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Abstract

Quantifying uncertainties in physical or engineering systems often requires a large
number of simulations of the underlying computer models that are computationally
intensive. Emulators or surrogate models are often used to accelerate the compu-
tation in such problems, and in this regard the Gaussian Process (GP) emulator
is a popular choice for its ability to quantify the approximation error in the em-
ulator itself. However, a major limitation of the GP emulator is that it can not
handle problems of very high dimensions, which is often addressed with dimension
reduction techniques. In this work we hope to address an issue that the models of
interest are so complex that they admit different low dimensional structures in dif-
ferent parameter regimes. Building upon the active subspace method for dimension
reduction, we propose a clustered active subspace method which identifies the local
low-dimensional structures as well as the parameter regimes they are in (represented
as clusters), and then construct low dimensional and local GP emulators within the
clusters. Specifically we design a clustering method based on the gradient informa-
tion to identify these clusters, and a local GP construction procedure to construct
the GP emulator within a local cluster. With numerical examples, we demonstrate
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that the proposed method is effective when the underlying models are of complex
low-dimensional structures.

Key words: Dimension reduction, Gaussian process emulator, clustering,
uncertainty quantification.

1 Introduction

Computer models or simulators are one of the most important tools to study
complex physical or biological processes and explore their behaviors, in many
fields of science and engineering. As is well known, the computer models are
inevitably subject to various sources of uncertainty: imprecise boundary or
initial conditions, unknown model parameters, random perturbations, and so
on. To characterize the impact of the uncertainties in the simulation results,
a large number, e.g., tens of thousands or more, of simulations are required.
On the other hand, in reality, the computer models are often computation-
ally intensive, especially when the system of interest involves highly complex
physical processes, and in this case, conducting a large number of simula-
tions to quantify the impact of uncertainties becomes a prohibitive task. A
commonly used approach to overcome this difficulty is to construct compu-
tationally inexpensive surrogate models, namely emulators, to approximate
the computer simulators in a probabilistic way [26]. Substantial efforts have
been devoted to this topic and many different types of surrogate models have
been developed: the polynomial chaos expansion [34,33], radial basis functions
(RBF) [13,24], adaptive sparse grid collocation [18], the Gaussian processes
(GP) regression [31], and more recently, neural networks [36,22,37].

In this work, we choose to use the GP regression because of its probabilistic
formulation, and we can take the advantage of the GP method’s ability to
epistemically quantify the uncertainty induced by all the random effects and
limited number of simulations in a natural Bayesian framework [31]. In partic-
ular, it makes it possible to statistically quantify the approximation error in
the emulator result itself, which then can be incorporated in the analysis of the
total uncertainty, see [21,19,20]. For this reason, the GP emulators have been
widely used in the field of uncertainty quantification (UQ): uncertainty prop-
agation [6,12,35], parameter estimation [14,29], reliability analysis [3,30,32],
just to name a few.

Email addresses: jdxiong@sjtu.edu.cn (Junda Xiong),
izumi xin@sjtu.edu.cn (Xin Cai), j.li.10@bham.ac.uk (Jinglai Li).
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Despite the wide success of the GP emulator, a major limitation of the method,
as well as practically any aformentioned surrogate models, is that it can not
handle problems with high stochastic dimensionality. Within the context of
the GP model, the incapability is due to the fact that the method relies on
the Euclidean distance to define input-space correlations. Since the Euclidean
distance becomes uninformative as the dimensionality of the input space in-
creases [4], unless the number of data points available grows exponentially, an
issue known as the curse of dimensionality. That is, directly reconstructing or
approximating a function in a high dimensional space is not computationally
feasible. To this end, considerable research efforts are focused on methodolo-
gies that can identify and exploit some special structure of the underlying
mathematical model, and in particular some low dimensional structures. In
such methods, it is assumed that the output of the model only depends on the
inputs through its projection in a low dimensional subspace. One first iden-
tifies such a low-dimensional subspace and then construct the GP emulator
in the obtained low dimensional subspace, where examples of this strategy
include [11,17,27]. In this regard a variety of dimension reduction techniques
can be used to identify the low dimensional subspace, such as the sliced inverse
regression (SIR) [16], sliced average variance estimation (SAVE), among many
others (see, e.g., [7]). Most of these dimension reduction methods only utilize
the input-output data points to identify the low dimensional subspace. On the
other hand, in many practical computer models, often the gradient of the out-
put with respect to the input parameters is also available; for example, if the
computer model is solved with a finite element method, the gradient can be
readily computed using the adjoint method [5]. When the model gradients are
available, such information can also be used to identify the low dimensional
structure. To this end, a gradient based dimension reduction approach, the
so-called active subspace (AS) method, has been developed [25,9,8]. Loosely
speaking, the method identifies a low dimensional subspace of the original in-
put space, termed as the active subspace, by considering the expectation of
the gradient outer product [8]. Further details and theoretical analysis of the
AS method are provided in Section 2.

It is important to note here that all the aforementioned methods, with or
without using gradient, are all based on the assumption that a global low di-
mensional structure of the underlying simulation model exists. In other word,
it is assumed that the same low dimensional structure of the simulation model
exists across the state space of the input parameter. As a result, the emulator
is constructed within this global low dimensional subspace. This assumption,
however, is not always true in practice, as many computer models are highly
complex and may exhibit substantially different behaviors in different param-
eter regimes. In this case, assuming a global low dimensional structure of
the underlying model becomes inappropriate. Rather, it is more flexible and
sensible to assume that, should such low dimensional structures exist, they
may only be valid locally, i,e., in a subregion of the entire space. Based on
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this idea, we propose a local dimensionality reduction scheme, which we call
clustered active subspace method (CAS). The main idea of the method is to
partition the original input space into a number of subdomains, where each
subdomain has its own low dimensional structure. We proposed to identify
such subdomains using a clustering method based on the data points. Finally,
we construct a local and low dimensional GP emulator of the underlying sim-
ulation model in each subdomain, and as a result, we obtain a set of local GP
emulators to mimic the behaviors of the underlying model.

The rest of the paper is organized as follows. In Section 2, we describe the
problem and give reviews to the main technical ingredients of our methods.
Then in Section 3 we present the clustered active subspace method and the
construction of local GP based on it. In Section 4, we provide numerical results
for three examples: two mathematical functions with known low dimensional
structures and a PDE based model. Finally Section 5 offers some closing re-
marks.

2 Technical preliminaries

2.1 Problem setup

We consider in this work a computational expensive function y = f(x), where
x is a d dimensional random variable with distribution π(x) and y is a scalar.
Assume that the support of π(x), Ω is a compact subspace of Rd. In practice,
the function f(x) can be described by a complex PDE or a large scale ODE
system. When solving such systems, in addition to evaluating the function
values, the gradient of the function can often be obtained as a byproduct. We
assume that this is the case for problems considered here. Suppose that we
have a set of data points

D = {(x(n), y(n))|y(n) = f(x(n))}Nn=1, (2.1)

with x(n) drawn according to π(x), and our goal here is to construct a sur-
rogate model for f(x) which can be used in other computational tasks. More
precisely, we plan to use the GP regression to construct the surrogate, and
the method is described in Section 2.2. A main challenge here is that in many
practical problems the dimensionality d is large (for example d ≥ 100), and
constructing GP model or any other surrogates in such a high-dimensional
setting is extremely difficult. As has been discussed in Section 1, we will first
reduce the dimensionality of the problem before constructing the GP model.
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2.2 Gaussian Process

The GP regression performs a nonparametric regression in a Bayesian frame-
work [31]. The basic idea of the GP method is to assume that the function of
interest f(x, ε) is a realization from a Gaussian random field, whose mean is
µ(x) and covariance is specified by a kernel function k(x,x′), namely,

Cov[f(x), f(x′)] = k(x,x′).

The kernel k(x,x′) is positive semidefinite and bounded. Commonly used ker-
nel functions include the squared exponential kernel, the Matern kernel and
the rational quadratic kernel.

Now given the data points {(x(n), y(n))}Nn=1, we want to predict the value of y

at a new point x. Now we let X :=
[
x(1); . . . ; x(N)

]
, and Y = [y(1), . . . , y(N)]T.

Under the GP assumption, it is easy to see that the joint distribution of (Y, y)
is Gaussian, Y

y

 ∼ N

µ(X)

µ(x)
,

K(X,X) + σ2
MI K(X,x)

K(x,X) K(x,x)


 , (2.2)

where σ2
M is the variance of observation noise, I is an identity matrix, and

the notation K(A,B) denotes the matrix of the covariance evaluated at all
pairs of points in set A and in set B using the kernel function k(·, ·). It follows
immediately from Eq. (2.2) that the conditional distribution πGP (y|x,X,Y)
is also Gaussian:

πGP (y|x,X,Y) = N (µpos, σ
2
pos), (2.3a)

where the posterior mean and variance are,

µpos(x) = µ(x) + k(x,X)(k(X,X) + σ2
MI)−1(Y − µ(x)), (2.3b)

σ2
pos(x) = k(x,x)− k(x,X)(k(X,X) + σ2

MI)−1k(X,x). (2.3c)

There are also a number of technical issues in the GP model, such as choosing
the kernel function and determining the hyperparameters. For detailed dis-
cussion of these matters, we refer the readers to [31]. As is well known, the
GP method fails when the dimensionality of data is extremely high. It is one
of the key issues to be addressed when applying GP based methods to high
dimensional problems.

2.3 Active Subspace method

We now discuss the dimension reduction technique that will be used in this
work. Recall that it is assumed that the gradient of the target function is
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available in the problems under consideration. Thus we use the so-called active
subspapce (AS) method, which identifies the low dimensional subspace by
using the gradient information. In what follows we give a brief introduction
to AS, largely following [9].

Consider a target function y = f(x) with x ∈ Rd that is absolutely continuous
and square-integrable with respect to a probability density function π : Rd →
R+. Now recall that we can compute the gradient of f denoted by the column

vector ∇xf(x) =
[
∂f
∂x1
· · · ∂f

∂xd

]T
. Next we shall define the d× d matrix C as

C = Eπ(x)[(∇xf)(∇xf)T] (2.4)

where we assume that the products partial derivatives are integrable. Since C
is symmetric positive definite, it can be decomposed as,

C = VΛVT (2.5)

where Λ = diag(λ1, · · · , λd) is a diagonal matrix with the eigenvalues of C in
decreasing order, λ1 ≥ · · · ≥ λd ≥ 0, and V ∈ Rd×d an orthonormal matrix
consists of eigenvectors of C.

Assuming that the reduced dimensionality is r, we can partition the eigenval-
ues and eigenvectors into two parts:

Λ =

Λ1

Λ2

 , V = [V1 V2], (2.6)

where Λ1 = diag(λ1, · · · , λr), V1 = [v11 · · · v1r], and Λ2, V2 are defined

analogously. We then define the rotated coordinates z1 ∈ Rr and z2 ∈ Rd−r

by

z1 = VT
1 x, z2 = VT

2 x. (2.7)

One then takes VT
1 as the low dimensional projection matrix and z1 as the

dimension reduced variable. That is to say, one can now approximate the
original function f(x) with a function, say G(z1), defined on the reduced
space {z1 = VT

1 x|x ∈ Ω}. In particular we can define function G(z1) as

G(z1) = E[f |z1] =
∫
z2
f(V1z1 + V2z2)πZ2|Z1(z2)dz2, (2.8)

andG is the best mean-squared approximation of f given z1 which follows from
the so-called law of the unconscious statistician [9]. Thus an approximation
of f(x) can be constructed via G(z1):

f(x) ≈ F (x) ≡ G(VT
1 x). (2.9)
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The following theorem provides an error bound for F in terms of eigenvalues
of C [9]:

Theorem 2.1 The mean squared error of F defined in (2.9) satisfies

E[(f − F )2] ≤ α(λr+1 + · · ·+ λd), (2.10)

where α is a constant that depends on the domain X and the distribution π.

It should be clear that in practice it is usually not possible to evaluate Eq.( 2.4)
directly. Instead, one often approximates the integral via Monte Carlo simu-
lation. That is, assuming that the observed inputs are drawn from π(x), one
approximates C using the observed gradients by:

C̃ =
1

N

N∑
i=1

(∇xf(x(i)))(∇xf(x(i)))T. (2.11)

Next the eigenvalues and eigenvectors of C̃ are computed using the singular
value decomposition (SVD). As is suggested in [9], the reduced dimensionality
r can be determined by considering the spectrum of CN , and one possible
approach is to require that

r∑
i=1

λi ≥ ρ
d∑
i=1

λd, (2.12)

for a prescribed ratio ρ ∈ [0, 1]. We refer the readers to [9] for more details
and other possible methods for determining r. Next we can define,

Ĝ(z1) =
1

N

N∑
i=1

f(V1z1 + V2z
(i)
2 ), (2.13)

where the z
(i)
2 ’s are drown independently from the conditional density π(z2|z1),

and it follows that we can obtain an approximation of f ,

f(x) ≈ F̂ (x) ≡ Ĝ(VT
1 x). (2.14)

Similarly we can then derive an error bound for the Monte Carlo approxima-
tion F̂ , of f in terms of eigenvalues of C as follows [9]:

Theorem 2.2 The mean squared error of F̂ defined in Eq. (2.14) satisfies

E[(f − F̂ )2] ≤ α(1 +
1

N
)(λr+1 + · · ·+ λd), (2.15)

where α is a constant that depends on the domain X and the distribution π.

The proofs of Theorems 2.1 and 2.2 can be found in [9] and will not be repeated
here.
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3 The Clustered Active subspace based local GP emulator

3.1 Clustered Active Subspace method

Using the AS method we can now construct a low dimensional subspace for
function f(x). However, as has been discussed in Section 1, in many practical
problems with complex physics, a global low dimensional structure, i.e. one
that is applicable in the entire parameter domain, may not exist. Instead,
different parameter regimes may have distinct low dimensional structures. As
a result, a global dimension reduction strategy may not apply. In what follows
we present a clustered AS method to conduct dimension reduction for such
problems.

The main idea of our method is the following. Suppose that the function
of interest admits different low dimensional structures in different disjoint
subdomains of the original input space, and ideally if we can identify these
subdomains and the low dimensional subspace in each of them, we can expect
that the GP emulator constructed locally (i.e., to only use data points in the
same subdomain as the new point of interest) enjoys a better performance
than the emulator constructed globally. First we can write the distribution
π(x) as a mixture:

π(x) =
J∑
j=1

wjπj(x),
J∑
j=1

wj = 1, (3.1)

where each πj has a support Ωj satisfying

Ωj ∩ Ωj′ = ∅ for ∀ j 6= j′, ∪Jj=1Ωj = Ω.

In what follows we refer each πj as a distribution cluster. Now we assume that
the function f(x) has different properties in different region Ωj and for each
πj we can define

Cj = Eπj(x)[(∇xf)(∇xf)T] (3.2)

and compute the associated “clustered” active subspace accordingly. By go-
ing through the same procedure as described in Section 2.3, we can obtain
a low dimensional projection matrix V1,j and its compliment V2,j for each
distribution cluster πj. As a result we obtain a set of J low-dimensional pro-
jections {V1,j}Jj=1, and if the function’s structure is very different with respect
to different clusters/subdomains, these low-dimension projections are signifi-
cantly different from each other. Defining z1,j = VT

1,jx and z2,j = VT
2,jx for

i = 1, · · · , J , we obtain a set of local approximations,

Gj(z1,j) = Eπj [f |z1,j] =
∫
z2,j

f(V1,jz1,j + V2,jz2,j)πj(z2,j|z1,j)dz2,j, (3.3)
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and for any x ∈ Ωj,

f(x) ≈ Fj(x) ≡ Gj(V
T
1,jx). (3.4)

Consequently we can define a global approximation for f(x) as,

f(x) ≈ F (x) =
J∑
j=1

Fj(x)IΩj
(x), (3.5)

where IΩj
is an indicator function,

IΩj
(x) =

{
1, x ∈ Ωj,

0, x /∈ Ωj.
(3.6)

The error bound of F defined in Eq. (3.5) is given by the following theorem.

Theorem 3.1 Let {λi,j}di=1 be the eigenvalues of Cj in a descending order
and rj be the reduced dimensionality associated with the j-th cluster. The mean
squared error of F defined in Eq. (3.5) satisfies

Eπ[(f − F )2] ≤
J∑
j=1

αj(λrj+1,j + · · ·+ λd,j), (3.7)

where αj’s are constants that depend on the domains Ωj’s and the distribution
clusters πj’s.

Next we shall establish the error analysis for the Monte Carlo estimation as
is done for the AS method. First suppose that we have samples x(1), · · · , x(N)

drawn from the distribution cluster πj, and we can estimate the sample vari-
ance,

C̃j =
1

N

N∑
i=1

(∇xf(x(i)))(∇xf(x(i)))T, (3.8)

and once again we can obtain the two matrices V1,j and V2,j associated with

C̃j. Let z1,j = VT
1,jx and z2,j = VT

2,jx and we get

Ĝk(z
(k)
1 ) =

1

Nj

Nj∑
i=1

f(Vk
1z

(k)
1 + Vk

2z
(k)
2

i
), (3.9)

in which z
(k)
2

i
are drawn i.i.d. from the conditional distribution πj(z2,j|z1,j).

Finally we obtain an approximation F̂ of f are as follows:

f(x) ≈ F̂ (x) =
J∑
j=1

F̂j(x)IΩj
(x), (3.10)

where

F̂j(x) = Ĝj(V
T
1,jx), (3.11)
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and IΩj
(·) is the indicator function defined in Eq. (3.6). Then we can derive

an error bound for the Monte Carlo approximation F̂ of f which is stated by
the following theorem:

Theorem 3.2 The mean squared error of F̂ defined in Eq. (3.10) satisfies

E[(f − F̂ )2] ≤
J∑
j=1

αj(1 +
1

Nj

)(λrj+1 + · · ·+ λd), (3.12)

where rj denotes the reduced dimensionality in Ωj and αj’s are constants that
depend on the domains Ωj’s and the distributions πj’s.

In the Appendix we provide a proof for Theorem 3.2 and the proof for Theo-
rem 3.1 proceeds similarly and thus is omitted.

3.2 Gradient-based data clustering

In Section 3.1, we have provided the main framework of the clustered ac-
tive subspace method. Clearly a key issue yet to be addressed is that the
distribution clusters are not known in advance, and we need to identify the
distribution clusters that represent different function structures. In particular
in Section 3.1 we have assumed that it is known in advance that the sam-
ples x(1), · · · ,x(Nj) are drawn from each distribution cluster πj(x). However,
in reality all the samples are drawn from the distribution π and we need to
partition them into different data clusters, which implicitly defines the distri-
bution clusters as well. In other word, we do not need to explicitly obtain the
distribution clusters, and for implementation purpose we only need to cluster
the data points.

The main idea here is to cluster the data points based on the gradient in-
formation which may reveal the local structure of the function f(x). For this
purpose we choose to use the hierarchical clustering algorithm, which groups
data over a variety of scales by creating a cluster tree or dendrogram. An
important feature of hierarchical clustering is that the tree is not a single set
of clusters, but rather a multilevel hierarchy, where clusters at one level are
joined as clusters at the next level. This feature is important as it allows users
to decide the level or scale of clustering based on the specific application. We
refer to [15] for more details of the hierarchical clustering methods.

In hierarchical clustering, a key is to define an appropriate distance that can
measure the similarity or dissimilarity between the data points, and this dis-
tance should represent the properties of the data points that users hope to
distinguish. In our problem, as has been mentioned, we expect that different
clusters represent different low-dimensional structures of the function, which
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in the AS framework is encoded in the gradient information. This motivates
us to cluster the data based on the gradient. To do so, we define the absolute
cosine distance measure as follows:

∆(x,x′) = 1− | cos(gx,gx′)|, (3.13)

where gx,gx′ are the corresponding gradient of x,x′, and we conduct a clus-
tering of the data points based on this distance. This distance function can
be further generalized, taking into account of the Euclidean distance between
points and combining it with the gradient similarity. Namely we set the dis-
tance to be

∆η(x,x
′) = η ∗ (1− | cos(gx,gx

′)|) + (1− η) ∗ (||x− x′||2/
√
d), (3.14)

where η ∈ [0, 1] is a hyper-parameter to balance the influence between the
discrepancy on locations and gradients of x and d is the dimension of x. We
divide the euclidean distance by

√
d to adjust the second term to be in the

same level of scales with the first absolute cosine distance. It should also be
clear that, when η = 1, the distance is reduced to the absolute cosine distance
in Eq. (3.13) which only uses the gradient information. Indeed, in most of
the problems, we can simply use the gradient-based distance measure, and
the Euclidean distance is introduced as an insurance policy to prevent certain
extreme scenarios where the gradient based distance may fail. Thus in practice
we recommend to choose η to be close to 1.

Another important issue in hierarchical clustering is to choose the linkage cri-
terion, and in our numerical tests we have found that the unweighted average
linkage clustering [15] has the best performance overall thus is used in this
work. That said, the method proposed does not reply on any specific choice of
the linkage function. Next we discuss the procedure of the gradient based clus-
tering. We modify the notation defined by Eq. (2.1), extending the training
set to include the gradient:

D = {(x(n), y(n), g(n))|y(n) = f(x(n)), g(n) = ∇xf(x(n))}Nn=1. (3.15)

and present the complete procedure of the clustered active subspace method in
Algorithm 1. Finally one can see that the CAS method requires the number
of clusters J as an input, and in our method it is determined via a k-fold
cross-validation [1] where details are provided in B.

3.3 Local GP emulator with clustered dimensionality reduction

In Section 3.2 we have discussed the method to obtain the data clusters as
well as the dimension reduction projection matrices associated to them. To

11



Algorithm 1 Clustered active subspace dimensionality reduction(CAS)

Require: Training set D; the number of clusters J ; the dimension reduction
ratio ρ.

Ensure: {Dj, V1,j}Jj=1, where Dj are the data clusters and Bj are the asso-
ciated DR projection matrices.
{Dj}Jj=1 ← cluster data set D into J clusters according to distance (3.14);
for j = 1, · · · , J do

Cj = 1
card(Dj)

∑
(x(n),y(n),g(n))∈Dj

(g(n))(g(n))T;

Conduct SVD to matrix Cj obtaining Cj = VjΛjV
T
j ;

Determine the reduced dimensionality rj based on ratio ρ;

V1,j = [vj1 · · · vjrj ];
end for
return {Dj,V1,j}Jj=1

make use of them, another key issue is to determine which cluster a new point
belongs to, which can be posed as a classification problem. It is important to
note that, practically we only have the knowledge of the input parameter itself,
and we do not know the function value or the gradient. Since the training data
points have been clustered and labelled, we construct a classifier based on the
parameter value x only, in a supervised manner. In particular we choose to
construct the classifier with the Support Vector Machine (SVM) model [28]
mainly for its simplicity, while noting that other classification methods can
also be used here. To start, we construct the data set for the classification
problem as

Dc = {(x(n), b(n))}Nn=1, (3.16)

where b(n) is the label assigned to cluster Dj if x(n) ∈ Dj. Using the classifica-
tion data set Dc we are able to train a SVM classifier denoted as b = SVM(x).
We omit the training procedure of the SVM model and interested readers may
consult [28]. Now for any given new point x∗, we first use the trained SVM
model to determine which cluster it belongs to, and then we conduct dimen-
sion reduction of all the data points in the chosen cluster with the associated
dimension reduction projection matrix. Finally a local GP emulator is con-
structed with the dimension-reduced data points for the new point x∗. More
precisely, suppose that the cluster predicted by the SVM model is Dj∗ , with
dimension reduction matrix V1,j∗ , and we define the following data set:

DGP = {(z(i), y(i))|z(i) = VT
1,j∗x

(i), ∀x(i) ∈ Dj∗}, (3.17)

for the construction of the GP model. Finally the GP model is constructed
using DGP with the procedure outlined in Section 2.2, which is then used to
predict the value of f(x∗). We reinstate here that the GP model is constructed
on the low dimensional subspace obtained by V1,j∗ and only with data points
in Dj∗ , and so it is regarded as a local GP model. We summarize the complete
procedure for constructing such a local GP model in Alg. 2. Finally a number
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of remarks are listed in order:

• An important question is the number of data points used in the method.
While noting that the actual number of data points needed is problem-
dependent, we reinstate that here we mainly consider the situation where
the number of data points is typically limited, i.e., insufficient to conduct
regression in the high-dimensional space. The dimension reduction technical
should be able to improve the regression performance in such a situation.
• Compared to the standard AS, the proposed CAS method is more compu-

tationally expensive mainly because the additional clustering procedure is
needed. However, as has been mentioned earlier, we consider in this work
problems with exceedingly expensive computer models, and as such the di-
mension reduction procedure is not a main contributor to the total compu-
tational cost, as long as it does not involve simulating the computer model.

Algorithm 2 The construction of the low dimensional local GP model

Require: Dc classification data set; test point x∗.
Ensure: testing prediction y∗.

Train a SVM model based on the training set Dc, denoted as b = SVM(x);
Compute b∗ = SVM(x∗) and let Dj∗ ,V1,j∗ respectively be the data cluster
and projection matrix corresponding to label b∗;
Obtain the training set for GP:

DGP = {(z(i), y(i))|z(i) = VT
1,j∗x

(i), ∀x(i) ∈ Dj∗};

Construct the GP model fj∗ with data set DGP , and use fj∗(V
T
1,j∗x

∗) to
predict the value of f(x∗).

4 Numerical results

4.1 Example 1: a piece-wise function

To illustrate the effectiveness of the proposed approach, we first consider a
piece-wise function which has four distinct low dimensional structures in four
disjoint regions. Specifically the function is defined on x ∈ [−1, 1]50, and ad-
mits the form,

f(x) =


(1 + x3 + x4)x5, x1 < 0 and x2 < 0 (Region1),

(1 + x6 + x7)(x8 + x9), x1 < 0 and x2 ≥ 0 (Region2),

1 + x10 + x11, x1 ≥ 0 and x2 < 0 (Region3),

(1 + x12)x13, x1 ≥ 0 and x2 ≥ 0 (Region4).

(4.1)
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This function relies on completely different dimensions of the input space in the
four different regions, and we want to test if the ability to identify these regions
and their individual low dimensional structures can improve the performance
of the GP emulator. Also since the low dimensional structure of this problem is
analytically available, we can use it to validate the dimension reduction results.
To this end we hope that the proposed CAS method can correctly identify the
regions (in the form of clusters) and the reduced dimensions in each of them.
In the numerical tests, the distribution of x is taken to be uniform defined on
x ∈ [−1, 1]50, and 1000 training samples and 5000 testing samples are drawn
from the distribution. Our experiments involves two main steps: conducting a
dimension reduction and constructing the GP model in the low dimensional
subspace. First we want to examine if the standard AS and the CAS methods
can correctly identify the DR directions of this function (one can see from
Eq. (4.1) that the function admits totally 7 actual DR directions). To do
so, we compare the actual DR directions with those identified with both AS
and CAS (with 4 clusters) methods: for regions 1, 2 and 4, each has two DR
directions and region 3 only has one. In Fig. 1 we show the DR directions
in all the four regions, and for the regions with two DR directions they are
marked with different colors blue and red. As one can see from the figure, the
directions computed with both AS and CAS agree well with the actual ones,
while, in addition to the DR directions, CAS can also correctly identify the
clusters or regions where the low dimensional structures are different.

Next we shall demonstrate that the ability of CAS to identify these different
clusters can help improve the performance of the GP emulator. In addition
to the CAS-LGP algorithm, we also employ AS, SIR [16] and SAVE [10]
to reduce the dimensionality globally and then construct the GP emulator
in the resulting dimension-reduced space. For comparison purposes, we also
conduct the test of direct GP emulator in the original space, without dimension
reduction. In CAS-LGP, we consider two cases of the distance function used
in the clustering: η = 1 and η = 0.5, where the first case only considers
the gradient information while the 2nd combines gradient similarity with the
Euclidean distance. In all the examples, the predictive performance of GP
emulator is measured by the normalized mean-square-error (NMSE):

NMSE =

∑N
n=1(f(x(n))− f̂(x(n)))2∑N

n=1 f(x(n))2
, (4.2)

where x(1), · · · ,x(N) are test samples drawn from the distribution π(x), f(x)
is the actual function and f̂ is the posterior mean of the GP model. For
the global dimension reduction methods, we test five different numbers of
reduced dimensions: r = 1, 2, 3, 4, 7 (we choose 7 because the total number
of intrinsic dimensions is 7), and for CAS-LGP we compute the results with
2 to 4 clusters each with r = 1, 2, 3, 4 reduced dimensions, where we note
that when the number of clusters is taken to be 1, the method reduces to the
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Fig. 1. DR directions in four regions.

standard AS. We compute the NMSE for each case and summarize all the
results in Table 1. First of all, as we can see from the table, for all the cases
where the reduced dimensionality is from 1 to 4, CAS-LGP with four clusters
yield by far the best results. Moreover, interestingly the table also illustrates
that, even though the standard AS can correctly identify the 7 DR directions,
the resulting GP emulator is severely inaccurate, which is even less accurate
than the GP constructed in the original space. Lastly we note that the distance
function in this example seems to have little impact on the performance, as
the results of the two cases (η = 1 and η = 0.5) are nearly identical. This
example demonstrates that, if the model of interest has clearly different low
dimensional structure in different regions, the proposed method can effectively
identify these regions and their associated low dimensional structures, which
in turn produces an accurate local GP emulator.

4.2 A Gaussian mixture

The first example is a piece-wise function and it is therefore non-smooth. To
test the performance with smooth functions, we consider the following mixture
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Table 1
The NMSE results of the piece-wise example.

η = 1

Method CAS-LGP

AS-GP SIR-GP SAVE-GP GP

d

k
2 3 4

1 73.1% 68.5% 41.1% 91.6% 72.6% 88.6%

67.5%

2 72.1% 57.6% 20.3% 86.1% 73.2% 85.3%

3 65.1% 56.6% 20.3% 85.3% 72.7% 86.0%

4 61.9% 55.7% 20.3% 80.5% 72.2% 86.2%

7 81.7% 71.6% 82.5%

η = 0.5

Method CAS-LGP

AS-GP SIR-GP SAVE-GP GP

d

k
2 3 4

1 73.1% 68.5% 41.1% 91.6% 72.6% 88.6%

67.5%

2 72.1% 57.6% 20.3% 86.1% 73.2% 85.3%

3 65.1% 56.6% 20.3% 85.3% 72.7% 86.0%

4 61.9% 55.7% 20.3% 80.5% 72.2% 86.2%

7 81.7% 71.6% 82.5%

of Gaussian functions:

f(x) =
J∑
j=1

θj exp(−
(x− cj)BjB

T
j (x− cj)

T

2σ2
j

) (4.3)

with Bj being the low dimensionality projection matrix of size d× l in which
l � d. Here we set d = 50, l = 2 and J = 3 in this experiment, which means
that the mixture has three components, each mixture component admits two
intrinsic dimensions and totally six intrinsic dimensions exists in this function.
To keep it simple and clear, we specify the columns in each Bj to be orthogonal
where entries are randomly drawn according to a binomial distribution such
that it is either 0 or 1. It should be clear that the columns of these matrices
represent the DR directions in each mixture, which are shown in Fig. 2. Centers
cj are also randomly chosen from a uniform distribution U [0, 1]d, σj’s are all
set to be 0.2, and the weights are taken to be θ = [0.41, 0.44, 0.26]. The
distribution of x is set to be U [0, 1]d.
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Table 2
The NMSE results of the Gaussian mixture example.

η = 1

Method CAS-LGP

AS-GP SIR-GP SAVE-GP GP

d

k
2 3 4

1 85.7% 85.4% 97.2% 89.8% 93.2% 95.6%

95.8%
2 25.2% 23.6% 36.6% 37.6% 92.5% 94.8%

3 24.7% 23.6% 36.6% 37.3% 92.3% 94.3%

4 24.9% 23.6% 36.6% 36.5% 92.9% 94.6%

η = 0.5

Method CAS-LGP

AS-GP SIR-GP SAVE-GP GP

d

k
2 3 4

1 85.7% 85.4% 113.0% 89.8% 93.2% 95.6%

95.8%
2 25.2% 23.6% 36.7% 37.6% 92.5% 94.8%

3 24.7% 23.6% 36.6% 37.3% 92.3% 94.3%

4 24.9% 23.6% 50.1% 36.5% 92.9% 94.6%

In the numerical tests, once again 1000 samples are used as the training set
and another 5000 are used as the test set for evaluating the accuracy of GP.
In Figs. 2 we plot the actual DR directions as well as the directions computed
with CAS and AS, where we can see that the two methods can both identify
the DR directions rather accurately. Next we compare the performance of
the GP emulators constructed with the same class of methods used in the
first example and we summarize all the results in Table 2. These results are
qualitatively similar to those for the first example. In particular CAS with
2, 3 or 4 clusters yield substantially lower approximation errors than AS and
other methods, which demonstrates that CAS-LGP can take advantage of the
local low dimensional structure to achieve better performance than the GP
constructed on the global low dimensional subspace, even though, in both
AS and CAS, the global subspace is correctly identified. This example shows
that the proposed CAS-LGP method performs well in problems where the
underlying model does not have a piecewise structure (i.e., the low dimensional
structures are not clearly separated in disjoint subdomains).
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Fig. 2. Principal directions in three different regimes
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4.3 Elliptic PDE

Our last example is the following elliptic partial differential equation studied
in [9] with slight modification:

−∇s · (a(s, x)∇su) = 1, s ∈ [0,1]2. (4.4)

We set homogeneous Dirichlet boundary conditions on the left, top, and bot-
tom of the spatial domain; denote this boundary by Γ1. The right side of the
spatial domain denoted Γ2 has a homogeneous Neumann boundary condition.
That is,

u(s) = 0, s ∈ Γ1,

∇u(s) · n = 0, s ∈ Γ2.
(4.5)
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In this problem we assume that the coefficients a = a(s) of the differential
operator is a log-Gaussian random field. Moreover we represent a(s) by a
truncated Karhunen-Loève (KL) type expansion:

log(a(s)) =
d∑
i=1

xiγiφi(s), (4.6)

where the xi are independent, identically distributed standard normal random
variables, and in principle the {φi, γ2

i } are the eigenpairs of a correlation op-
erator. In this example we will modify the standard setting and the eigenpairs
{φi, γ2

i } will be specified later. Our function of interest is a linear functional
of the solution [9]

f(x) =
∫

Γ2

u(s,x)/|Γ2|ds. (4.7)

The PDE is discretized and solved using a finite element method on a trian-
gulation mesh; then f and ∇xf can be computed as a forward and adjoint
problem (see [2] for details). Recall that by the KL representation (4.6), we
can specify a(s,x) by providing {φi, γi}. First the KL bases φi are taken to be
the eigenfunctions of the following covariance kernel function:

C(s, s′) = exp(−‖s− s′‖1

β
), (4.8)

where β is taken to be 1, and d is taken to be 100, implying that the di-
mensionality of the problem is 100. As is mentioned earlier, we modify the
eigenvalues γi’s so that they become a function of x. Specifically we assume
that the vector-valued function

γ(x) = (γ1(x), ..., γ100(x)),

takes the following form,

γ(x) =


γ3,4,5,6,7,8,9,10(x) = 100 & γΓ\{3,4,5,67,8,9,10}(x) = 0, if x1 < 0, x2 < 0,

γ11,12,13,14,15,16,17,18(x) = 100 & γΓ\{11,12,13,14,15,16,17,18}(x) = 0, if x1 ≥ 0, x2 < 0,

γ19,20,21,22,23,24,25,26(x) = 100 & γΓ\{19,20,21,22,23,24,25,26}(x) = 0, if x1 < 0, x2 ≥ 0,

γ27,28,29,30,31,32,33,34(x) = 100 & γΓ\{27,28,29,30,31,32,33,34}(x) = 0, if x1 ≥ 0, x2 ≥ 0,
(4.9)

where Γ in this equation means the full index set {1, · · · , 100}. Regarding the
data, we first generate random samples from distribution π(x), solve the PDE
model, and finally evaluate the function of interest (4.7), yielding the input-
output pairs, where 1000 pairs are used as the training set and 400 are used
for testing. It is important to mention here that for the 1000 training data,
the gradient of the target function is also obtained.

First we conduct the comparison of the NMSE results for the same set of
methods as those in the first two examples, which are shown in Table 3. We
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Fig. 3. The leading DR directions in four different clusters calculated by the CAS
method. The dimensions that are not shown in the figure are all of zero value.

reinstate that in the case the cluster number is one, CAS reduces to the stan-
dard AS. From the table we can see that all the global dimension reduction
methods produce comparable results while the performance of CAS is clearly
better than those. Within CAS, the use of four clusters provides the best re-
sults. We can also see from the table that with 4 clusters, keeping 1 dimension
seems to be sufficient for the local GP emulator and increasing the dimen-
sionality does not improve the performance. Moreover, the table also shows
that results of CAS are rather robust with respect to the value of α. Finally
for illustration purposes, we plot the leading DR direction in each of the four
clusters in Fig. 3.

Another important issue in CAS method is to determine the number of clusters
J and the reduced dimensionality rj in each cluster. In Fig. 4 we show the
relation between the reduced dimensionality rj and the value of ρ, where one
can see that, while rj depends on ρ, the dependence is not highly sensitive.
In what follows we conduct the numerical experiments using Eq. (2.12) with
ρ = 0.85 and 0.95. The number of clusters is determined by a ten-fold cross
validation procedure, the results of which are shown in Table 4, from which
we can see that, in both cases the NMSE is decreasing as J increases from 1
to 4 and it remains about the same at 4 and 5. Based on the the principle
of Occam’s razor [23] for model selection, we choose J = 4 here and the final
NMSE is 20.4% for ρ = 0.85 and 21.6% for ρ = 0.95. Note that these are the
results where all the rj’s are determined automatically, which is different from
those in Table 3.

5 Conclusions

In this work, we consider the construction of GP emulators for computation-
ally intensive models of large dimensions. In such problems, the construction
of GP emulator directly in the original input space is usually not feasible due
to the fact that GP models can not handle very high dimensionality. Thus, a
common practice is to first reduce the dimensionality of the original model and
then construct the GP emulator in the dimension-reduced parameter space.
To this end, the AS method is particularly effective as it utilize the gradient
information. To deal with models that do not have a simple globally low di-
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Table 3
The NMSE results of the PDE example.

η = 1

Method CAS-LGP

AS-GP SIR-GP SAVE-GP GP

d

k
2 3 4

1 27.4% 27.3% 20.5% 41.0% 37.4% 41.0%

41.0%
2 27.8% 27.9% 20.1% 41.0% 38.1% 41.0%

3 28.5% 28.4% 20.4% 41.0% 41.0% 41.0%

4 29.4% 29.3% 21.6% 41.0% 41.0% 41.0%

η = 0.5

Method CAS-LGP

AS-GP SIR-GP SAVE-GP GP

d

k
2 3 4

1 29.2% 23.1% 20.5% 41.0% 37.4% 41.0%

41.0%
2 30.0% 23.8% 20.1% 41.0% 38.1% 41.0%

3 29.7% 24.4% 20.4% 41.0% 41.0% 41.0%

4 30.4% 25.2% 21.6% 41.0% 41.0% 41.0%

Table 4
The Cross Validation results.

CAS-LGP CV-NMSE NMSE

ρ

J
1 2 3 4 5 4

0.85 36.4% 32.8% 31.3% 30.3% 30.2% 20.4%

0.95 36.4% 36.3% 32.4% 30.3% 30.3% 21.6%

mensional structure, we proposed a clustered AS method, which first identifies
the “clusters” and then computes local low dimensional structure associated
to them. Finally a set of local and low dimensional GP emulators are ob-
tained for the underlying simulation model. We apply the proposed method
to several examples which do not possess a global low dimensional structure,
and the numerical results show that the CAS based LGP can provide more
accurate results than those based on global dimension reduction.

Several extensions of the proposed method are possible. First, one can see that
the CAS method does not rely on the GP emulator and can be incorporated
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with many other surrogates such as polynomial or RBF based regression mod-
els. To this end a very straightforward extension is to investigate the advan-
tages and potential issues of combining CAS with different surrogate models.
Second, the performance of the clustering method depends critically on the
distance function used. In this work we proposed a distance function which
combines the gradient and the location information, and it is certainly inter-
esting to explore other possible distance functions which can further improve
the performance. Finally just like the standard AS method, the proposed CAS
method also relies on the gradient information. However, in many real-world
applications, the gradient information may be unavailable or available with
significant error or noise. To this end, we hope to extend the present CAS ap-
proach so that it can identify the low-dimensional structure, using the noisy
gradient or without using the gradient information at all.
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A Proof of Theorem 3.2

proof A.1 First for j = 1, ..., J we define

fj(x) =

{
f(x), x ∈ Ωj,

0, x /∈ Ωj,
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and it should be clear that

f(x) =
J∑
j=1

fj(x).

Next we have

E[(f − F̂ )2] =
J∑
j=1

wkEπj [(f − F̂ )2]

=
J∑
j=1

wjEπj [(fj − F̂j)2]

≤
J∑
j=1

wj(1 +
1

Nj

)α′j(λrj+1 + · · ·+ λd),

where the last inequality is a direct application of Theorem (2.2). Finally letting
αj = wjα

′
j completes the proof.

B Cross validation for determining J

Here we describe a k-fold cross validation (CV) procedure for determining the
number of clusters J . For each J = 1 to Jmax (i,e., the maximum number of
clusters allowed), we perform the following procedure to calculate the average
NMSE associated to J :

• First one randomly splits the training set D into k equal groups: D1, ..., Dk.
• For i = 1 to k
· Take Di as a CV test set, and the rest combined as the CV training set

denoted as D−i.
· Apply the CAS-LGP method to the data set D−i and one obtains a local

GP emulator, which is then tested on Di, yielding a NMSE result, denoted
as NMSEi.

• Calculate the average NMSE: NMSE = 1
k

∑k
i=1NMSEi.

Finally we choose J that yields the smallest NMSE.

C Supplemental result for the PDE example

In the following table (C.1), we provide some the NMSE results of the PDE
example with β = 0.01. As one can see from the table, in this case, dimension
reduction does not improve the regression accuracy at all, which provides a
good example of the limitation of dimension reduction techniques in general.
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Table C.1
The NMSE results of the PDE example.

η = 0.5, β = 0.01

Method CAS-LGP

AS-GP SIR-GP SAVE-GP GP

d

k
2 3 4

1 12.57% 15.39% 15.48% 12.44% 15.39% 15.39%

15.39%
2 15.64% 15.39% 15.48% 15.42% 15.39% 15.39%

3 15.64% 15.39% 15.48% 15.42% 15.39% 15.39%

4 15.64% 15.39% 15.48% 15.42% 15.39% 15.39%
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