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A Network-Flow Reduction for the
Multi-Robot Goal Allocation and Motion Planning Problem

João Salvado, Masoumeh Mansouri, Federico Pecora

Abstract— This paper deals with the problem of allocating
goals to multiple robots with complex dynamics while comput-
ing obstacle-free motions to reach those goals. The spectrum of
existing methods ranges from complete and optimal approaches
with poor scalability, to highly scalable methods which make
unrealistic assumptions on the robots and/or environment. We
overcome these limitations by using an efficient graph-based
method for decomposing the problem into sub-problems. In
particular, we reduce the problem to a Minimum-Cost Max-
Flow problem whose solution is used by a multi-robot motion
planner that does not impose restrictive assumptions on robot
kinodynamics or on the environment. We show empirically that
our approach scales to tens of robots in environments composed
of hundreds of polygons.

I. INTRODUCTION

The Multi-robot Motion Planning and Goal Allocation
Problem (MMP-GA) deals with finding feasible paths for
multiple robots navigating in shared environments. Solving
the MMP-GA involves allocating robots to goal configura-
tions and computing trajectories for reaching them that are
kinodynamically feasible, efficient, and avoid collisions with
the environment and among robots. The different facets of
the MMP-GA can be considered separately, as done in so-
called loosely-coupled approaches for integrated task alloca-
tion, motion planning, coordination and control. While such
methods have been shown to scale well (see related work
in Section II), they usually lead to sub-optimal solutions.
Conversely, considering goal allocation, motion planning and
coordination jointly leads to highly optimized trajectories,
but at the cost of high computational overhead. The spectrum
of such tightly coupled approaches ranges from complete
and optimal methods, which are adequate for small fleets,
to highly-scalable methods, which scale to larger fleets by
posing unrealistic assumptions on the robots, environment, or
both. Tightly-coupled methods are beginning to be adopted
in industrial settings, their limitations being overcome by
means of costly re-engineering of the environment, robots
and/or processes [1].

In this paper, we propose an efficient graph-based method
for decomposing the MMP-GA problem into sub-problems
involving subsets of robots. The method is based on the
reduction of a discretized version of the MMP-GA to a
minimum cost maximum flow problem [2]. The solution
of this flow problem is then used to instantiate a series of
independent multi-robot motion planning problems, which
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can be solved with existing continuous optimization meth-
ods. This allows to retain the advantages of tightly-coupled
optimization for only those parts of the problem that require
search in the joint configuration space of multiple robots.
The method does not impose restrictive assumptions on
robot kinodynamics or on the environment, and scales well
to tens of robots, hence providing a viable solution for
automating industrial applications without requiring costly
re-engineering effort. The proposed method is based on prior
work [3] in which the discrete MMP-GA is solved via
heuristic search. We perform an empirical comparison of the
two methods, which shows that the use of maximum flow
allows better scaling with respect to the amount of robots
and environment size without compromising solution quality.
Moreover we demonstrate that the discretized MMP-GA can
be solved for a tessellation of the environment composed of
hundreds of polygons in a few seconds. Finally, we show
how the sub-problems resulting from the decomposition of
the overall MMP-GA can be solved concurrently with an
existing optimization-based multi-robot motion planner [4],
and evaluate the achieved improvement in scalability.

This paper is organized as follows. In Section II we
outline the state of the art in multi-robot motion planning,
path finding, coordination and control. Section III states
the MMP-GA problem formally, while Section IV details
the proposed reduction to maximum flow with capacity
constraints and how its solutions are used to decompose
the overall MMP-GA problem. We evaluate our approach
empirically in Section V, and conclude with a brief outlook
in Section VI.

II. RELATED WORK

Existing methods often consider some facets of the MMP-
GA problem while ignoring others. Some approaches rely
on efficient single robot motion planners to compute a
path for each individual robot, and then avoid collisions
among robots by scheduling of their motions [5], [6] or via
priority planning [7], [8]. These methods trade completeness
and/or optimality for efficiency, and ignore the issue of goal
allocation.

Approaches based on trajectory optimization exploit the
existence of efficient convex optimization solvers, e.g., [9].
As the MMP-GA problem is non-convex, these approaches
convexify the problem by assuming holonomic robots [10],
robots navigating in obstacle-free space and linearizing colli-
sion constraints [11], decomposing the problem into simpler
convex problems to be solved sequentially [12], allowing



collisions until a defined time horizon [13], or sequentially
tightening collision constraints [14].

The Multi-Agent Path Finding (MAPF) problem is related
to the MMP-GA problem, in that it addresses the issue of
routing multiple agents through a graph. Efficient Integer
Linear Programming (ILP) solvers have been used to solve
a reduction of the MAPF problem to a dynamic network
flow problem [15], and Conflict-Based Search (CBS) [16]
has been used to resolve collisions in individually-obtained
robot plans via conflict binary trees [17]. Some graph-based
approaches plan in the combined configuration space of
the fleet only when single robot paths are non-colliding
[18]. These methods scale well with the number of robots
[1], however they assume an unrealistic one-robot-one-cell
paradigm. This assumption was relaxed in [19], allowing
robots to occupy several cells while navigating in grid-like
environments without considering robot kinematics. Honig et
al. [20] use realistic dynamic models to post-process paths
that are initially kinodynamically infeasible. The labeled
MAPF problem, where robots are allocated to goals and/or
are heterogeneous (known to be NP-hard [21]), can be
solved by leveraging efficient solvers for the unlabeled case
(flow reduction) while reasoning about conflicts between
heterogeneous robots on a higher level via the Conflict-
Based Min-Cost-Flow algorithm [22]. Others have exploited
reductions to the problem of coordinating pebble motions
on graphs [23], for which efficient algorithms exist [24].
The unlabeled variant of this problem, where homogeneous
robots/pebbles are not allocated to specific goals, is known
to be solvable efficiently under the assumption of one pebble
per vertex and/or when start and goal configurations do
not overlap [25]. These assumptions are relaxed in [26] by
generating multiple unlabeled pebble graphs when start and
goal co-location occurs. Most of the previous approaches
ignore the problem of finding motions for robots with non-
trivial kinodynamics; the few that do, do not address the
issue of goal allocation.

Several methods presented in the literature adopt, as we
do, the idea that different facets of the MMP-GA problem
are tackled by solvers at several levels of abstraction. For
instance, [27] partitions a single-robot roadmap into con-
vex regions, solving the problem at multiple levels. Others
leverage a discrete-space holonomic robot abstraction as a
means to guide the search in multi-robot configuration space
[28], or pre-compute single-robot roadmaps to be utilized
during a multi-robot sampling phase [29]. Finally, some
exploit solutions obtained from a fast CBS-based multi-robot
path planner to warm-start an optimization-based solver
[30]. None of these approaches considers the goal allocation
problem in conjunction with multi-robot motion planning.

III. PROBLEM STATEMENT

A. Nomenclature

Tuples: 〈. . .〉,Sets: {. . .},Vectors: [. . .],
Robots: r ∈ {1, . . . , R},

Polygons: p ∈ {1, . . . , P},
Goals: g ∈ {1, . . . , G},

Discrete time: k ∈ {1, . . . , N},
Continuous time: t ∈ [0, 1].

Matrices are defined in uppercase bold letters (e.g., matrix
M ), vectors in lowercase bold letters (e.g., vector v) and
constants in non-bold uppercase (e.g., constant C). Moreover,
v[i] is the i-th element of vector v. Note that continuous time
t is normalized as t = k

N .

Fig. 1: Running example of a MMP-GA problem with three
robots and three goals navigating on an W free composed of
three polygons. ctd(P) and ctd(Pi,Pi) are the centroids of
polygons and of their intersections, and di ∈ R specify real-
valued distances.

B. Preliminary Definitions

1) Robot and World: Robots navigate in a bounded 2D
world W ⊂ R2 with obstacles O ⊂ W . Each robot Rr is
defined as a tuple Rr = 〈Ar,xr, fr〉 of geometric shape
Ar(qr), state xr = [qr q̇r] and dynamic model ẋr =
fr(xr(t)), where qr ∈ Cr is a configuration in the robot’s
configuration space.

2) Trajectory: A robot’s trajectory from a start configu-
ration sr ∈ Cr to a goal configuration gr ∈ Cr is a time-
continuous mapping τr : [0, 1] 7→ Cr, where τr(0) = sr and
τr(1) = gr. A trajectory is free when τr : [0, 1] 7→ Cfreer ,
where Cfreer = {qr ∈ Cr | Ar(qr) ∩ O = ∅}, that is,
the configurations where the robot does not collide with
obstacles. A trajectory is feasible if it is free and it can be
followed with the robot’s dynamic model.

3) Multiple Robots: Previously defined variables are ex-
tended to the case of multiple robots by dropping the r
subscript. That is, we have the multi-robot state space x =
[x1 . . .xR], configuration free space Cfree =

∏R
r=1 Cfreer ,

geometric shape A = ∪Rr=1Ar and dynamic model ẋ =
f(x).



4) Obstacle Free Space: We approximate the obstacle
free space W free = W\O with a set of convex adjacent
polygons {P1, . . . ,PP } overlapping only on their boundary,
e.g., as in a Voronoi tessellation [31] and as exemplified
in Fig. 1. Let ∂P denote the boundary of polygon P . We
generate the obstacle-free space connectivity graph GWfree =
〈VWfree , EWfree〉, with vertices VWfree = {P1, . . . ,PP } and
edges EWfree = {(Pi,Pj) ∈ V 2

Wfree | ∃qr ∈ Cfreer s.t. qr ⊂
∂Pi ∩ ∂Pj}, meaning that an edge exists if a robot can be
“placed” somewhere on the boundary intersection between
polygons. We will refer to such polygons Pi and Pj as
connected. The connectivity graph for our running example
is shown in Fig. 2. Finally, we define the mappings cs :

Fig. 2: The environment connectivity graph of our running
example from Fig. 1.

{P1, . . . ,PP } 7→ R for the cost of staying in a polygon and
up : {P1, . . . ,PP } 7→ N for the maximum number of robots
allowed in each polygon.

5) Robot-Goal Allocation: Let S = {s1, . . . , sR} and
G = {g1, . . . , gG} be the set of the multi-robot start and
goal configurations. Let σ : S 7→ G, be a mapping between
robots and goals, e.g., σ(s2) = g5 means that the robot
starting in s2 is allocated to goal g5. Thus, allocating robots
to goals means computing σ.

6) Network Flow: A network N = 〈GN , uN , cN ,SN 〉
is composed of a directed graph GN = 〈V N , EN 〉; a set
of source SN

+ and sink nodes SN
− , where SN = (SN

+ ∪
SN
− ) ⊂ V N ; a mapping uN : EN 7→ N specifying the

edge capacities; and a mapping cN : EN 7→ R defining the
cost of a unit of flow traversing an edge. A Minimum-Cost
Maximum-Flow problem [2] involves finding the maximum
flow fN : EN 7→ N that can be pushed through the network
N from source to sink nodes while satisfying capacity and
flow conservation constraints1 and the objective

minimize
∑

e∈EN

fN (e) · cN (e). (1)

C. Problem Formulation

We define the Multi-robot Motion Planning and Goal
Allocation Problem (MMP-GA) as a tuple M =
〈W free,R,S,G〉. The objective is to find a multi-robot tra-
jectory τ(t) = [τ1(t) . . . τR(t)] and a robot-goal allocation
σ that minimizes some cost function L(t,x) and such that

1) ∀r . τr(0) = sr (initial condition),
2) ∀r . τr(1) = σ(sr) (final condition),
3) ∀r ∀t ∈ [0, 1] . τr(t) ∈ Cfreer (feasibility),
4) ∀ri, rj 6=i ∀t ∈ [0, 1] . Ari(τri(t)) ∩ Arj (τrj (t)) = ∅

(non-collision).

1Formulation is simplified, for more details consult [32].

D. Abstract Problem Formulation

We define a discrete Multi-robot Motion Planning and
Goal Allocation Problem (dMMP-GA) as a discrete abstrac-
tion of the MMP-GA with the aim of finding a sequence
of polygon transitions that bring the fleet from occupying
the set of polygons it starts in to occupying the set of
polygons in which the goal configurations are placed. Having
CK = {0, . . . , R}P as an abstract state which represents the
number of robots in each polygon, we define the mapping
λ : C 7→ CK between a fleet configuration and its polygonal
occupancy. Therefore, solving the dMMP-GA equates to
finding a discrete trajectory τK(k) ∈ CK for k ∈ {1, . . . , N}
such that:

1) the number of robots in each polygon at k = 0 reflects
the start configuration s, i.e., τK(0) = λ(s)

2) the number of robots in each polygon at k = N reflects
the goal configuration g, i.e., τK(N) = λ(g)

3) each abstract state is feasible, i.e., ∀k ∃q ∈ Cfree :
λ(q) = τK(k)

4) each abstract transition is feasible, i.e., if τK(k) =
λ(qk) and τK(k + 1) = λ(qk+1) and Ar(qk[r]) ⊂
Pi and Ar(qk+1[r]) ⊂ Pj , then either Pi = Pj or
(Pi,Pj) ∈ EWfree

Note that, the dMMP-GA problem is fully defined by the
tuple 〈GK, λ(s), λ(g)〉, where graph GK = 〈V K, EK〉 is
composed of a set of feasible vertexes V K = {cK ∈ CK}
and a set of feasible edges EK = {(cK

i , c
K
j ) ∈ CK × CK}.

IV. APPROACH

The relationship between multi-robot path planning and
network flow problems was explored in [15], where a reduc-
tion from collision-free unit-distance graphs (CUG’s) to the
dynamic network flow problem is shown. However, it is not
possible to apply this reduction to the dMMP-GA problem,
as the cost associated to transitioning between abstract states
is a real number, and several robots can occupy the same
polygon, thus breaking the unit-distance and collision-free
assumptions. Recall that, a Minimum-Cost Maximum-Flow
problem of a network N can be solved in polynomial time
when |SN

+ | = |SN
− | = 1 and ∀e ∈ EN : cN (e) = −1, which

results in a maximum flow problem

maximize
∑

e∈EN

fN (e). (2)

This problem can be solved in polynomial time by
the Ford-Fulkerson algorithm [33]. Interestingly, since
we require cN ∈ R the problem becomes NP-Hard,
although efficient algorithms exist, and we exploit a
capacity-scaling algorithm [34] with time complexity
O (|EN | · log (R|V N |+R|EN |) · log(V N )).

In this paper we propose a polynomial-time reduction

〈GK, λ(s), λ(g)〉 ≤P 〈GN , uN , cN ,SN 〉, (3)

meaning that the dMMP-GA problem is reduced to a net-
work flow problem. In practice, we create a time-expanded
network (also known as dynamic network) of the connectivity



graph of the obstacle free-space (GWfree ) while (1) ensuring
that the maximum amount of robots per polygon is not
exceeded via uN ; (2) considering traversal costs by defining
cN ; and (3) imposing abstract start and goal states via SN .
Traditionally, an time-expansion is considered in the strict
sense of discrete time intervals, however our expansion is
related to discrete concurrent transitions of robots between
polygons. The number of expansions T is then a consequence
of estimating the number of such concurrent transitions.

Finally, we exploit the fact that by reducing the original
problem to a network flow problem, the dMMP-GA problem
can be solved efficiently. By analyzing the abstract solution
of the dMMP-GA, the full MMP-GA is de-composed into
simpler problems, since it is known where (in which poly-
gons) and when robot motions may affect each other.

A. Multi-Robot Dynamic Flow Network: a Discrete Abstrac-
tion

The procedure utilized to realize the reduction in (3) will
be demonstrated via the running example shown in Fig. 1,
where we will illustrate two consecutive expansions (T = 2)
over a static network derived from the connectivity graph of
the environment GWfree shown in Fig. 2

A single dynamic network expansion, depicted in Fig. 3,
aggregates three repeated sets of vertices, which for simplic-
ity we refer to as layers. Each layer has a vertex for every
polygon in W free. Edges between vertices from layer 0 to
layer 1 account for the cost of transitioning between polygons
(black arrows) or staying in them (blue arrows), and edges
between layer 1 and 2 ensure that the maximum capacity of
polygons is not exceeded (red arrows). Notice that multiple
robots are allowed to stay and/or transition through polygons
concurrently in a single expansion. In summary, a single ex-
pansion allows multiple robot transitions between connected
polygons that do not violate maximum capacities of target
polygons.

Fig. 3: Single dynamic network expansion for the environ-
ment of our running example. Distances d1, d2, d3, d4 can be
seen in Fig. 1. The tuple over each directed edge shows its
cost and capacity.

A complete dynamic network with two expansions (T =
2) is illustrated in Fig. 4 (top). We construct a network with a
single source SN+ = {v+} and single sink SN− = {v−} with

a surplus and demand of R robots respectively. Therefore,
the abstract start and goal configurations are modeled into
the network by imposing maximal capacities as λ(s)[i] on
the outgoing edges of {vPi

+ : Pi ∈ W free} and λ(g)[i]

on the incoming edges of {vPi
− : Pi ∈ W free}. After

the flow is computed (red edges), an abstract trajectory is
extracted from the resulting flow on the incoming edges
of every vertex in layer 3 at all expansions. For instance,
assuming that P1 has a maximum capacity of one robot,
we obtain the maximum flow shown in Fig. 4 (bottom),
where τK(0) = [0 1 2], τK(1) = [1 1 1], τK(2) = [2 1 0]. In
summary, querying the network means modifying such edge
capacities according to λ(s) and λ(g), followed by a com-
putation of the maximum flow that can be pushed through
the network N with minimum cost, and finally transforming
back to the original abstract configuration space.

Fig. 4: Top: complete dynamic network N with T = 2 two
expansions for our running example. Bottom: computed flow
where P1 is traversed by one robot at a time due to the
capacity constraint up(P1) = 1.

B. Multi-robot Dynamic Flow Network: Optimality consid-
erations

Existing CUG-based approaches assume unitary edge cost,
hence there is a direct correlation between the traversal time
of the fleet and path length. This allows to exploit T (number
of expansions) to minimize for different metrics. In our case,
however, the number of expansions T in N is not correlated
with path length, but to the number of polygon transitions.
We explain how this affects different metrics below.

1) Minimizing sum of path lengths: The objective function
defined in eq. 1 is to minimize the sum of edge costs
multiplied by the amount of flow in those edges. Equivalently
– retrieving the original abstract problem 〈GK, λ(s), λ(g)〉
with robots as flow and path length as edge cost – we are
thus directly minimizing for the sum of path lengths for some
T . Moreover, a feasible solution is required to exist with
at most T discrete polygon transitions. Therefore, we are
required to use a big enough T . It is easy to see that the
upper bound Tmax = P + R − 2. Intuitively, a single robot
r might need to traverse all polygons to navigate from start
to goal configuration, thus T ≥ P − 1. Additionally, if robot
r traverses some polygon with unit capacity, and all other
robots also need to traverse this polygon, then in the worst



Fig. 5: Example with our method phases on solving a MMP-GA problem. (A blue) MMP-GA problem with three: robots,
goals and polygons. (B yellow) Abstract trajectory τK that is the solution of dMMP-GA problem, robots are in black to
demonstrate they are unlabeled. (C red) Depiction of an optimal robot labeling with robot’s traversed polygons and allocated
goal. (D green) Initial problem de-composition in two MMP-GAs M1 and M2 to be solved concurrently. (E grey) Final
phase where we account for robot’s dynamics.

case robot r has to wait for all other robots, hence T ≥ R−1.
In our running example, we thus have Tmax = 4.

2) Minimizing maximum path length: The value Tmax
often highly overestimates the length N of an abstract
trajectory solution τK. Consequently, we can iteratively solve
for T ∈ [Tmin, Tmax] as a means to quickly get a feasible
solution. A lower bound Tmin can be estimated as the shortest
path through the connectivity graph between λ(s) and λ(g).
In our running example, Tmin = 2.

Recall that expansions T are related to polygon transitions
and not discrete time/path length, hence the first feasible
solution found while iterating over T is not necessarily
minimal with respect to maximum path length. One such
case is shown in figure Fig. 6, where the solution found for
T = 4 (multi-robot path 2) is sub-optimal with respect to
both sum and maximum path length.

Observe that the polygons depicted in Fig. 6 do not
have similar sizes. Conversely, if the tessellation W free is
composed of similarly- or equally-sized polygons, then the
solution with lowest T would be optimal with respect to
maximum path length.

Operationally, querying for T = 1 in the running example
in Fig .1 implies deleting incoming edges on vertices {vPi

− :
Pi ∈ W free} (see Fig. 4) and creating edges between
vertices in layer 2 for expansion T = 1 and vertices {vPi

− :
Pi ∈ W free} with the respective capacities and costs of the
previously deleted edges.

Fig. 6: Example where an optimal solution can not be found
for T < 5, although a sub-optimal one exists for T = 4.

C. MMP-GA planner: exploiting dMMP-GA solution

The solution of a dMMP-GA problem abstraction is uti-
lized to tackle the original MMP-GA problem in a divide-
and-conquer manner. The key intuition is that the solution

of the dMMP-GA tells us when and by how many robots
each polygon is be traversed. Next, we describe the complete
procedure of solving a MMP-GA problem by exploiting the
solution of dMMP-GA. For that, we use a second running
example shown in Fig. 5 (A blue). For a detailed explanation,
please refer to [3].

Once an abstract trajectory τK is computed, our method:
(1) labels the fleet’s robots along the abstract trajectory, con-
sequently finding a robot-goal allocation; (2) de-composes
the original problem in time and space, exploiting the fact
that robots navigating different polygons do not interfere;
(3) solves the previously de-composed problems concurrently
while accounting for the robot’s kinodynamics via a multi-
robot motion planner [4]. These steps are briefly summarized
below.

1) Labeling Robots: Solving the dMMPA-GA results in a
discrete abstract trajectory τK with unlabeled robots. In the
example from Fig. 5, we the abstract trajectory is τK(0) =
[2 0 1] and τK(1) = [1 1 1] (Fig. 5 B yellow). Here, although
we known that the robot in P1 transitions to P2, we do
not know which of the two robots in P0 transitions to P1.
Therefore, to label the robots we construct a search search
tree U along τK considering the possible robot transitions.
The tree is traversed in a depth-first manner for a labeling
of robots that minimizes the sub-optimality resulting from
an initial approximation of the transition costs for the start
and goal configuration when creating the dMMP-GA. For
example (see Fig. 5 C red), our labeling method selects
robot r2 to be the one transitioning to polygon P1, since
it has a lower transitioning cost, whereas selecting robot
r1 would incur in an additional cost resulting from the
robot’s start configuration. The labeling leads to a multi-
robot trajectory τU =

∏R
r=1 τ

U
r prescribing the sequence of

polygon-centroids traversed by all robots, and which implies
a certain robot-goal allocation σ. For example, τU(0) =
[s1, s2, s3] and τU(1) = [g2, g3, g1] (see Fig. 5 C red).

2) Decoupling the Problem: The fact that τU defines
when robot navigate through which polygons allows to
decouple the problem in discrete time and space by com-
puting a partition of independent robots. For the running
example, we would have the partition {{R1,R2}, {R3}}
in a single discrete time step. Thus the original problem
M = 〈W free,R,S,G〉 is now decomposed into the two sub-



problems

M1({P1,P2}, {R1,R2}, {s1, s2}, {g2, g3}) (4)
⊗M2({P3}, {R3}, {s3}, {g1}),

that is, to solving in parallel the problem of finding a
trajectory for robots 1 and 2 starting in s1 and s2 and ending
in g2 and g3 respectively, while navigating inside polygons
P1 and P2; similarly for robot 3 starting in s3 and ending
in g1 while navigating in polygon P3. In summary, we have
divided the original MMP-GA problem into two independent
and simpler problems that can be solved concurrently.

3) Multi-robot Motion Planning: Finally, a dynamically
feasible trajectory is computed for each of the previously
generated independent sub-problems. The multi-robot motion
planner used here must enforce the robots’ non-holonomic
dynamics from start to goal configuration while ensuring that
robots remain in the polygons of the sub-problem while not
colliding with each other.

V. EXPERIMENTS AND RESULTS

A. Setup

Our approach was tested on a PC running Ubuntu 20.04
equipped with an 8-thread Intel Core i7-6820HQ CPU @
2.70GHz. The obstacle-free space W free is generated with
OpenCV by iteratively expanding rectangles centered on
randomly sampled points on a grayscale image map until
colliding with obstacles or previously generated rectangles.
The connectivity graph of the created rectangular polygon
tessellation GWfree is constructed using the Boost Polygon
Library (BPL) [35] connectivity extraction algorithm. The
graph GN of the flow reduction was created with the
LEMON Graph Library [36] and its capacity scaling algo-
rithm was used to solve the Minimum-Cost Maximum-Flow
problem. We exploit the Boost Graph Library (BGL) [37]
connected components algorithm to decompose the original
problem. For the joint multi-robot motion planning we utilize
a trajectory based optimization planner introduced in [4].
Note that our approach allows other tessellations of the
environment where polygons are convex and adjacent as
defined in Section III.

B. Heuristic-based vs. Flow-based dMMP-GA solver

We start by comparing the flow-based method for solving
the dMMP-GA problem introduced in this paper with an
approach based on A? graph search [3]. Specifically, the
latter approach constructs a graph GK containing a vertex
for each abstract multi-robot state, and an edge for each
possible transition of one robot at a time. The comparison is
conducted in terms of scalability and solution quality.

1) Scalability: We construct both graphs GN and GK for
the scenario displayed in Fig. 7c for R ∈ {2, 4, 6, 8, 10}.
As expected (see Table I), the number of vertices and edges
grows exponentially for graph GK and linearly for graph GN ,
which explains the much higher building time for the former.
The amount of vertices can be estimated as: |V K| ≈

(
P+R
P

)
and |V N | ≈ 2×T×(P+1). Consequently, we have |V K| �

R 2 4 6 8 10

|V N | 262 302 342 382 422
|V K| 55 715 5005 24290 91928

|EN | 534 622 710 798 886
|EK| 240 5280 48.048 274.440 1.162.860

tN (s) build ≈ 10-3 ≈ 10-3 ≈ 10-3 ≈ 10-3 ≈ 10-3

tK(s) build ≈ 10-4 ≈ 10-2 2 48 784

tN (s) query ≈ 10-3 ≈ 10-3 ≈ 10-3 ≈ 10-3 ≈ 10-3

tK(s) query ≈ 10-3 ≈ 10-2 ≈ 10-2 ≈ 10-1 ≈ 10-1

TABLE I: Creation and query of graphs GN and GK for the
scenario in Fig. 7c. The table reports the amount of vertices
and edges, and the time to build and query the respective
graphs for different amounts of robots R.

|V N | when the number of polygons or robots increases. Note
that T ∈ O(P +R).

To evaluate the performance of querying the graphs, we
randomly create a set of 50 start and goal configurations
for the multi-robot fleet for each value of R and compute
an abstract path using each graph. For queries on GN , we
compute the solution for Tmax (see Section IV-B). Table I
shows the average time to compute the abstract multi-
robot trajectory. Again, the query time for graph GK grows
exponentially with R.

2) Solution Quality: Once an abstract multi-robot trajec-
tory is generated using either graph GK or GN to obtain a
solution to the dMMP-GA problem, robots are labeled (see
Section IV-C.1 and example in Fig. 5C), and the original
MMP-GA problem is decomposed into smaller problems (see
Section IV-C.2 and example in Fig. 5D). An optimization-
based planner (see Section IV-C.3 and example in Fig. 5E)
is exploited to enforce realistic dynamics and the absence
of robot-robot collisions. Even though the post-processing
phase of the abstract solution is the same, the different
abstract paths obtained by querying GK or GN lead to
alternative trajectories. This comparison is shown in Fig. 7

2 4 6 8
20

40

60

80
Sum Time

(a)

2 4 6 8
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14

15
Max Time

(b) (c)

Fig. 7: Sum of time and makespan for the scenario in (c) for
the trajectories resulting from GK (red) and GN (blue)

for 30 MMP-GA problems per value of R. The resulting
trajectories were executed in simulation using the multi-robot
coordination framework [6]. A video of one such execution
is shown in the video available at https://youtu.be/
Wolhfgkt014.

While the A?-based approach minimizes path length, the
flow-based approach iterates over T ∈ [Tmin, Tmax] and stops

https://youtu.be/Wolhfgkt014
https://youtu.be/Wolhfgkt014


Fig. 8: Each plot summarizes the results obtained on the experiments conducted on the respective scenarios represented
above. From left to right, a scenario is a concatenation of two duplicates of the previous scenario, resulting in scenarios
with 60, 130, 260 and 510 polygons respectively. The curves show the average computation time for different amounts of
robots, having: tk as the computation time for solving dMMP-GA via GN (described in Section IV-A, illustrated in Fig. 5B),
tu the computation time labeling phase (described in Section IV-C.1, illustrated in Fig. 5C), td the computation time for
decomposition phase (described in Section IV-C.2, illustrated in Fig. 5D).

at the first feasible solution (i.e., with minimum polygon
transitions). It is interesting to note that even though, as
expected, the makespan (max time) is better in GN , the sum
of traversal times is identical in the two approaches. We can
attribute this fact to a suitable tesselation of the obstacle-free
space.

C. Abstract Problem Scalability

In order to better assess scalability of the query phase,
we conducted a set of 50 experiments for 4 ≤ R ≤ 30.
The dMMP-GA problem is solved via flow reduction while
minimizing sum of path length (using Tmax), followed by
robot labeling and problem decomposition for scenarios
obtained by doubling the number of polygons, as shown in
Fig. 8. These results reveal that the computational overhead
of both decomposition (td) and dMMP-GA solving (tk) grow
linearly with the amount of robots and polygons, while
the overhead of the labeling phase (tu) decreases with the
amount of polygons. This occurs because the labeling phase
is rather related to the ratio of polygons to robots (similarly
to the (n2−1)-puzzle problem [38]). Also, the labeling phase
used in these experiments does not stop at the first solution
found, but continues searching the entire search space or
times-out, and we retrieve the best solution found so far.
Thus, if optimized labeling is not important, we can use the
computed flow directly, e.g., in Fig. 5C we could arbitrarily
allocate the red or green robot to g2 or g3.

D. MMP-GA Scalability and Example

In order to evaluate the computation time required to solve
the entire MMP-GA, we conducted 50 experiments per value
of R in the scenario shown in Fig. 10. The computation time
is summarized in Fig. 9, where the upper and lower bounds
are, respectively, the 90- and 10-percentile, while the middle

Fig. 9: Computation time per values of R for the first
scenario shown in Fig. 8 with approximately 60 polygons.

line represents the average. The connectivity graph for this
scenario is the same as the leftmost one shown in Fig. 8.

Note that during the problem decomposition phase (see
Section IV-C.2) the original MMP-GA problem is decom-
posed in space and time. Although we show the total
computation time of the fleet trajectory from start to goal
configuration, a receding horizon planner could be used
to start trajectory execution during the multi-robot motion
planning phase [3]. Furthermore, we allow three instances of
the multi-robot motion planner to run concurrently (e.g., if
a fleet of six robots is totally decoupled, we start computing
trajectories for three robots and then the other three, if totally
coupled a single planner is utilized).

VI. FUTURE WORK

We have presented a network flow reduction for solv-
ing the Multi-Robot Motion Planning and Goal Allocation
problem. In the future, we intend to evaluate our approach
on industrially-relevant environments, including underground
mines and a bus depot. We also intend to extend our
flow-based approach to account for heterogeneous fleets.
Finally, we will compare our method with loosely-coupled
approaches to goal allocation.
Acknowledgments. This work is supported by the EU
H2020 programme under grant agreement No. 732737 (IL-



Fig. 10: MMP-GA problem example with start/goal config-
urations and solution trajectories.

IAD), Vinnova projects iQMobility and AutoHauler, and
KKS research profile Semantic Robots.
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