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Abstract: Parametric typhoon insurances are an increasingly used financial tool to mitigate the
enormous impact of tropical cyclones, as they can quickly distribute much-needed resources, e.g., for
post-disaster recovery. In order to optimise the reliability and efficiency of parametric insurance, it
is essential to have well-defined trigger points for any post-disaster payout. This requires a robust
localised hazard assessment for a given region. However, due to the rarity of severe, landfalling
tropical cyclones, it is difficult to obtain a robust hazard assessment based on historical observations.
A recent approach makes use of unrealised, high impact tropical cyclones from state-of-the-art
ensemble prediction systems to build a physically consistent event set, which would be equivalent to
about 10,000 years of observations. In this study, we demonstrate that (1) alternative trigger points of
parametric typhoon insurance can be constructed from a local perspective and the added value of
such trigger points can be analysed by comparing with an experimental set-up informed by current
practice; (2) the estimation of the occurrence of tropical cyclone-related losses on the provincial level
can be improved. We further discuss the potential future development of a general tropical cyclone
compound parametric insurance.

Keywords: tropical cyclone; disaster risk reduction; parametric insurance; extreme events; typhoons

1. Introduction

Tropical cyclones (TCs) have tremendous socioeconomic impact on East Asia, and
especially China. On average, six to seven TCs with a tropical storm intensity of at least
(≥17.2 m/s) [1] make landfall in China every year [2]. For the 2018 typhoon season, the
China Meteorological Administration (CMA) reported TC-related direct economic losses
of over 67 billion RMB, and approximately 32 million people were affected [3]. Under the
Sendai Framework for Disaster Risk Reduction 2015–2030 [4], cost-effective public and
private investment in disaster risk reduction (DRR) for resilience is one of the priorities to
reduce the impact of disasters. Financial instruments for risk transfer, such as (re)insurance
solutions, are an important part of DRR due to their high benefit-cost ratio [5]. In particular,
parametric insurance (or index-based insurance) would be suitable for respective DRR
application. Unlike traditional insurance solutions, the payment of a parametric insurance
does not depend on any post-event physical damage assessment. Once the agreed thresh-
old(s), also known as trigger point(s), are exceeded, the compensation from the insurer
would be made to the insuree. Given its low administrative costs and quick disbursement,
parametric insurance can serve as a suitable financial instrument for DRR as it could speed
up the post-disaster recovery significantly.

A first pilot programme of catastrophe parametric insurance in China was imple-
mented in 2016 for ten cities in Guangdong [6]. The coverage increased to more cities
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in subsequent years [6]. Currently, eighteen cities have such a parametric insurance ar-
rangement [7]. The city governments who are involved in the programme first publish
an invitation to tender, then primary insurers who are interested in offering such service
would place a bid to compete for the contract. Primary insurers who have won such
contracts include China Pacific Insurance (Group) Co., Ltd. (CPIC), People’s Insurance
Company of China Limited (PICC), and Ping An Insurance (Group) Company of China,
Ltd. (PingAn) [8]. Swiss Reinsurance Company Ltd. (Swiss Re) has participated in this
programme as a reinsurer since 2016. There are two major components in the catastro-
phe parametric insurance for respective cities in the Guangdong province: (1) parametric
typhoon insurance, and (2) heavy rainfall parametric insurance [6,9]. The parametric
typhoon insurance is triggered if the centre of the typhoon is located within a specific
region, e.g., within 106 km radius from the city, and the intensity of typhoon, as reported
by CMA, is above the agreed threshold value, e.g., 32.7 m/s [9]. The amount of compen-
sation depends on the location and intensity of the typhoon. For example, in the period
June 2021 to May 2022, the agreed compensation of parametric typhoon insurance for
Zhuhai is 2 million RMB, if a typhoon is located within 106 km radius from the city with
intensity, as estimated by CMA using the Dvorak technique [10] as 2-min mean maximum
sustained wind [11], in the range of 32.7–36.9 m/s. The agreed compensation increases
to 230 million RMB if the typhoon is located within a 46 km radius from the city with an
intensity of at least 56.1 m/s [9]. In Guangdong, the twelve cities that are currently covered
by the parametric typhoon insurance, are Jieyang, Shantou, Yangjiang, Chaozhou, Zhuhai,
Huizhou, Shanwei, Maoming, Guangzhou, Dongguan, Jiangmen, and Zhanjiang [12–23].
Heavy rainfall parametric insurance, on the other hand, is triggered based on a complex
index, which depends on multiple factors, including the intensity of heavy rainfall, and
the extent of heavy rainfall. Currently, parametric typhoon insurance and heavy rainfall
parametric insurance operate independently of each other. This means that in the case
of a typhoon event, it is possible that both parametric insurances could be triggered or
only one of the parametric insurances could be triggered. This study focuses on trigger
points of parametric typhoon insurance only, as the main driver of the related hazards and
wind speed is a classical variable to quantify the overall severity of an event. According
to the World Meteorological Organization (WMO), TC is a generic term for a non-frontal
synoptic scale cyclone which formed over tropical or sub-tropical oceans with organised
convection and cyclonic surface wind [1]. Typhoon, on the other hand, is a special class of
TC with intensity of 32.7 m/s or more [1]. Consequently, parametric typhoon insurance
covers damages from typhoons, but not from all TCs.

The key to a suitable parametric insurance for DRR is to have a robust, optimal
trigger point, i.e., realistic criteria that would be satisfied if disaster were to occur and the
appropriate amount of compensation would be given to the insuree. If the trigger point is
suboptimal, it could lead to over- or under-compensation. In the short term, the progress
of post-disaster recovery could be delayed due to misallocation of resources. Consequently,
in the long term, it will hinder the usefulness of this instrument for both agreeing parties.
In practice, there are two major challenges in the development of the trigger point of a
parametric typhoon insurance product:

(1) Lack of consideration of the localised impact of typhoons; and
(2) Lack of historical loss events for accurate loss occurrence estimation.

A typical approach, which attempts to address these issues, is to first construct an
event set using a stochastic method based on historical observations to increase the potential
sample size to compensate for the lack of historic events. The impact of stochastic TC
events is then derived using simple models of TC structure [24–30]. While the stochastic
approach is computationally inexpensive, the stochastic event set could be biased toward
the past events and physically inconsistent, as discussed in Ng and Leckebusch (2021) [31].

In the context of the collaboration project INPAIS (Integrated Threshold Development
for Parametric Insurance Solutions, https://www.birmingham.ac.uk/research/activity/e
nvironmental-health/projects/inpais.aspx (accessed on 11 October 2021)), a new approach,

https://www.birmingham.ac.uk/research/activity/environmental-health/projects/inpais.aspx
https://www.birmingham.ac.uk/research/activity/environmental-health/projects/inpais.aspx
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the Osinski–Thompson approach [32,33] (sometimes referred to as the UNSEEN approach),
is used to construct a high-impact TC event set. The underlying principle of the Osinski–
Thompson approach is to aggregate all unrealised extreme events, which are generated from
state-of-the-art ensemble prediction systems (EPSs), such that a large observational data set
of extreme events can be constructed. These extreme events can be treated as real events as
they are produced by the full physical models and cannot be distinguished a priori from
later realised events. Various studies have employed the Osinski–Thompson approach to
construct a climatologically consistent extreme windstorm event set to investigate European
windstorms, Atlantic hurricanes, and Western North Pacific (WNP) typhoons [31,34,35].

Furthermore, Osinski et al. (2016) [32] demonstrated that if the tail behaviour of the
distribution of atmospheric models is similar, those storm events could be aggregated
and form a large storm event set in the framework of WiTRACK [36,37] along with a
non-dimensional impact-related index, e.g., the storm severity index (SSI) [36]. The SSI
was developed by Leckebusch et al. (2008) [36] to objectively quantify the severity of the
storm based on its potential impact. SSI is defined as:

SSI = ∑t ∑k

[(
max

(
0,

vk,t − vk,98

vk,98

))3
× Ak

]
, (1)

where vk,t is the wind speed of the kth grid box at time t, vk,98 is the 98th percentile local
climatological wind speed of the kth grid box, and Ak is the area dependent normalisation
factor. By applying the Osinski–Thompson approach on the THORPEX Interactive Grand
Global Ensemble (TIGGE) archive [38,39], Ng and Leckebusch (2021) [31] constructed
the TIGGE Osinski–Thompson TC (TOT) event set for high impact TCs in the WNP. The
TOT event set can be used for a more robust return period-return level estimation of
TC-associated extreme wind at the local scale [31]. Here we define a regional SSI of an
event as the accumulated SSI of a given event over the region of interest throughout the
event lifetime.

In this study, we aim to address those challenges by answering two specific questions:
(1) Can we construct trigger points of parametric typhoon insurance from a local perspec-
tive? (2) Can we improve the occurrence frequency estimation of TC-related extreme losses?
The answers to these questions could optimise the post-disaster compensation and conse-
quently speed up post-disaster recovery. In this study, an alternative method to construct
trigger point for parametric typhoon insurance is proposed. A future development of
such a trigger point is also discussed. Furthermore, we will show an approach to improve
the estimated occurrence of TC-related losses on regional level using non-realised events
from the TOT event set. The paper is organised as follows: Description of data and the
underlying principle of our approach can be found in Section 2. Section 3 demonstrates
an alternative approach to construct trigger points for parametric typhoon insurance. A
procedure to improve the occurrence estimate of TC-related losses is shown in Section 4.
Discussion and future improvement of the proposed approach is presented in Section 5.
Conclusions can be found in Section 6. A list of acronyms is available in Appendix A.

2. Data and Methods

An impact-oriented windstorm tracking algorithm (WiTRACK [36,37]) is used for
the identification of potential damage-relevant extreme windstorms based on local wind
extrema above the 98th percentile of the local climatological wind speed. This approach has
proved to be useful in assessing loss potentials due to European winter windstorms [35]
and tropical cyclones (TCs) in the Western North Pacific (WNP) [40]. Befort et al. (2020) [40]
showed that WiTRACK can identify approximately 90% of high impact TC-related events
with more than 3000 million RMB losses in China. This demonstrates the suitability of
WiTRACK in this study. The major difference between WiTRACK and other TC tracking
algorithms is that WiTRACK identifies regions of extreme wind associated with storms
rather than just the position of maximum wind or minimum sea level pressure. This forms
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the so-called impact footprint of the storm. A detailed description of WiTRACK can be
found in Leckebusch et al. (2008) [36], Kruschke (2015) [37], and Befort et al. (2020) [40].
The WiTRACK setting used in this study is identical to the setting that was used in Ng and
Leckebusch (2021) [31]. Historical TC-related impact footprints are identified by applying
WiTRACK on the 10-m wind of the fifth generation of atmospheric reanalysis European
Centre for Medium-Range Weather Forecasts (ECMWF), i.e., ERA5 [41]. The ERA5 output
that is used in this study has spatial resolution of 0.25◦ × 0.25◦ and only time steps of 00,
06, 12, and 18 UTC are used.

The TIGGE data archive [38,39] is used in the construction of the TIGGE Osinski–
Thompson TC (TOT) event set, as in Ng and Leckebusch (2021) [31]. Ensemble forecast
data of four centres are used: China Meteorological Administration (CMA), ECMWF,
Japan Meteorological Agency (JMA), and National Centers for Environmental Prediction
(NCEP). A detailed description of the TOT event set can be found in Ng and Leckebusch
(2021) [31]. The basic principle to construct the TOT event set is described as follows: (i) The
high impact windstorm events in the ensemble forecast data is identified by WiTRACK.
(ii) Windstorms that are similar to historical TC events are removed. (iii) Windstorms that
do not have behavior as TCs, e.g., windstorms which are first identified far away from the
tropics, or windstorms with erratic and short tracks, are removed. The TOT event set is
shown to be realistic and has high information content [31]. This event set is suitable to use
in evaluating the TC hazard in the WNP.

Historical TC information as reported by CMA, e.g., position and intensity, is obtained
from the International Best Track Archive for Climate Stewardship (IBTrACS) v04r00 [42].
Historical in-situ surface wind data are obtained from the Integrated Surface Database
(ISD) [43]. Only records in May to November are used as this is the period where TCs are the
most likely to influence continental China. Provincial-level typhoon-related loss data from
1999–2018 are obtained from the China’s Yearbooks of Meteorology (2000–2004) [44] and
China’s Yearbooks of Meteorological Disaster (2005–2019) [45]. Two types of loss entries
are filtered out: (1) Entries with zero direct economic loss are removed, as the true loss is
possibly non-zero, but still a small entry that is below the rounding or reporting threshold.
(2) Loss events that involve multiple typhoons, namely Typhoons Saola and Damery (2012),
Typhoons Tembin and Bolaven (2012), and Typhoons Nesat and Haitang (2017), have been
removed to avoid further complexity in the analysis. While the main focus of this study is
Guangdong, we have also extended our analyses to other coastal regions of continental
China, namely Fujian, Zhejiang, and Jiangsu and Shanghai, to demonstrate the possible
variations in the results. The geographic locations of these regions are shown in Figure 1.
The number of observed loss events used in this analysis for Guangdong, Fujian, Zhejiang,
and Jiangsu and Shanghai, are 63, 46, 42, and 19, respectively. Hazard footprint-based
normalization [46] is applied to the historical loss data. The hazard footprint is defined
as the impact footprint that is identified by WiTRACK. Gridded gross domestic product
(GDP)–gross cell product (GCP) [47,48] is used to represent the spatial economic condition
of the regions. The unit of GCP is 2005 USD in purchasing power parity. The reference year
is chosen to be 2005. Data of administrative boundary of China is obtained from GADM
database version 3.4.
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3. Developing a Framework for Deriving Robust Trigger Points for Parametric
Typhoon Insurance

As discussed in Section 1, the trigger points of parametric typhoon insurance, which
are currently used, consist of two components: (i) the potential area of impact, which is
represented by the distance between the centre of typhoon and the city; (ii) the severity
of potential impact, which is represented by the intensity of the typhoon. Hereinafter, we
refer to this type of trigger point as the storm-perspective trigger point (STP) as these are
the variables which are used in typical meteorological storm reporting and the impact of
the typhoon is implicitly included. STP has a strong assumption on the structure of tropical
cyclones (TCs), however, the size and structure of typhoon varies even for typhoons with
the same intensity [49]. This means the actual potential area of impact also varies for
different typhoons. Consequently, using a fixed radius to represent the potential area
of impact would lead to over- or under-estimation of actual extent of typhoon impact.
Moreover, once a typhoon made landfall, the intensity of the typhoon would decay rapidly
due to multiple physical processes, e.g., friction and reduction of surface evaporation [50].
Yet, those weakened typhoons, or TCs in general, could still cause significant damage to
the inland regions due to lack of local impact experience in the past. On the other hand,
coastal regions, which have more local impact experience, could benefit from their local
investment to increase typhoon resilience. Thus, the potential TC-related impact would be
reduced. These factors are not reflected by STP, which depends on the absolute intensity of
a TC. In addition, TCs which did not make landfall with typhoon strength could also cause
significant damage, e.g., Tropical Storm Bilis (2006).
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An alternative approach to construct a trigger point for parametric typhoon insurance
is to make use of local information. We refer to this type of trigger point as the local-
perspective trigger point (LTP). In the framework of WiTRACK, only the top 2% of wind
speed of the local climatological wind speed distribution is used as a proxy to quantify the
region with TC-related damage potential. This implies that local assets would have the
ability to withstand wind speed up to the top 2% of wind speed, which in turn represents
the local TC hazard mitigation measures against extreme wind due to TCs. These measures
would include early and effective warnings, increased public awareness and preparedness,
and enhancement of infrastructure [51]. Consequently, the region covered by the impact
footprint can be considered as the region with potential loss.

In this section, we assessed the differences between STP and LTP from the TC hazard
impact perspective. First, we compared the frequency of occurrence of impact footprints,
i.e., impact frequency, in the period 1999–2018, based on the potential impact area criteria
of STP and LTP for four coastal regions of interest (Figure 2). The potential impact area
of TC of STP was defined as the region within 106-km radius from a TC centre according
to the CMA best track record for all TC intensity. In order to take into account that TCs
with lower intensity could also cause damage, all TC intensities were used. A radius of
106-km was chosen to mimic the operational trigger point for Zhuhai city [9]. In all regions,
the impact frequency was significantly higher when LTP was used in comparison to STP,
in particular for further inland regions. This demonstrates the discrepancy in the trigger
point construction from the pure meteorological perspective, which was represented by
STP, and from the impact perspective, which was represented by LTP.

3.1. Triggering a Compensation: LTP versus STP

Within the LTP framework, parametric typhoon insurance could be triggered, if the
grid boxes of the target region are covered by the impact footprint of TC as identified
by WiTRACK. However, this does not imply the parametric typhoon insurance has to be
triggered, as it would also depend on the local in-situ observations to verify the actual
local impact of the TC. Consequently, the appropriate amount of compensation can be
made to the insuree. This is analogous to the STP except using the local perspective.
To demonstrate the importance of local information in triggering parametric typhoon
insurance, the triggering consistency of STP has been evaluated from the local perspective.
We make use of the results of a hindcast exercise, carried out by Swiss Re (Beijing) using
experimental trigger points (ETPs). The Swiss Re hindcast exercise examined whether
historical TC events in the period of 2011–2018 would trigger parametric typhoon insurance
for the respective cities in Guangdong, if the ETPs were used. While the details of the
ETPs design would be part of company internal procedures and proprietary products, the
underlying principle of the construction of ETPs is similar to the design of STP as given in
Section 1. The results of the hindcast exercise are either triggered or not triggered for cities in
Guangdong. For those events that triggered a parametric typhoon insurance, we compare
the wind speed of the in-situ weather stations with information from impact footprints
covering the city. Therefore, we can examine whether ETPs are triggered consistently with
reference to the LTP. The details of this demonstration are as follows:

(1) For the events in which ETP was triggered for a given city, the event associated impact
footprint is used to determine whether the city is potentially impacted by the event,
i.e., whether the impact footprint is found within the city.

(2) If the city is potentially impacted by the event, we extract the maximum in-situ
observed wind speed within 24-h period (MW24), centered at the time of impact, of
the observation station of the city. The 24-h period is used to minimise the likelihood
of null observation at a given time.

(3) Consistency is evaluated by

a. Whether the impact footprint can be found in the city
b. Whether ETP is triggering consistently for a given MW24 of the in-situ obser-

vation station of interest.
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Figure 2. Impact frequency of TCs that caused direct economic loss. Units are total number of
TC impact occurrences in the period 1999–2018. For four regions of mainland China: Guangdong,
Fujian, Zhejiang, and Jiangsu and Shanghai (from top to bottom). Impact frequency based on
STP (a,c,e,g left column) and LTP (b,d,f,h right column) are shown.
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In this analysis, four cities of Guangdong, namely Shantou, Yangjiang, Shanwei, and
Zhanjiang, are considered (c.f. Table 1 for the associate station and the geographic locations
are shown in Figure 3). The results are shown in Table 2. Criteria (3a) is met 90% of all
the cases where ETP was triggered. The exceptions are Tropical Storm Pakhar (2017) and
Tropical Storm Bebinca (2018) for Yangjiang, where these two events are not identified
by WiTRACK due to their low intensities. Therefore, no impact footprint is found for
these two storms. Yet, these events led to large direct economic losses in Guangdong, 680
million RMB for Tropical Storm Pakhar (2017) and 1940 million RMB for Tropical Storm
Bebinca (2018). A potential explanation is discussed in Section 5. Given that criteria 3a
is satisfied for most cases where ETP was triggered, this shows the notion of LTP impact
footprint is reliable in identifying the potential impact of typhoons. If ETP is consistently
triggered, we would expect the ETP would always be triggered above a certain value of
MW24. However, the consistency of ETP appears to be city-dependent (Table 2). In order to
represent triggering consistency quantitatively, we define the trigger rate (TR) for a city as,

TR =
No. of events where ETP was triggered

No. of events where ETP should have triggered based on MW24
(2)

Table 1. Information of selected stations in Guangdong, Hong Kong, and Macau.

WMO Station ID Name Latitude (◦ N) Longitude (◦ E) Period Province/Region

45004 Kowloon 22.312 114.173 1992–2001 Hong Kong

45005 Hong Kong
Observatory (HKO) 22.3 114.167 1973–1996 Hong Kong

45007 Hong Kong Intl 22.309 113.915 1997–2018 Hong Kong
45011 Macau Intl 22.15 113.592 1973–2018 Macau
45032 Ta Kwu Ling 22.533 114.15 2002–2018 Hong Kong
45039 Sha Tin 22.4 114.2 2004–2018 Hong Kong
59087 Fogang 23.883 113.517 1973–2018 Qingyuan
59271 Huaiji 23.95 112.2 1973–2002 Zhaoqing
59278 Gaoyao 23.05 112.467 1973–2018 Zhaoqing
59287 Baiyun Intl 23.392 113.299 1973–2018 Guangzhou
59316 Shantou 23.4 116.683 1973–2018 Shantou
59317 Huilai 23.083 116.3 1973–2000 Jieyang
59462 Luoding 22.717 111.55 1973–2000 Yunfu
59478 Tai-shan 22.267 112.783 1973–2002 Jiangmen
59493 Baoan Intl 22.639 113.811 1973–2018 Shenzhen
59501 Shanwei 22.783 115.367 1973–2018 Shanwei
59658 Zhanjiang 21.217 110.4 1973–2018 Zhanjiang
59663 Yangjiang 21.867 111.967 1973–2018 Yangjiang
59664 Tian-cheng 21.517 111.3 1973–2002 Maoming
59673 Shangchuan Dao 21.733 112.767 1973–2018 Jiangmen

For Zhanjiang, the minimum MW24 of the corresponding in-situ observation station,
in which ETP is triggered, is 9 m/s. Above this value, ETP is always triggered with the
presence of an impact footprint in the city. Therefore, the TR for Zhanjiang is 1. For
Yangjiang and Shanwei, where their minimum MW24 is 15 m/s and 10 m/s, respectively,
ETPs are triggered relatively consistently with few cases which should be triggered for the
given in-situ wind speed, but was not, for example, Typhoon Mujigae (2015) for Yangjiang
and Typhoon Mangkhut (2018) for Shanwei. The value of TR for Yangjiang and Shanwei
is 0.67 and 0.50, respectively. For Shantou, where the minimum MW24 is 4 m/s, ETP is
not triggered consistently with the lowest TR of 0.33. It should be noted that the values
of minimum MW24 for Yangjiang, Shanwei, and Zhanjiang, are close to the definition
of so-called TC high wind, which is defined as the wind induced by a TC that exceeds
10.8 m/s [52,53]. This shows the above evaluation procedure for triggering consistency
is reliable.
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Figure 3. Location of selected stations in Guangdong, Hong Kong, and Macau in blue stars (data
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analysis in Section 3.1 is shown in red (see legend).

Table 2. Examination of triggering consistency of ETP using results of Swiss Re hindcast exercise
with reference to LTP (see Section 3.1 for details). ETP is triggered based on TC intensity as measured
by CMA. Events, for which ETP is triggered, are in bold red. The numbers are the maximum in-
situ observed wind speed within a 24-h period (m/s) centered at the time of impact (MW24), at
the associated station of the given city. NV indicates no observed values. NF indicates no impact
footprint covered the city. It can be seen, ETP is not consistently triggered for some cities for a given
minimum MW24.

Year Typhoon Name Shantou Yangjiang Shanwei Zhanjiang

2011 Nesat NV 17 6 21
2012 Vicente NV 15 9 5
2012 Kai-tak NV 14 7 19
2013 Usagi 10 NF 19 NF
2013 Utor 4 26 6 8
2014 Hagibis 5 NF 6 NF
2014 Rammasun NF 12 5 17
2014 Kalmaegi 5 14 10 24
2015 Linfa 6 11 10 NF
2015 Mujigae 5 16 6 29
2016 Nida 7 11 13 NF
2016 Haima 8 7 17 NF
2017 Mawar 4 NF 10 NF
2017 Merbok 5 NF 10 NF
2017 Hato 3 15 7 6
2017 Pakhar NF NF NF NF
2017 Khanun 6 13 7 9
2018 Mangkhut 5 19 18 8
2018 Bebinca NF NF NF NF

The reader should be aware that the results in the above analysis would also depend
on the specific location of the station. For example, the range of in-situ observed MW24 for
the Shantou station in the Swiss Re hindcast exercise is 3–10 m/s (Table 2). The range of
wind speed appears to be too low in producing significant impact. Thus, even ETP has a
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low TR in Shantou, it could be the case that the specific station is not located at the location
where TC-related high wind speed would be observed during TC occurrence. This notion
is supported by the large variations in the 20-year return level wind speed (Figure 4) of five
in-situ stations in Hong Kong, namely, Kowloon, Hong Kong Observatory, Hong Kong
Intl, Ta Kwu Ling, and Sha Tin. A potential approach to address this issue is discussed
in Section 3.2.
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Figure 4. 20-year return level of selected stations in Guangdong, Hong Kong, and Macau, calculated
from historical observations (red) and the TOT event set (blue). Bars and dots indicate the 95% confi-
dence interval and estimates, respectively. Vertical axis on the right shows the corresponding category
in the extended Beaufort wind scale.

3.2. Compensation Based on Event Occurrence in LTP

From the practitioner point of view, it is necessary to evaluate the likelihood of event
occurrence. This is because this would affect the choice of trigger points which would
consequently affect the pricing and potential compensation for the parametric typhoon
insurance product. This implies, within the LTP framework, an accurate estimation of the
occurrence of high impact TC events at the local scale is of necessity. In order to do so, there
are two issues, which have to be overcome: (1) Due to the rarity of historical TCs, a robust
estimation of extreme wind occurrence at the local scale based on historical observation is
difficult; (2) As demonstrated in Section 3.1, suitable in-situ observations to detect relevant
local impact might not yet exist.

The first technical issue can be overcome by using a method developed by Ng and
Leckebusch (2021) [31]. The principle of the method is to increase the number of in-situ TC
wind observations by using the TOT event set given that the stations have long consecutive
records of at least 10 years. This method can increase the number of observations by up to
506 times more than the available historical observations in the in-situ observation stations
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of Guangdong. Consequently, the occurrence of local extreme TC wind estimations can
be improved. A workflow of this method is described as follows (also see Appendix B for
schematic diagram for the workflow (Figure A1)):

(1) Construct the TOT event set.
(2) Select in-situ stations with long consecutive records, i.e., with at least 10 years of

consecutive records, for reliable climatology.
(3) For each selected station, we identify the closest grid boxes in the TOT event set (see

Ng and Leckebusch (2021) [31] for detailed description).
(4) Area scaled SSI of the relevant grid boxes are extracted
(5) Mapped data from (4; storm severity index, SSI) to in-situ extreme wind observations

using a transfer function e.g., quantile mapping.
(6) Finally, the occurrence of extreme wind speeds is calculated using the threshold excess

approach in the extreme value analysis.

Figure 4 shows the 20-year return level of in-situ wind speed at the selected stations
(Table 1) in Guangdong calculated from historical observations and the values calculated
using the approach based on the TOT event set described above. The estimates, which are
derived based on the TOT event set have significantly smaller uncertainty estimates than
their counterparts based on historical observations alone. Furthermore, these estimates
based on the TOT event set are within the uncertainty range of the estimates derived
from historical observations. This shows the added value of the approach. In addition,
this approach can also be used to estimate a return level of a 100-year event, which is
beyond the range of available historical observations. Consequently, decision and policy
makers could also benefit from this approach by using the additional information in the
development of policy for disaster risk reduction (DRR).

While the obvious solution to the second technical issue is to implement in-situ
observation stations at the location where relevant local impact would be found, these
new in-situ observation stations would not have long-term consecutive observations. As a
result, it is difficult to have a robust estimation of extreme wind occurrence at the location
of in-situ observation stations with short operational time. To overcome this issue, we can
combine the above approach with the idea of spatial continuity via spatial interpolation.
Figure 5 shows an example of a map of 20-year return level in Guangdong using the
method above with natural neighbour interpolation [54].

In summary, we demonstrated the validity of the notion of local impact-oriented
trigger point, i.e., LTP, in Section 3. We first compare the occurrence frequency of impact
between the LTP framework and the traditional STP framework (Figure 2). It is found
that the occurrence frequency of impact is higher in the LTP framework than in the STP
framework. This shows the discrepancy in the trigger point construction from the pure
meteorological perspective, i.e., STP, and from the local impact perspective, i.e., LTP.
We then examine the triggering consistency of STPs from the local impact perspective.
To achieve this, we used the results of hindcast exercise from a practitioner (Swiss Re)
with ETP (a type of STP) and compared the in-situ observed wind speed around the
time of impact for the cases where ETPs are triggered and the cases where ETPs are not
triggered. It is found that there exists regional variability in the consistency of triggering
compensation using ETP from the local perspective (Table 2). A mechanism of triggering
compensation in the LTP framework has been proposed. Using the methods described
above, practitioners could benchmark and fine-tune the parametric insurance trigger point
from a local impact perspective. Consequently, a more “local-centric” parametric insurance
trigger point can be developed with good sensitivity to the local impacts of typhoons. This
could reduce the cases of over- or under-compensation and improve post-disaster recovery.
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and bottom rows, respectively.

4. Improving the Estimate of TC-Related Loss Occurrence on Regional Level

One crucial determination in the final choice of trigger points is their relation to
expected losses per event. Ultimately, the fixation of the trigger point itself is a choice
between the amount of compensation wished for (for multiple reasons e.g., economical,
local cultural, ethical, demographic or, finally, political considerations) and the willingness
of the participating parties to agree on the respective premium to be paid. The latter is
again a consequence of the provider’s estimate of the real risk of occurrence of an event
of a certain strength and related loss characteristic. In this section, we thus analyse how
far using the TIGGE Osinski–Thompson TC (TOT) event set and the approach as outlined
above could lead to an improvement of estimates of tropical cyclone (TC)-related losses
on regional level.

Due to the rarity of high impact TCs, there are very limited TC-related loss data and
related meteorological information from historical records. In addition, accessibility and
the necessary pre-processing procedure of the historical TC-related loss data of China could
be a challenge [46]. Consequently, it is difficult to evaluate the occurrence frequency of a
TC with a given potential (loss) impact of a region of interest solely based on historical
events due to lack of sufficient available observations. Especially, for the very rare and
extreme events, an accurate estimate would not be possible. To address this issue, we
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can make use of the TOT event set, which contains large numbers of non-observed, but
possible high impact TC events, with a 2-step procedure. First, from observed loss and
meteorological data, we construct a loss-transfer function between regional storm severity
index (SSI) and normalised loss for each of the four regions of interest. Second, the return
period–return level estimate of TC-related loss events for the coastal regions of mainland
China is calculated based on these loss-transfer functions and by utilising the TOT event set.
The application of regional SSI in this procedure is of crucial importance: (1) Wind-based
variables have been traditionally used in storm-related damage assessments [55–57]. (2) As
discussed in Section 1, SSI is a non-dimensional quantity which allows us to construct a
large storm event set by aggregating high impact TC events from different model outputs,
e.g., the TOT event set, using the framework of WiTRACK. (3) By the construction of SSI
(c.f. Equation (1)), it is a measure of meteorological severity of a TC with the consideration
of the local resiliency to TC impact (c.f. Section 3). This means that the regional SSI can
be seen as a measure of the overall meteorological impact of a given TC for a specific
region. This procedure relies on the realism of the TOT event set, i.e., whether the TOT
event set is consistent with historical observations. The TOT event has shown to be
climatologically consistent, both spatially and temporally, with historical observations [31].
The validation of the consistency of the TOT event set and historical observations from the
impact perspective can be found in Appendix C.

4.1. Estimating the Loss for Non-Realised Events: Regional SSI and Normalized Loss

While the TOT event set is shown to be a realistic representation of localized impact
from the meteorological perspective (c.f. Appendix C), practitioners are more interested in
the associated loss or socioeconomic impact. Since the latter are naturally not part of any
meteorological ensemble predictions, it is required to attribute potential socioeconomic
impact to non-realized TCs in the TOT event set by constructing a loss-transfer function,
which links regional SSI and normalized loss (NLoss). It should be noted that the proposed
method to construct the loss-transfer function is a principle way of solving the problem
of loss attribution to non-realized events, based on historical provincial level losses. The
ultimate quality of this loss-transfer function is not necessarily the relevant aspect of the
proposed procedure of the estimation of TC-related loss occurrence. The best way of
constructing such a loss-transfer function is beyond the scope of the current study and may
be discussed in an independent study. Here we establish one way of deriving a loss-transfer
function without loss of generality, i.e., modelling extreme losses. A brief discussion of
potential improvement about the derivation of the loss-transfer function can be found
in Section 5.

Ordinary least squares regression is used for deriving the loss-transfer function be-
tween regional SSI and NLoss based on the available loss information. Large regional
differences in the loss-transfer functions are observed (Figure 6). This could be related to
the regional differences in the socioeconomic development, as well as uncertainties in the
in-situ practice loss assessment shortly after the respective events or based on a certain
random element in the realization of losses from event to event. The relevance of a variable
influence of extreme precipitation on event losses are also to be considered as a potential
factor, we refer the reader to Section 5 for the discussion of further improvements.

Due to the shortage of historical TC-related loss data and the associated meteorological
observations especially for the extremely high impact events, the gradient of the resultant
regression fits (hereinafter the optimistic scenario (black lines in Figure 6)) are very gentle,
and the extremely high impact events could be interpreted as outliers for Guangdong,
Fujian, and Zhejiang, based on this view. To our expert judgement and for the sake of clarity
in the context of this study, we conclude the optimistic scenario for Guangdong, Fujian, and
Zhejiang, would not be suitable to be used as they do not model the extreme tail of the loss
distribution well. As shown later, using the optimistic scenario as loss-transfer functions
would lead to severe underestimation of the occurrence frequency of events associated
with extreme losses, and would thus lead to unrealistic loss occurrence estimates.
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detailed explanation.

Consequently, we performed systematic tests to evaluate the sensitivity of the re-
gression fit with respect to the few available loss data. For each region, resample data
sets, which have an identical number of data entries as the original data set, are con-
structed using bootstrap random sampling (with replacement), and then a regression fit
is calculated for each of the resample data sets (grey lines in Figure 6). This has been
repeated 1000 times for statistical robustness. The regression fit is very sensitive to the
data entries as demonstrated by the large spread of regression fits from the sensitivity
test. This is related to rare occurrence of TCs especially for high impact TCs as well as the
potential uncertainty in the loss data. The regression fits with the steepest slope in the
sensitivity experiment, hereinafter the pessimistic scenario (red lines in Figure 6), appear to
be a better loss-transfer function than the optimistic scenario for the extreme events for
Guangdong, Fujian, and Zhejiang. This is because the pessimistic scenario leans toward
the extreme events and away from the unrealistic loss-transfer function discussed above,
i.e., the optimistic scenario.

An alternative approach to construct a loss estimate for non-realized events, is to
focus on the maximum potential loss for a given regional SSI (blue lines in Figure 6). The
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maximum potential loss is derived by first reordering all data entries by its SSI in ascending
order. Then, if the NLoss value of the current data entry is larger than all previous records,
this data entry is kept. This process is repeated for all data entries and the resultant set
of data entries are shown in green circle in Figure 6. The maximum potential loss is then
represented by the ordinary least squares regression between regional SSI and NLosss of
those remaining data entries. The gradient of the maximum potential loss is the steepest
slope in all regression lines for Guangdong, Fujian, and Zhejiang. The use of the maximum
potential loss fit will stand for a very loss-sensitive perspective for non-realized events, i.e.,
would probably lead to an over-estimation of losses for extreme events. It could thus be
seen as the worst-case scenario on potential losses due to the high sensitivity to the regional
storm severity.

The loss-transfer functions for the optimistic, pessimistic, and the worst-case scenarios
for Jiangsu and Shanghai are special cases in comparison to other regions, as they have
similar steepness. Obviously, there is less variation in the loss data and consequently the
loss-transfer function of the optimistic scenario is comparatively a “well-fitted” function
for the historical loss data. Thus, the results for Jiangsu and Shanghai can be used as a
scenario-independent evaluation of our proposed procedure.

In our following pilot demonstration, we will estimate the occurrence frequency
of extreme losses based on different sensitivity scenarios of the loss-transfer function,
i.e., the optimistic (black line in Figure 6), the pessimistic (red line in Figure 6), and the
worst-case scenarios (blue line in Figure 6), using the TOT event set of non-realized, but
physically possible, events. By doing so, we provide uncertainty ranges for extreme event
occurrence estimates, taking into account that the applied loss-transfer function may be far
from perfect, but still allows us to assess on three different risk sensitivities without any
loss of generality.

4.2. Developing Alternative Views on the Real Risk of Losses from Severe Typhoons: Return
Period-Return Level Estimation

This section will demonstrate how an alternative view on trigger points could be
derived from the set of non-realized events. As discussed in Section 4.1, the true return
period-return level estimation would depend on the true link between historical loss and
the associated meteorological impact in the respective region, which is beyond the scope of
this study. Return period–return level estimation is done using the R package extRemes [58]
based on the threshold excess approach. For convenience, we normalized the NLoss
with the largest NLoss (in unit of millions of RMB) observed in the respective regions,
i.e., 14,281 Million RMB for Guangdong (Typhoon Mujigae 2015), 16,224 Million RMB for
Fujian (Typhoon Dan 1999), 35,810 million RMB for Zhejiang (Typhoon Fitow 2013), and
4740 million RMB for Jiangsu and Shanghai (Typhoon Matsa 2005).

The return period–return level estimations based on historical observations (green
lines), the optimistic scenario (black lines), the pessimistic scenario (red lines), and the
worst-case scenario (blue lines), are shown in Figure 7. First, for all regions, the return
period–return level estimations based on historical observations has a large uncertainty
range in comparison to the other estimations, regardless of the choice of the loss-transfer
function. It has to be noted that there are not enough extreme TC-related regional loss events
in the historical observations, i.e., only a few data entries are used in the return period–
return level estimation when historical observations are used. This is because the available
loss data of the regional resolution is only available for the 20-year period. Consequently,
the estimation based on historical observations (green lines in Figure 7) might not be fully
reliable and may be far off from the real occurrence frequency of events of such impact. The
uncertainty ranges and estimates, which are derived from all scenario based on the TOT
event set, i.e., the optimistic, the pessimistic and the worst-case scenarios, have smaller
uncertainty than estimation based on historical observations, as verified by the scenario-
independent estimates of Jiangsu and Shanghai (Figure 7d). This is obviously due to the
fact that much more data are available from the TOT event set, i.e., 16,144 for Guangdong,
9066 for Fujian, 5973 for Zhejiang, and 2412 for Jiangsu and Shanghai, the key strength
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of this approach. These fits consequently profit from the existence of more events at the
tail of the severity distribution, such that the relevant part for high-profile losses can be
investigated in more detail and more reliably. Second, the estimated curves derived from
the historical observations for all regions are relatively flat in comparison to the estimations
from the TOT event set based on the loss-transfer function of the pessimistic scenario and
the worst-case scenarios. This is linked to the number of observed extremes available in the
distribution of the respective set of observations as demonstrated by the estimates derived
from the optimistic scenario for Guangdong, and Fujian. Since the slope of the loss-transfer
functions of the optimistic scenario for Guangdong, and Fujian is very gentle, in order to
reach extremes NLoss, for example NLoss above 10,000 Mil RMB, the value of regional SSI
must be extremely large. Consequently, even for the TOT event set, few events would have
such a value of regional SSI, and thus the available number of data entries for the return
period-return level estimation is low. The steepness of the uncertainty ranges and estimates
that are derived from the TOT event set using different scenario loss-transfer function is
controlled by the sensitivity of the loss-transfer function with respect to regional SSI, i.e., the
gradient of the loss-transfer function (Figure 6). Nevertheless, such sensitivity does not
undermine the general principle of the proposed procedure in improving the occurrence
frequency estimation of extreme TC-related losses as demonstrated in Figure 6d.
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Figure 7. Return period-return level estimation calculated using historical observations (green solid:
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As shown in Table 3, the return period estimates of TC-related losses calculated based
on historical observations contain large uncertainty. This is always the case for the return
period estimates for the highest impact TCs in the respective regions, for example, the
estimated return period for Typhoon Mujigae (2015) in Guangdong has uncertainty range
from 6 to more than 800 years. From the hazard assessment point of view, this does not
provide any useful information as the uncertainty range is too large. On the other hand,
the return period estimates calculated based on the TOT event set, i.e., the optimistic,
the pessimistic, and the worst-case scenarios, provide much smaller uncertainty ranges.
The estimates based on the optimistic scenario appears to be unrealistic, as it is highly
unlikely that one would observe three roughly 150-year events within a five year period,
i.e., Typhoon Usagi (2013), Typhoon Mujigae (2015), and Typhoon Hato (2017) (Table 3).
On the other hand, the estimates based on the pessimistic scenario and the worst-case
scenario appear to be more realistic.

Table 3. Estimated return period (in years) for the top three highest impact events for the respective regions derived from
Figure 7. The numbers in the bracket indicate the lower and upper bounds of the uncertainty range.

Region Year Typhoon Name Historical Optimistic
Scenario

Pessimistic
Scenario

Worst-Case
Scenario

Guangdong
2015 Mujigae 43 (6–>800) 176 (138–230) 14 (13–15) 4 (4–5)
2013 Usagi 35 (5–255) 164 (129–212) 13 (12–14) 4 (4–4)
2017 Hato 23 (5–84) 146 (115–188) 12 (11–13) 4 (4–4)

Fujian
1999 Dan 53 (9–>800) >800 (676–>800) 47 (41–57) 4 (3–4)
2016 Meranti 27 (7–192) 717 (475–>800) 35 (31–41) 3 (3–3)
2005 Longwang 6 (3–17) 192 (147–268) 13 (12–14) <2 (<2–<2)

Zhejiang
2013 Fitow 59 (18–>800) 46 (40–57) 11 (10–12) 11 (8–15)
2004 Rananim 15 (7–52) 18 (16–20) 7 (6–7) 10 (8–14)
2012 Haikui 11 (6–36) 15 (14–17) 6 (6–7) 10 (8–14)

Jiangsu and Shanghai
2005 Matsa 60 (18–>800) 15 (14–17) 12 (11–13) 12 (11–13)
2005 Khanun 11 (7–34) 6 (5–7) 6 (6–6) 5 (5–5)
2012 Haikui 10 (6–24) 6 (5–7) 5 (5–5) 5 (5–5)

We may capitalize on the estimates from these two scenarios by combining the un-
certainty ranges of both estimates. For example, based on this view, the estimated return
period of losses associated with Typhoon Mujigae (2015), Typhoon Usagi (2013), and Ty-
phoon Hato (2017) are roughly within 4 and 15 years. Given that these three typhoons
occurred within a 20 year period (1999–2018) and that their associated NLoss are similar,
i.e., 14,281 million RMB for Typhoon Mujigae (2015), 13,822 million RMB for Typhoon
Usagi (2013), and 13,118 million RMB for Typhoon Hato (2017), we would expect these
TC-related losses would have a similar return period from the impact point of view. Con-
sequently, the return period estimations calculated using the TOT event set based on
the pessimistic and worst-case scenarios appear to be more realistic than the estimations
calculated using the historical event set. This shows the use of the TOT event set would
provide useful information for hazard assessment. Similar conclusions can be reached
for other regions (Table 3). To further demonstrate the usefulness of this approach, we
estimate a potential impact of a 100 year event using the pessimistic scenario for different
regions. It is estimated that the potential impact of a 100 year event would have roughly
3.1 times the most impactful event so far in Guangdong, namely Typhoon Mujigae (2015).
For Fujian, a 100 year event would cause roughly 1.6 times more loss than Typhoon
Dan (1999). The potential impact of a 100 year event would lead to 4.4 and 5.4 times more
losses than the highest impact events in Zhejiang–Typhoon Fitow (2013), and Jiangsu and
Shanghai–Typhoon Matsa (2005), respectively.
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5. Discussion on Further Improvements and Applications of Our Approach

The major advantages of using the TIGGE Osinski–Thompson TC (TOT) event set
in improving parametric typhoon insurance, as demonstrated in Sections 3 and 4, are
(1) much fewer assumptions would be needed during the construction of event set and
analysis while maintaining the physicalness of the results as the historical observations can
be treated as a subset of the TOT event set [31]; (2) it enables the construction of trigger
point from the local point of view, i.e., local-perspective trigger point (LTP). The notion
of LTP has been shown to be realistic, as shown in Section 3.1. Furthermore, the TOT
event set has been shown to be useful to reduce the uncertainty in return period–return
level estimation of tropical cyclone (TC)-related losses for regions of interest (Section 4.2).
In this section, we discuss the current limitations and potential improvement of LTP from
the disaster risk reduction (DRR) perspective as well as for further applications.

(1) In the current realization of this approach, we use a wind-based severity proxy to
assess the overall damage potential and not only from wind, but including those
forced e.g., by the flood hazard. The principle suitability for TC impact assessment
has been shown by Befort et al. (2020) [40]. However, the use of a wind-based
variable alone is an over-simplification in quantifying the potential impact of TCs.
This could lead to two issues: Weak TCs with high socioeconomic impact are not
included in the current analysis because they are not identified by WiTRACK as
events with impact potential due to their low wind speed, for example, Tropical
Storm Pakhar (2017) and Tropical Storm Bebinca (2018) (Table 2). This is aligned
with the current parametric typhoon insurance policy, as weak TCs should not trigger
compensation. Yet, some of these events have caused severe impact in China because
of non-wind induced damage.

(2) The socioeconomic impact of TCs is underestimated if a wind-based metric is solely
used, as demonstrated by the outliers, which can be interpreted by the events which
are located far away from the fit of the optimistic scenario (black line in Figure 6).
These events have comparatively low regional SSI, but the corresponding NLoss is
high. The impact of these events is often related to the extreme rainfall and other
secondary hazards (e.g., storm surge, and landslide). Tropical Storm Bilis (2006) and
Typhoon Hato (2017), which are two of the outliers in Figure 6a, are good examples.
Tropical Storm Bilis (2006) made landfall without typhoon strength. The intensity of
Tropical Storm Bilis (2006) was low throughout its lifetime, but it produced a large
amount of precipitation over land. This is because as Tropical Storm Bilis (2006)
made landfall at Fujian, it weakened; however, unlike typical TCs making landfall
over mainland China, Tropical Storm Bilis (2006) did not move northward, but
slowly westward and later southwestward. This was due to a persistent strong
anticyclone over north-central China and westward extension and intensification of
the WNP subtropical high [59]. Combining with the abundant moisture over southern
and central China, the strong monsoonal flow at 850 hPa, and lifting of the lower
atmospheric flow, Tropical Storm Bilis (2006) produced extensive and persistent
precipitation over southern China [59]. According to CMA [60], Typhoon Hato (2017)
made landfall in Guangdong with a typhoon strength of at least (45 m/s). The extreme
rainfall associated with Typhoon Hato (2017) led to flash flooding and increased water
level for several rivers. Due to the astronomical high tide, the storm tide associated
with Typhoon Hato (2017) surpassed historical record for six tidal wave-observing
sites in the Pearl River Delta Estuary [60] and the return period was estimated to be
above 100 years [61].

These issues are related to the fact that current trigger points of parametric typhoon
insurance, both storm-perspective trigger point (STP) and LTP, depend solely on wind
speed, which does not in all cases account for the total impact of typhoons. This is
understandable, because the typhoon definition is defined based solely on wind speed
of the TC, i.e., maximum sustained winds at the center of the TC [1]. From the DRR
perspective, any risk mitigation tool, e.g., a parametric insurance, should account for all
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TC-related impacts. This would motivate the development of a general TC-parametric
insurance, which could capture the compound nature of TC hazards. This is an ongoing
research topic to include other meteorological variables, representing direct or indirect
TC-related hazards, in the construction of an objective hazard-focused compound storm
index. Once successfully developed, such a product could be applied in a comprehensive
TC parametric insurance. Furthermore, an objective compound storm hazard index could
also influence the construction of any loss-transfer function.

The new approaches, which we have presented in this study, can be used in a wider
context of TC impact assessment. Many studies investigated the changes in TC-related
losses on climate time scales around the world using historical data [46,62–67]. Since the
principle of our approaches is general, they can be used for an in-depth analysis on the
potential global risk of TCs on the climate time scale. The results would further improve
our capacity in DRR for the future climate.

6. Conclusions and Summary

This study provides possible solutions to the two major challenges in developing
optimal parametric typhoon insurance by using the physically consistent TIGGE Osinski–
Thompson TC (TOT) event set and the local-perspective trigger point (LTP) framework.
The main findings are summarized as follows:

(1) Storm-perspective trigger point (STP) has been compared with LTP, and we demon-
strate that tropical cyclone (TC)-related impact frequency is based on the LTP frame-
work is higher than the classical STP (Figure 2).

(2) Using the local perspective provided by the LTP, the triggering consistency of an ex-
periment STP developed by Swiss Re, i.e., experimental trigger point (ETP), has been
evaluated. It is found that there exists a regional variability in the triggering consis-
tency of the ETP. This also demonstrated the potential over- and under-compensation
issue in the classical STP.

(3) A mechanism for triggering compensation in the LTP framework has been proposed.
In-situ wind observation can be used as a trigger point rather than the intensity of the
typhoon as estimated by satellite technique. Furthermore, under the LTP framework
and the TOT event set, the trigger point can be optimized. This would improve the
sensitivity of parametric typhoon insurance from the local perspective.

(4) A method to improve the estimate of TC-related loss occurrence on a regional level
has been proposed. This is achieved with a two-step procedure: (i) development
of a loss-transfer function between observed normalized losses and regional SSI;
(ii) Using the loss-transfer function attribute losses to the TOT event set, and the
return period-return level calculation is done using the TOT event set.

Potential improvement of our approach has also been discussed. We emphasize that
from the disaster risk reduction (DRR) perspective, a risk mitigation tool for TCs should
account for all TC-related impact. This also motivates the necessity of the development
of a general TC compound hazard risk parametric insurance rather than a wind-based
only parametric typhoon insurance. This would further strengthen the resiliency of coastal
cities against TCs. Future work would focus on the development of compound TC hazard
parametric insurance based on the LTP framework.

In summary, this study demonstrates (1) a new approach to construct trigger points
from the local impact perspective, and (2) the historical record of TCs is insufficient for
developing a true picture of risk at the local level; however, a more realistic occurrence of
TC-related losses can be examined using the TOT event set. These new approaches provide
an alternative view on trigger points of parametric typhoon insurance and practitioners
may use these new approaches to benchmark their existing trigger points as an important
aspect of the capability to understand the risk of typhoon induced losses.
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Appendix A. List of Acronyms

Table A1. List of acronyms.

Acronyms/Term Description

CDF Cumulative distribution function
CMA China Meteorological Administration
DRR Disaster risk reduction
ECMWF European Centre for Medium-Range Weather Forecast
EPS Ensemble prediction system
ETP Experimental trigger point
GCP Gross cell product
GDP Gross domestic product
IBTrACS International Best Track Archive for Climate Stewardship
ISD Integrated Surface Database
JMA Japan Meteorological Agency
LTP Local-perspective trigger point

MW24 Maximum in-situ observed wind speed within 24-h period centred
at the time of impact, of the observation station of the city

NCEP Nation Centers for Environmental Prediction
NLoss Normalized loss
SSI Storm severity index
STP Storm-perspective trigger point
Swiss Re Swiss Reinsurance Company Ltd.
TC Tropical cyclone
TIGGE THORPEX Interactive Grand Global Ensemble
The TOT event set The TIGGE Osinski–Thompson TC event set
TR Trigger rate
WMO World Meteorological Organization
WNP Western North Pacific

https://apps.ecmwf.int/datasets/data/tigge/levtype=sfc/type=pf/
https://apps.ecmwf.int/datasets/data/tigge/levtype=sfc/type=pf/
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Appendix B. Workflow of the Application of the TOT Event Set in Deriving Local
Return Levels
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Appendix C. Validation of the Consistency of the TOT Event Set and Historical
Observations from the Impact Perspective

To demonstrate the TOT event set is consistent with historical observations from
the local impact perspective, we compare the cumulative distribution function (CDF) of
regional SSI between historical observations and 100,000 random subsets of the TOT event
set (Figure A2). These random subsets of the TOT event set are constructed using bootstrap
random sampling (with replacement) and they have the same number of observations as
the historical observations in the respective region. As shown in Figure A2, the CDFs of the
historical observations (red lines) are placed within the range of the CDF of subsets of the
TOT event set. This shows the historical observations are one of the possible realisations in
the TOT event set. Consequently, the TOT event set is well-suited for our impact analysis.

As a technical note, there are historical TCs with non-zero regional SSI but having no
documented TC-related loss (hereinafter non-loss events). The majority (>80%) of these
non-loss events have regional SSIs of less than 0.1. A possible explanation is that the losses
of these events could be smaller than the reporting threshold of loss records. These non-loss
events are not included in the above calculation (Figure A2) neither in the calculation of
return period-return level estimation using historical loss data in Section 4.2. In order to
mimic the existence of non-loss events in the TOT event set, we have randomly selected
events with regional SSI between 0 and 0.1 to be excluded from our calculations. The ratio
of exclusion is the same as the ratio of non-loss events to all events in the historical record.
For our analysis in Section 4.2, the random exclusion of events does not have any impact
on the return period-return level estimation because the excluded events are eliminated by
the threshold that is used in the threshold excess approach for return period-return level
estimation [58]. If the threshold selected for the return period-return level estimation is
low, it would be necessary to evaluate the influence of random selection of events with
regional SSI of less than 0.1.
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