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Characteristics of publicly available skin cancer image 
datasets: a systematic review
David Wen, Saad M Khan, Antonio Ji Xu, Hussein Ibrahim, Luke Smith, Jose Caballero, Luis Zepeda, Carlos de Blas Perez, Alastair K Denniston, 
Xiaoxuan Liu*, Rubeta N Matin*

Publicly available skin image datasets are increasingly used to develop machine learning algorithms for skin cancer 
diagnosis. However, the total number of datasets and their respective content is currently unclear. This systematic 
review aimed to identify and evaluate all publicly available skin image datasets used for skin cancer diagnosis by 
exploring their characteristics, data access requirements, and associated image metadata. A combined MEDLINE, 
Google, and Google Dataset search identified 21 open access datasets containing 106 950 skin lesion images, 17 open 
access atlases, eight regulated access datasets, and three regulated access atlases. Images and accompanying data 
from open access datasets were evaluated by two independent reviewers. Among the 14 datasets that reported 
country of origin, most (11 [79%]) originated from Europe, North America, and Oceania exclusively. Most datasets 
(19 [91%]) contained dermoscopic images or macroscopic photographs only. Clinical information was available 
regarding age for 81 662 images (76·4%), sex for 82 848 (77·5%), and body site for 79 561 (74·4%). Subject ethnicity 
data were available for 1415 images (1·3%), and Fitzpatrick skin type data for 2236 (2·1%). There was limited and 
variable reporting of characteristics and metadata among datasets, with substantial under-representation of darker 
skin types. This is the first systematic review to characterise publicly available skin image datasets, highlighting 
limited applicability to real-life clinical settings and restricted population representation, precluding generalisability. 
Quality standards for characteristics and metadata reporting for skin image datasets are needed.

Introduction
Digital health innovation has the potential to improve 
health care by increasing access to specialist expertise.1,2 
Among the myriad of machine learning applications in 
health care, medical image classification, particularly for 
dermatology, has advanced substantially in recent years,3 
and includes diagnosis of skin cancers from dermoscopic 
or macroscopic photographs.4–10 Advances in machine 
learning algorithm diagnostic accuracy have largely been 
driven by utilisation of deep learning architectures made 
possible through greater availability of computing power 
and large repositories of digital images for algorithm 
training.11,12 For this purpose, large numbers of digital 
images easily accessible through publicly available datasets 
have been used in dermatology.13 Publicly available datasets 
used for developing machine learning algorithms 
circumvent barriers to dataset procurement, such as 
having appropriate technological infrastructure, regulatory 
approvals, time, and financial investment for large-scale 
digital image acquisition from participants.14 Furthermore, 
publicly available datasets can be used as a benchmark for 
direct comparison of algorithm performance.15,16

Skin cancer incidence continues to rise globally, placing 
increasing demands on health-care services.17–21 Digital 
solutions to address this demand have been reflected by 
accelerated teledermatology adoption during the 
COVID-19 pandemic.22,23 Machine learning algorithms 
have potential for automated diagnosis of skin mali g-
nancies through digital image analysis, and diagnostic 
accuracy of machine learning algorithms has been shown 
in the past 5 years to be comparable to, or even surpass, 
dermatologists in controlled experimental settings.4–9

Publicly available skin image datasets, such as those 
hosted through the International Skin Imaging 

Collaboration (ISIC) archive,13 are increasingly used to 
develop machine learning algorithms for skin cancer 
diagnosis.24–26 Additionally, although primarily aimed for 
use as educational resources, dermatology atlases 
(compilations of photographs of skin diseases) containing 
digital images are frequently used as a source of skin 
lesion images for algorithm development.27 However, 
with training data from circumscribed populations, often 
curated retrospectively, machine learning algorithms are 
susceptible to overfitting, and their generalisability is 
heavily influenced by the participants and images used 
for training, which are prone to selection bias.28 
Algorithms used for skin lesion classification frequently 
underperform when tested on independent datasets.26,29,30 
Further examples of the susceptibility of machine 
learning algorithms to biases for clinical factors such as 
age, sex, ethnicity, and socioeconomic status have also 
been reported in diverse areas of health care and artificial 
intelligence.31–35 This underlines the importance of 
detailing the exact composition of datasets through 
metadata reporting, to ensure the generalisability of 
algorithms to real-world populations. Furthermore, the 
recently developed concept of health data poverty—
systematic data disparities leading to inequalities in 
health care—emphasises the need to ensure diversity, 
transparency, and usability of datasets.14,36,37

Demographic and clinical metadata can also greatly 
influence machine learning algorithm development and 
validation, with classification accuracy increasing for 
skin lesions when subject and lesion metadata are 
integrated into models.38,39 This more closely reflects 
clinical practice, as dermatologists conduct in-person 
history taking and evaluation of skin lesions via naked 
eye, dermoscopic, and physical examination (eg, lesion 
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palpation), and not through image analysis alone. 
Completeness of metadata provides information about 
the population, disease, and data types on which the 
algorithm was trained or validated, which is essential for 
extrapolating assumptions of generalisability of 
algorithm performance to other populations.

To the best of our knowledge, there are no guidelines 
or quality standards that characterise optimal skin image 
datasets that could be used to train machine learning 
algorithms, and these datasets have not previously been 
systematically characterised. This review aimed to 
identify publicly available skin image datasets used to 
develop machine learning algorithms for skin cancer 
diagnosis, categorise their data access requirements, and 
systematically evaluate their characteristics including 
associated metadata.

Methods
Search strategy and selection criteria
This systematic review adheres to PRISMA guidelines;40 
for the PRISMA checklist see the appendix (p 12). As the 
review did not evaluate a direct health-related outcome, it 
did not meet criteria for registration of the protocol with 
PROSPERO.41 Searches were conducted on MEDLINE, 
Google, and Google Dataset Search, on Sept 4, 2020. The 
MEDLINE search was updated on Sept 1, 2021. The 
database was searched from inception with MeSH terms 
and keywords including “dataset” OR “database”, “artificial 
intelligence” OR “machine learning”, “skin cancer”, and 
“imaging” OR “dermoscopy”. The full search strategy is 
given in the appendix (p 2). Two independent reviewers 
(DW and AJX) screened titles and abstracts for articles 
describing skin cancer image datasets, studies using 
datasets to train or test machine learning algorithms for 
skin cancer diagnosis, or review articles detailing any skin 
cancer image datasets. Two independent reviewers (AJX, 
DW, HI, or SMK) subsequently reviewed full-text articles 
for publicly available datasets and attempted to access 
them at source. Full texts were reviewed for publications 
where abstracts were unavailable. Google Translate was 
used for seven non-English articles (four in German, 
one in French, one in Spanish, and one in Chinese).

Google and Google Dataset searches were completed 
by two independent reviewers (DW and AJX) to identify 
publicly available skin cancer image datasets. These 
searches were completed using the search term “skin 
cancer image dataset”, and repeated with “melanoma 
image dataset” (appendix p 2). The number of new skin 
cancer image datasets found on each search result page 
were recorded. Reference lists of any online articles were 
also reviewed for named publicly available datasets. Once 
20 consecutive search results no longer mentioned any 
new datasets, the number of search results for review 
was rounded up to the nearest multiple of 50, and no 
further webpages were reviewed beyond this point.

To be included for data extraction, datasets had to 
contain images of either cutaneous melanoma, basal cell 

carcinoma (BCC), or cutaneous squamous cell carcinoma 
(cSCC). Datasets could contain any form of non-
radiological skin lesion images, such as macroscopic 
clinical photographs or dermoscopy. There was no 
restriction on geographical origin, patient population, or 
language.

Datasets were excluded if they did not contain images 
of skin cancers (eg, skin rashes or benign lesions only). 
Histopathological image and radiological image datasets 
were also excluded. Datasets containing text or numeric-
only data and images of non-human subjects were 
excluded, as were inaccessible datasets that were 
described as open access but were either inactivated or 
unable to be found by two reviewers (DW and SMK). All 
datasets included in the review were agreed by consensus 
by three authors (DW, AJX, and SMK).

Data analysis
Identified datasets meeting inclusion criteria were 
grouped into categories based on a system used by Khan 
and colleagues.14 These included open access datasets 
(freely accessible or easily accessible via registration or 
email) and regulated access datasets (requiring payment, 
formal institutional agreements, or ethical approval).

A data collection template was designed to evaluate 
dataset characteristics, including number of images, 
number of participants (ie, individuals from whom 
images were taken, regardless of whether their active 
consent was reported), country of origin, publication 
date, imaging modality, image capture device, image 
format, and number of skin lesion categories. Further 
items reviewed for reporting are listed in the 
appendix (p 3). Metadata labels associated with individual 
images were also reviewed for included datasets. Images 
and metadata of included datasets were manually 
reviewed by two independent reviewers (DW and SMK), 
together with corresponding articles or supplementary 
infor mation describing the dataset. Discrepancies were 
resolved by discussion between reviewers, and a third 
party with methodological expertise (RNM) if required.

All images and accompanying data from open access 
datasets were imported into Databiology Lab (LS, JC, LZ, 
and CdBP), a data management and analysis platform. 
Wherever possible, image files were registered without 
downloading to reduce data duplication. Metadata was 
recorded in entities with a number of attributes and 
values. Search queries were created to evaluate metadata 
associated with images (collectively or by individual 
dataset).

We found that articles describing machine learning 
algorithms also used images from online dermatology 
atlases to train algorithms. Therefore, atlases were also 
included if they met the aforementioned inclusion 
criteria. Atlases were defined as mainly educational 
electronic resources that either included “atlas” in the 
title or displayed images on multiple webpages. This was 
in contrast to datasets, which contained multiple images 

See Online for appendix
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downloadable in one or a few compressed files (.zip or 
.rar).

As characteristics and metadata varied greatly within 
atlases and between atlases, a simplified data extraction 
template was used (appendix p 4). Images from atlases 
amenable to download or linkage were imported to 
Databiology Lab for search and examination of available 
metadata (LS, JC, LZ and CdBP). For atlases for which 
this was not possible, a sample of images from each atlas 
was reviewed by two reviewers (DW and SMK). If enough 
images were available, ten consecutive images each of 
BCC, cSCC, and melanoma were reviewed by each 
reviewer, either from the top (DW) or bottom (SMK) of 
webpages or atlas indexes. Atlases were deemed to have 
metadata reporting for an item (eg, lesion site) if more 
than 50% of reviewed images contained the metadata 
label.

Results
The MEDLINE search returned 1897 articles, which were 
screened by title and abstract (figure 1). Review of 584 
full-text articles identified 26 datasets and 20 atlases 
meeting inclusion criteria. Review of 200 webpages from 
each of the Google and Google Dataset searches, along 
with supplementary screening, identified 25 datasets and  
12 atlases. Combining these results, 22 duplicate datasets 
and 12 atlases were excluded, leaving 29 individual 
datasets and 20 individual atlases included for review.

Attempts to access data at source revealed eight 
regulated access datasets (table) and three regulated 
access atlases.56–58 Of the eight datasets, six required 
ethical committee or institutional approval,10,50,53–55 one 
required a £75 fee and a licencing agreement,51 and one 
required a competition invitation.52 Thumbnails of 
images from Asan, Hallym, SNU, and Severance datasets 
were available for download, but access to full-size images 
required formal approval from local data access or ethics 
committees,50 or the originating hospitals.10 All three 
regulated access atlases required payment for access to 
digital images (US$200; £145).56–58 Char acteristics of these 
regulated access datasets and atlases were gathered from 
information at source or accompanying publications; the 
images themselves or associated metadata files were not 
downloaded and reviewed.

Inaccessible datasets, which could not be analysed 
further, included one dataset from China (XiangyaDerm), 
which was described to be publicly released59 but could 
not be found via the stated URL, and one atlas that had 
been inactivated (DermQuest). One further dataset might 
have been available upon reasonable request to the 
authors,60 although we did not receive a response to our 
request for access. Datasets that contained images that 
were also included in another dataset, and therefore did 
not contain any unique images, were not classed as an 
additional independent dataset. All 1512 images in the 
ISIC 2018 task 3 challenge were included in the ISIC 2019 
challenge, so the former was not included as an individual 

dataset. This also applied to SD-198 and SD-128 datasets,61 
images of which were included in SD-260.49

As images from preceding ISIC challenges have been 
re-used in later challenges (appendix p 5), ISIC images 
were grouped by their original datasets, as presented in 
the ISIC archive image gallery (accessed March, 2021), to 
avoid duplicate images being counted more than once in 
analyses. Images not included in the ISIC archive image 
gallery and only available via ISIC challenges were listed 
separately (ISIC 2019 and 2020 challenge test sets, and 
ISIC 2018 challenge task 1–2 test set). 

Overall, 21 open access datasets and 17 open access 
atlases included images that could be downloaded 
without barriers, and were included for data extraction. 
The access links to individual datasets are detailed in the 
appendix (p 6).

14 (67%) of 21 datasets detailed country of origin (table). 
Of these, 11 originated from one country only: six from 
Europe, two from Oceania, one from North America, one 
from South America, and one from Asia (appendix p 7). 
Three datasets contained images from multiple 

Figure 1: PRISMA flow diagram outlining dataset and atlas identification

1897 records identified through database 
searching (MEDLINE) 

1306 records excluded after screening by title 
and abstract

400 additional records identified through 
other sources (Google, Google Datasets, 
reference list screening)

1897 records screened

591 full text records retrieved
 7 records unavailable in full text and  
   excluded
 584 records underwent full text review

26 datasets and 20 atlases identified and 
assessed for eligibility

400 records retrieved and reviewed

25 datasets and 12 atlases identified and 
assessed for eligibility

22 duplicate datasets removed
12 duplicate atlases removed

29 individual datasets in review
20 individual atlases in review

21 open access datasets included for data extraction
17 open access atlases included for data extraction

8 regulated access datasets
3 regulated access atlases

Identification of studies via databases 
and registers

Identification of studies via other methods
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Country of origin Year of 
dataset 
publication

Imaging 
modality

Image acquisition device Image format Number of 
skin lesion 
categories 
included

Number of 
participants

Number of 
images

Open access datasets

ISIC archive

ISIC 2020 Hospital Clinic 
Barcelona42

Spain 2020 Dermoscopic MoleMax HD digital dermatoscopy 
system

DICOM or .jpg 2 356 7311

ISIC 2020 University of 
Queensland42

Australia 2020 Dermoscopic Not reported DICOM or .jpg Not reported 304 8449

ISIC 2020 Medical 
University Vienna42

Austria 2020 Dermoscopic MoleMax HD digital dermatoscopy 
system

DICOM or .jpg 2 432 4374

ISIC 2020 Memorial Sloan 
Kettering  Cancer Centre42

USA 2020 Dermoscopic Dermoscopic attachment to a 
digital single reflex lens camera or a 
smartphone

DICOM or .jpg 5 523 11 108

ISIC 2020 Sydney  
Melanoma Diagnosis  
Centre and  Melanoma  
Institute Australia42

Australia 2020 Dermoscopic Dermoscopic attachment to a 
digital single reflex lens camera or a 
smartphone

DICOM or .jpg 8 441 1884

BCN20,00043 Spain 2019 Dermoscopic Dermoscopic attachments to three 
high-resolution cameras

.jpg 9 Not reported 12 413

HAM10,00044 Austria and Australia 2018 Dermoscopic Various devices including: MoleMax 
HD, DermLite Foto (3Gen) camera, 
DermLite Fluid, DermLite DL3, and 
analogue cameras

.jpg 8 Not reported 10 015

2018 JID editorial  images13 Not reported 2018 Macroscopic Not reported .jpg 3 Not reported 100

MSK 1–513 Not reported MSK 1–2 
2015; MSK 
3-5 2017

Dermoscopic Not reported .jpg 15 Not reported 3918

UDA 1–213 Not reported UDA-1 2014, 
UDA-2 2015

Dermoscopic Not reported .jpg 7 Not reported 617

ISIC challenge only

ISIC 2020 challenge  test 
set42

Spain, Australia, 
Austria, USA, Greece

2020 Dermoscopic Not reported* DICOM or .jpg Not reported 690 10 982

ISIC 2019 challenge  test 
set

Australia, Austria, 
Turkey, New 
Zealand, Sweden, 
Argentina†

2018 and 
2019

Dermoscopic Not reported .jpg Not reported Not reported 8238

ISIC 2018 test set  
(tasks 1 and 2)26

Not reported 2018 Dermoscopic Not reported .jpg Not reported Not reported 1000

Non-ISIC datasets

PAD-UFES -2045 Brazil 2020 Macroscopic Smartphones .png 6 1373 2298

PH² 15 Portugal 2013 Dermoscopic Tuebinger Mole Analyzer System .bmp 3 Not reported 200

7-point criteria  evaluation 
database46

Not reported 2018‡ Dermoscopic 
and 
macroscopic 
(paired)

Not reported .jpg 15 1011 2013

MED-NODE47 Netherlands 2015 Macroscopic Nikon D3 or Nikon D1x body and a 
Nikkor 2·8/105 mm micro lens

.jpg 2 Not reported 170

SKINL248 Portugal 2019 Light field 
photographs, 
dermoscopic 
photographs 
(paired)

Raytrix R42 Galilean focused 
plenoptic camera, Ricoh 25 mm 
f/1·8 lens with custom-made 
housing

.png 8 Not reported 814

SNU dataset10 South Korea 2018 Macroscopic Not reported .png 81 Not reported§ 240

University of  Waterloo 
dataset¶

Not reported Not reported Macroscopic Consumer level cameras .jpg and .png 
for contours

2 Not reported 206

SD-26049|| Not reported 2019 Macroscopic Digital cameras and mobile phones .jpg 260 Not reported 20 600

(Table continues on next page)
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countries, with two of these being recent ISIC challenge 
datasets. Among the 14 datasets, 11 (79%) were from 
Europe, North America, and Oceania exclusively.

Year of publication was available for 20 of 21 datasets 
and ranged from 2013 to 2020. The vast majority of 
images (101 839 [95·2%] of 106 950) were published in 
2018 or later, and there was an increasing trend in the 
number of images published per year (figure 2A). 
4905 images (4·6%) were published in 2017 or earlier, 
and 206 images (0·2%) had no publication date available. 
Imaging modalities included are shown in figure 2B; 
19 datasets (91%) contained dermoscopic images or 
macroscopic photographs only.

Images were acquired as part of clinical care in 11 (52%) 
of 21 datasets, and for research in two datasets (10%). These 
images were all acquired in secondary care dermatology 
specialist settings. Three datasets (14%) used existing 
images from atlases and were created for the purpose of 
developing or testing of machine learning algorithms. 
Five datasets (24%) did not explicitly state the purpose for 
image acquisition. Devices used for data acquisition 
ranged from mobile phones to digital single-lens reflex 
cameras and dermoscopy systems (table). Images were 
available in .jpg, .png, .bmp, or Digital Imaging and 
Communications in Medicine (DICOM) formats.

Five datasets (24%) contained image segmentations 
and three (14%) included feature or lesion size annotations 
for images. The number of skin lesion classifications per 
dataset ranged from two to 260 (median seven, 
IQR 2·5–12). Methods of obtaining ground truth were 
described in 16 datasets (76%) and included review of 

medical records, clinical consensus between reviewers, 
diagnosis as described originally in an atlas, serial 
imaging, follow-up of patients over a specified time 
period, confocal microscopy, and histopathology.

Completeness of reporting for dataset characteristics is 
summarised in figure 3A. Reporting for individual datasets 
is displayed in the appendix (p 8). The number of 
individuals from whom images were taken was reported in 
eight datasets (38%), data collection period in eight (38%), 
inclusion or exclusion criteria in 12 (57%), device used for 
image acquisition in 12 (57%), and whether there was 
image processing or adjustment by a reviewer in four (19%). 
Ethical approval was reported in ten datasets (48%), and 
participant consent in seven (33%).

Overall, the open access datasets contained 106 950  
skin lesion images (median 2298, IQR 429–9232). 
60 189 (56·3%) were included in datasets hosted within 
the ISIC archive, 20 220 (18·9%) are currently being used 
in ongoing ISIC challenge test sets, and 26 541 (24·8%) 
were from non-ISIC datasets (figure 2C). No ground 
truth labels were available for the 20 220 images currently 
being used in ongoing ISIC challenge test sets (table), 
although these might be released in future. Considering 
the eight datasets that reported number of participants, 
there were a total of 48 419 images from 5130 participants.

In the SKINL2 dataset,48 each light field comprised 
81 different views. Each light field was counted as a single 
image for the purposes of counting images in each 
dataset. Light field images could not be downloaded in 
full and imported into the Databiology platform due to 
large file size. However individual images could be 

Country of origin Year of 
dataset 
publication

Imaging 
modality

Image acquisition device Image format Number of 
skin lesion 
categories 
included

Number of 
participants

Number of 
images

(Continued from previous page)

Regulated access datasets

Asan dataset50** South Korea 2017 Macroscopic Not reported Not reported 12 4867 17 125

Hallym dataset50 South Korea 2017 Not reported Not reported Not reported 1 106 152

DERMOFIT Image Library: 
Edinburgh dataset51

UK Not reported Not reported Canon EOS 350D DSLR Not reported 10 Not reported 1300

IMA20552 Not reported 2018 Not reported Not reported Not reported Not reported Not reported Not reported

MoleMapper app patient 
photos53

USA 2017 Macroscopic iPhone (4S or newer) Not reported 2 2069 2422

SNU dataset entire test set10 
(2201 images)

South Korea 2018 Macroscopic Not reported Not reported 134 1608 2201

Severance dataset (test 
subset)54

South Korea 2020 Macroscopic Not reported Not reported 43 10 426 40 331

Papadakis et al (2021) 
dataset55

Germany 2021 Macroscopic Commercial digital camera .jpg 1 156 156

ISIC=International Skin Imaging Collaboration. DICOM=Digital Imaging and Communications in Medicine. JID=Journal of Investigative Dermatology. *ISIC 2020 test set includes images from Andreas Syngros 
Hospital. Device used for image acquisition is not reported for this centre. †ISIC 2019 test set includes all images from ISIC 2018 test set (task 3). These images originated from Australia, Austria, Turkey, New 
Zealand, Sweden, and Argentina. Whether images from additional centres or countries are included in the ISIC 2019 test set is not reported. ‡Images in this dataset are from the Edra Atlas published in 2000.56 
These images were made publicly available in 2018. §The number of participants was not reported for the 240 full-size photos available for download. However, for the larger dataset of 2201 images, the number 
of participants was reported as 1608. ¶Images from this dataset include images from DermIS and DermQuest (deactivated) atlases. ||Images from this dataset include images from the deactivated DermQuest 
atlas. **A further iteration of this dataset containing additional images is described by Han and colleagues;10 however, the images cannot be made available in totality due to privacy regulations.

Table: Publicly available datasets and their characteristics
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viewed and downloaded, and the dataset was examined 
manually from the accompanying metadata files. For the 
SNU dataset,10 only the 240 full-size images were 
included; thumbnails of other images were excluded.

BCC was the commonest malignancy represented in 
datasets (6861 images), followed by melanoma 
(6802 images) and cSCC (873 images). Altogether, BCC, 
cSCC, and melanoma represented 13·6% of all images.

Reviewing individual image metadata (figure 3B and 
appendix p 9), clinical information was available for age 
(81 662 [76·4%] of 106 950 images), sex (82 848 [77·5%]), 
and body site (79 561 [74·4%]). Ground truth was 
confirmed through histopathology for 9995 (68·8%) of 
14 536 malignant lesion images, and 21 857 (20·4%) of all 
images.

Patient ethnicity data were available for 1415 images 
(1·3% of all images), and Fitzpatrick skin type data for 
2236 (2·1%). Skin type and ethnicity data associated with 
images is shown in the appendix (p 10) for datasets for 
which metadata labels were available. Aggregate data for 
ethnicity were available in one dataset containing 

170 images (White participants only),47 and skin type in 
another dataset that contained 200 images (all images 
were Fitzpatrick skin type II or III).15 Aggregate metadata 
for the larger SNU dataset were given for age, sex, and 
ethnicity,10 but further detail was not provided for the 
subset of downloadable 240 full-size images.

17 open access atlases were identified from the search 
(figure 1 and appendix p 11). These were mostly hosted by 
countries in Europe (seven), North America (six), and 
Oceania (two). One atlas was hosted from South America 
and one from Japan. 12 atlases contained macroscopic 
photographs only, one contained dermoscopic images 
only, and the remaining four contained both dermoscopic 
and macroscopic photographs, with three containing 
paired dermoscopic and macroscopic images. Regarding 
metadata, images were either presented alone (six of 17), 
with a caption containing variable clinical or educational 
material (three), with site metadata in the webpage 
name (three), with structured metadata labels (three), or 
both structured metadata and captions (two).

Four of 17 atlases were imported into the Databiology 
platform. Barriers to importing images and metadata 
from the remaining 13 atlases included images being 
spread across multiple webpages, aged websites, and 
presentation in non-English languages.

There were 1407 images from four atlases imported 
into the Databiology platform, comprising 771 BCC, 
206 cSCC, and 430 melanoma images. Of these, 0% had 
associated metadata for age, 0% for sex, 54·4% (765 
images) for site, 0% for ethnicity, and 0% for Fitzpatrick 
skin type. A few atlases included watermarks, some of 
which were in close proximity to the lesion;62 this can 
affect algorithm performance by making the lesion more 
difficult to assess and by causing the algorithm to 
associate the watermark with the lesion.

Discussion
In this first review of publicly available dermatology 
datasets for skin cancer, 106 950 images from 21 open 
access datasets were identified, along with 17 open access 
atlases that are freely accessible to researchers and the 
public. Although this represents a rich data resource for 
innovation, lack of transparency in metadata reporting 
for clinically essential characteristics (such as ethnicity 
and Fitzpatrick skin type) limits the clinical utility of 
these images alone. These issues are not limited to 
dermatology datasets, but have also been reported in 
ophthalmology14 and radiology.63

Additionally, we identified eight regulated access 
datasets containing at least 63 687 images, and three 
regulated access atlases. We also found that images are, 
in some cases, reused between datasets. Difficulties were 
encountered when importing images for the majority of 
atlases, with implications for usability.

Reporting of metadata was limited in many datasets 
and atlases, which, if used for training or validating 
machine learning algorithms, would have implications 

Figure 2: Image publication year, imaging modality, and image source of open access datasets
(A) Open access dataset skin lesion images according to year of publication. (B) Imaging modality of open access 
datasets. (C) Images according to dataset source (n=106 950 images). ISIC=International Skin Imaging 
Collaboration.
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for generalisability. Machine learning algorithms used 
for medical image classification are known to 
underperform on images collected from populations 
independent to those on which the algorithms were 
trained. An image classifier algorithm trained and 
validated predominantly on images of east Asian skin 
underperformed on skin lesion images of White patients 
from the USA.29 Likewise, the majority of algorithms 
submitted to the ISIC 2018 task 3 challenge performed 
worse on test images from an external institution 
independent from the training dataset.26 A limited 
number of studies of machine learning algorithms for 
medical image classification include validation with 
external datasets, highlighted by two recent systematic 
reviews which found that only 18–36% of studies 
validated their algorithms using externally sourced 
images, meaning the reported accuracy of algorithms 
might be generally overestimated.3,64

These findings highlight the dangers of implementing 
algorithms for widespread use on broad populations 
without dataset transparency, especially if algorithm 
training was undertaken using a restricted demographic 
cohort. Algorithm under performance and misdiagnosis 
have serious implications for patients with skin cancer; 
they not only risk missing treatable malignancies, but 
can also result in avoidable surgical procedures and 
cause unnecessary anxiety.65 Our review identified limited 
metadata reporting for datasets and atlases, therefore 
raising concerns about which populations are 
represented and to what extent any artificial intelligence 
algorithms developed using these are generalisable.

Limited metadata reporting could be due to the 
substantial time, effort, and approvals required to collect 
this information, but might also be because of the 
current lack of consensus and guidance regarding which 
metadata items are most important to report for skin 
image datasets. This is reflected in the large variability of 
metadata reporting between datasets, highlighting the 
need for consensus standards.

Although consensus recommendations for the 
development of imaging biomarkers in cancer and 
checklists aiming to improve algorithm development 
transparency have been proposed that highlight the 
importance of cohort characteristics and reproducibility 
to target populations,66,67 to the best of our knowledge, no 
consensus standards or guidelines specifically exist for 
the publication of skin cancer image datasets that have 
the potential to be used in machine learning. 
Nevertheless, it is encouraging to note that organisations, 
such as ISIC, are exploring this area through formation 
of a metadata and DICOM working group, and have 
recently published a DICOM supplement for dermoscopy 
images.68 In our opinion, the utility of atlases for clinical 
machine learning algorithm development might be 
limited, as we identified only five atlases that included 
systematic metadata (excluding the three atlases that 
contained site metadata only in the webpage name). 

Relevant details from captions are also difficult to extract 
in an automated fashion.

To improve algorithm applicability, algorithms should 
be developed using metadata-rich datasets that accurately 
describe the skin image populations, with clearly stated 
inclusion and exclusion criteria. Ideally, datasets should 
be representative of and reflect the intended population 
where the algorithm will be deployed, to maximise 
generalisable performance.69 Retrospectively collected 
images are frequently highly selected and might not 
represent the patient population to which they would be 
applied. In our review, inclusion and exclusion criteria 
were reported in only 57% of datasets, and the majority 
of datasets did not explicitly state obtaining ethical 
approval (52%) or individual patient consent (67%) for 
dataset publication. For these datasets, it was not known 
whether consent was waived, not sought, or not reported. 
Publication of images without consent can have 
implications for preservation of privacy. Nevertheless, for 
retrospectively collected images, consent might not 

Figure 3: Characteristic and metadata reporting of open access datasets and images
(A) Proportion of open access skin image datasets (n=21) reporting general characteristics. (B) Proportion of open 
access skin images (n=106 950 images in 21 datasets) reporting image and subject metadata.
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specifically be required if images were anonymised, for 
example through exclusion of identifying features.42,44,47 
However, selection bias can occur where specific groups 
are excluded (eg, facial images or identifiable tattoos). 
Systematic prospective data collection with associated 
metadata might be required to reduce selection bias and 
best represent the cohorts from which the data are 
acquired.70 Encouragingly, more recently developed 
datasets are heterogenous, containing images from 
various sources, including those not used in the initial 
training set.26,42 Nevertheless, merging of individual 
datasets into larger, composite datasets requires accurate 
reporting of characteristics and metadata; without this, 
there is a risk of bias being magnified.

Datasets containing paired images from different 
modalities better resemble clinical practice and could 
lead to more complex machine learning algorithms that 
can assess images of the same lesion from multiple 
modalities, in addition to demographic and clinical 
metadata.38 In our review, datasets containing dermo-
scopic images only or macroscopic images only were the 
commonest, accounting for 19 (91%) of 21 datasets and 
13 (81%) of 17 atlases. Only one dataset and three atlases 
contained paired macroscopic and dermoscopic images, 
and one dataset contained paired light field and 
dermoscopic images. We did not identify any datasets for 
other non-invasive imaging techniques to diagnose skin 
cancer, such as reflectance confocal microscopy, or 
optical coherence tomography. Light field image sets 
present interesting opportunities to characterise lesions 
in three dimensions (and at different depths of field),48 
although specialist equipment such as plenoptic cameras 
and training might be required for departments 
acquiring these images.

Health data poverty, defined as “the inability for 
individuals, groups, or populations to benefit from a 
discovery or innovation due to a scarcity of data that are 
adequately representative” is an emerging problem in 
digital health.14,36 We found unequal geographical 
distribution of datasets and atlas origin, with 11 (79%) of 
14 datasets and 15 (88%) of 17 atlases originating 
from Europe, Oceania, and North America exclusively. 
Only one dataset originated from Asia, two from 
South America, and none from Africa. In contrast to a 
recent review of publicly available ophthalmological 
image datasets, where a large proportion of datasets 
originated from China,14 we identified none in this 
review, highlighting that different specialties might have 
disease-specific biases.

Fitzpatrick skin type was not only poorly reported but 
also very poorly representative. Of the 2436 images from 
three datasets where skin type information was available 
(either as an aggregate or for individual images),15,45,48 only 
ten images were from individuals with Fitzpatrick skin 
type V, and only a single image was from an individual 
with Fitzpatrick skin type VI. The ethnicity of these 
individuals was either Brazilian or unknown. Of the 

two datasets containing data on ethnicity (1585 images in 
total),45,47 no images were from individuals with an 
African, Afro-Caribbean, or South Asian background. 
Coupled with the geographical origins of datasets, there 
was massive under-representation of skin lesion images 
from darker skinned populations. This is also reflected in 
dermatology educational resources71 and images of 
COVID-19-related rashes published in the literature.72 
This bias is especially concerning as prevalence, 
presentation, and types of skin cancer vary in skin of 
colour populations, with associated poorer outcomes,73,74 
and would be even more alarming when detecting skin 
cancers that preferentially affect patients of skin of colour 
(eg, Kaposi sarcoma).75

Geographical and ethnic disparities in digital health 
data have similarly been identified in other areas of 
digital health care where certain populations are under-
represented by the amount of digital health data 
available.14,36,63 Biased datasets can lead to digital solutions 
benefitting populations that have advanced data infra-
structure that facilitates data collection, but can result in 
the exclusion or even harm of data-poor subpopulations. 
Skin cancer machine learning algorithms should be 
developed using inclusive and representative populations 
to reduce algorithmic biases. Strategies proposed to 
achieve this include increasing awareness of health data 
poverty within the machine learning and digital health 
com munities, improving dataset transparency, invest-
ment into routine prospective collection of digital data 
from health-care systems, and transparent, effective 
communication to increase inclusion of all population 
groups.36

Our systematic review had several limitations. Although 
our search strategy incorporated searches from multiple 
sources, our search was limited to MEDLINE, Google, 
and Google Dataset Search, and our search terms were in 
English only. Additionally, seven non-English full-text 
articles were reviewed using Google Translate. Recent 
publications that were published but not yet PubMed 
indexed might have been missed. Similarly, our search 
was not specifically designed to find atlases, and therefore 
some atlases might not have been identified. Furthermore, 
due to variability within and between atlases that were 
included in this review, it was difficult to quantify their 
characteristics to the same degree of detail as the datasets. 
We undertook reasonable efforts to download and import 
atlas images into our platform, but for some atlases this 
was not feasible, and we did not pursue this further as we 
would argue that these atlases might have limited 
usability given the challenges in downloading and 
importing images. We attempted to reduce the number of 
duplicate images in our analyses by excluding datasets for 
which all images were used in other datasets, and by 
removing images with the same identifier within the 
platform. However, it is possible there were some images 
that overlapped between datasets. Furthermore, we could 
not assess if there were multiple images taken of the 
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same lesion (eg, from different views). The number of 
unique lesions, together with the number of subjects, 
could be helpful items to include in future open access 
datasets. Finally, reviews of this nature give a snapshot of 
the present situation, which can rapidly change without 
docu mentation of previous iterations. Datasets and 
atlases can be created, modified, or deactivated overnight, 
and in the future we expect more to emerge rapidly. 
Therefore, regular updates of systematic reviews and 
similar resources are needed to maintain usefulness to 
researchers and clinicians.

Future work could evaluate datasets containing images 
of all dermatoses, including those of rashes.10 Factors 
such as positioning, rotation, colour balance, and even 
presence of surgical skin markings have all been shown 
to influence machine learning algorithm performance 
and any variability of these factors in datasets warrants 
further evaluation.76–78 This has implications for the use 
of watermarked atlas images, which might require 
processing such as cropping prior to use. Furthermore, 
only 19% of open access datasets in our review stated 
whether image processing or adjustment by a reviewer 
occurred. Therefore, in addition to metadata standards, 
imaging standards are needed to ensure reproducibility 
of datasets and improve generalisability of the algorithms 
that they train. This is another area that is currently 
being explored by an ISIC working group,11 along with 
use of DICOM.79

To the best of our knowledge, this is the first systematic 
review of pubicly available skin lesion images comprising 
predominantly dermoscopic and macroscopic images 
available through open access datasets and atlases. Key 
characteristics and metadata were variably reported, with 
inadequate applicability of datasets to real-life clinical 
settings, and restricted geographical distribution of 
datasets globally, limiting generalisability. This review 
highlights the need for quality standards for minimum 
characteristics and metadata reporting for skin image 
datasets. Ensuring inclusion of representative population 
cohorts in skin image datasets might require prospective 
image collection using defined criteria. Health data poverty 
is an under-recognised but fundamental cause of the 
growing digital health divide and has been demonstrated 
to be a problem for skin image databases. Ensuring 
equitable digital health includes building unbiased, 
representative datasets to ensure that the algorithms that 
are created benefit people of all backgrounds and skin 
types.
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