interactions that they characterize. Small molecules can be de-153

scribed using several formats such as the Chemical Markup Language (CML) [63] and IU-154

PAC International Chemical Identifier (InChI) [44] formats. Sequences of unmodified DNAs,155

RNAs, and proteins can be described using the FASTA format. Sequences of modified DNAs,156

RNAs, and proteins can be described using BpForms [82] and HELM [48]. BpForms general-157

izes the IUPAC and IUBMB formats commonly used to describe unmodified DNAs, RNAs,158

and proteins to capture physiological polymers with modifications, crosslinks, and nicks.159

Macromolecular complexes can be described using BcForms [82] and HELM.160

Resources for capturing metadata about the genetic context of measurements include the161

NCBI Taxonomy database [83], the Cell Line Ontology [84], and standard nomenclatures for162

genetic variants, such as the HGVS standard [85] for human or the MGI standard for mouse163

and rat. Resources for capturing metadata about the environmental context of measurements164

including databases such as the Known Media Database [86] and MediaDB [87].165

Numerous formats have been developed to capture detailed information about how specific166

types of data are collected. FAIRSharing [88] is an excellent resource for finding formats for167

specific types of data. ORCID is increasingly being used to capture information about the168

investigators who conducted an experiment.169

Centralized knowledgebases of information for whole-cell modeling170

Because whole-cell modeling requires multiple types of data, we believe that centralized171

databases are also needed to help investigators find and obtain data. Three pioneering172

efforts to centralize data for modeling cells were the CyberCell Database (CCDB) for quan-173

titative data about E. coli [89*], EcoCyc for qualitative and relational information about E.174

coli [90**], and NeuronDB and CellPropDB for quantitative data about membrane channels,175

receptors, and neurotransmitters [91*]. EcoCyc continues to be a valuable resource, partic-176

ularly for the development of genome-scale metabolic models [92]. GEMMER is a newer177

database that aims to facilitate models of S. cerevisiae [93].178

More recent efforts to aggregate data for modeling have refined and expanded the concepts pi-179

oneered by the CCDB, CellPropDB, EcoCyc, NeuronDB, and others. One additional concept180

which we believe is essential is crowdsourcing. Crowdsourcing data aggregation addresses the181

problem that no single lab can curate the entire literature, and it can help avoid duplicate182

efforts by multiple researchers to curate similar data. Two exemplary resources that embody183

this philosophy are the Omics Discovery Index (OmicsDI) [94**], which provides a search184

engine to discover over 20 different types of quantitative molecular data curated by more185

than 20 different communities, and Pathway Commons [95], which provides a search engine186

for information about molecular interactions curated by more than 22 groups of curators.187
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To make it easy to contribute to OmicsDI and Pathway Commons, contributors only need188

to contribute a small amount of information about each dataset (OmicsDI) and pathway189

(Pathway Commons). However, this strategy pushes the onerous work of aggregating and190

normalizing data from the developers of these resources to their users.191

To further help modelers obtain data for whole-cell modeling, we developed Datanator [96**],192

an integrated database of data for modeling the biochemical activity of a cell. Presently,193

Datanator contains several key types of data for whole-cell modeling, including data about194

metabolite structures and concentrations; RNA modifications, localizations, and half-lives;195

protein modifications, localizations, abundances, and half-lives; and reaction rate constants,196

each for a broad range of organisms. In addition, Datanator provides a search engine tailored197

to the sparse nature of our existing data. This search engine can help modelers compensate198

for the absence of direct measurements with measurements of similar molecules, molecular199

interactions, organisms, or experimental conditions.200

Datanator builds on many of the ideas pioneered by the CCDB, OmicsDI, and other databases.201

Like OmicsDI, Datanator is a meta database that leverages the curation efforts and exper-202

tise of several primary databases. Like the CCDB, Datanator provides data in a consistent203

format that is convenient for modelers.204

To provide all of the data needed for whole-cell modeling, Datanator must be expanded to205

fill in gaps in the types of data that Datanator already captures and to capture additional206

types of data. This will require integrating many more databases into Datanator and aggre-207

gating additional types of data directly from the literature. One key gap in the data already208

captured by Datanator is the limited measurements of the intracellular concentrations of209

metabolites. Unfortunately, limited data is available in the literature. Additional experi-210

ments are needed to measure additional metabolites and to generate data for a wider range211

of organisms. One key type of data that should be added to Datanator is measurements of212

RNA abundances. Abundant data is available from ArrayExpress [58]. A second type of213

data that we believe is critical to add to Datanator is measurements of reaction fluxes. This214

information could be imported from CeCaFDB [68].215

Roadmap to data for whole-cell modeling216

Despite progress, we still only have a fraction of the data that will likely be needed for whole-217

cell modeling, and it remains tedious to gather the data that does exist. Ultimately, new218

experimental methods will be needed to fill the gaps in our understanding of the individual219

molecules and molecular interactions in cells. To enable investigators to independently train220

and test their models, increased automation will also be needed to generate data about a221

wider range of genotypes and environmental conditions. Most importantly, investigators222

need to pool their efforts so that everyone has access to more data. Here, we outline one223

way the community could work together to assemble the data that many modelers need224

(Figure 1).225

To facilitate the density of data needed for more comprehensive models, the community could226

first focus on a small number of organisms and cell types such as E. coli, S. cerevisiae, and H.227
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sapiens stem cells. Similarly, the community could focus on a specific set of environmental228

conditions, such as minimal media for microbes.229

Second, the community could develop a central database of the most essential types of230

data that need to be collected for these cells. This database could both allow individual231

investigators to suggest specific types of data that they believe should be collected, and232

allow the community to vote for the data that they believe would be most valuable. Ideally,233

investigators would then consider these votes when deciding which data to generate, focusing234

on the most frequently requested data. A large number of votes for a type of data would235

also likely be powerful support for proposals for funding to collect the data.236

Third, the community could coordinate the generation of this data to ensure that these cells237

are characterized deeply and avoid redundant efforts to generate similar data. The database238

outlined above could help facilitate this by enabling investigators to submit information239

about data they plan to generate. Experimentalists could then use this information to focus240

on generating unique data, and computational scientists could use this information to learn241

about upcoming experiments and contribute to their design to ensure they produce data242

that is well-suited and annotated for modeling.243

Fourth, the community could align on common formats, metadata, and quality control mech-244

anisms for each type of data. Importantly, this metadata should include common formats245

for describing the genotype of each sample, the structure of each measured molecule, and the246

composition of each measured media condition. User-friendly and automated software tools247

could be created to make it easy for investigators to embrace these formats and rigorously248

assess the quality of their data.249

Fifth, the community could develop additional primary databases for types of data that250

are not covered by the existing primary databases. For example, a group of researchers251

is beginning to assemble a database of the thermodynamics of biochemical reactions. Each252

database could be initiated by a small team of curators who seed the database by aggregating253

their own data and data from the literature. Beyond this initial phase, these databases254

could allow the community to submit data directly. In some cases, text mining could also255

be used to automatically or semi-automatically extract data from the literature. One area256

where text mining has been successful is collating interactions between genes and drugs257

[97]. Foundational tools for text mining include the Natural Language Toolkit [98] and258

spaCy. Collectively, multiple such primary databases would be able to support a broad259

range of formats for different types of data. These primary databases would also be well-260

positioned for expert curators to quality control specific types of data. Furthermore, such261

primary databases might be able to assemble the critical mass of investigators needed to262

lobby journals to require public deposition of specific types of data.263

Sixth, more of these primary databases could be integrated into Datanator. This would264

make all of this data accessible from a single interface and discoverable with Datanator’s265

tools for extracting clouds of potentially relevant data from sparse data sets. This process266

could be simplified and accelerated by aligning the primary databases on a common export267

format. In particular, the primary databases would need to align on a common scheme for268

representing metadata about the meaning and provenance of each measurement. In addition,269
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Figure 1: An integrated warehouse of molecular data and knowledge is needed to accelerate
whole-cell modeling. This warehouse could be assembled by combining multiple crowdsourced databases
for different types of data with data automatically mined from the literature. Models could be systematically
constructed from this warehouse using sets of rules that encode biochemical processes and physical laws.

Datanator could be expanded to directly accept data. This would enable any type of data to270

be integrated into Datanator, including data that falls outside the scope of all of the primary271

databases. Furthermore, automated programs could be developed to identify potential issues272

with the data integrated into Datanator by examining the consistency of different sources and273

types of data. We invite the community to contribute data to Datanator, and we welcome274

input into its goals, design, and implementation.275

In addition, Datanator could be further integrated with databases of relational and descrip-276

tive information such as EcoCyc and Pathway Commons. Ideally, a team of curators would277

be established to quality control this final integrated database.278

Once this data warehouse is available, additional methods and tools will be needed to use279

it to construct models. One possible way to use the data will be to devise rules, or tem-280

plates, for generating species, reactions, rate laws, and rate parameters for specific types of281

data. For example, a rule could be created that generates protein species and translation282

and protein turnover reactions based on sequenced genomes, computed locations of start283

and stop codons, and measured protein abundances and half-lives. Such rules could encode284

biochemical processes such as translation and physical laws such as mass-action kinetics.285

Potentially, entire models could be constructed from such rules. This workflow would enable286

complex, detailed models to be systematically and transparently constructed from compara-287

tively small sets of rules. We are building a system that will enable such rules. We anticipate288

it will accelerate the construction of large models.289

Conclusions290

Despite the challenges to assembling the data needed for whole-cell modeling, we are con-291

fident that the combination of technology development, standardization, and collaboration292
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outlined above will enable substantially more comprehensive, predictive, and credible models.293

Our Datanator database implements many of these ideas. To illustrate their potential, we294

are currently using Datanator to help construct a higher resolution model of the metabolism295

of E. coli. To move forward, we encourage the community to join existing efforts to aggregate296

data such as Datanator, EcoCyc, and OmicsDI by helping to gather, integrate, or quality297

control data, or develop formats and tools that could facilitate these efforts.298
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