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A Grid-Based Evolutionary Algorithm for
Many-Objective Optimization

Shengxiang Yang, Member, IEEE, Miqing Li, Xiaohui Liu, and Jinhua Zheng

Abstract—Balancing convergence and diversity plays a key
role in evolutionary multiobjective optimization (EMO). Most
current EMO algorithms perform well on problems with two
or three objectives, but encounter difficulties in their scalability
to many-objective optimization. This paper proposes a Grid-
based Evolutionary Algorithm (GrEA) to solve many-objective
optimization problems. Our aim is to exploit the potential of the
grid-based approach to strengthen the selection pressure towards
the optimal direction while maintaining an extensive and uniform
distribution among solutions. To this end, two concepts—grid
dominance and grid difference—are introduced to determine the
mutual relationship of individuals in a grid environment. Three
grid-based criteria, i.e., grid ranking, grid crowding distance,
and grid coordinate point distance, are incorporated into the
fitness of individuals to distinguish them in both the mating and
environmental selection processes. Moreover, a fitness adjustment
strategy is developed by adaptively punishing individuals based
on the neighborhood and grid dominance relations in order to
avoid partial overcrowding as well as guide the search towards
different directions in the archive. Six state-of-the-art EMO
algorithms are selected as the peer algorithms to validate GrEA.
A series of extensive experiments is conducted on 52 instances of
9 test problems taken from 3 test suites. The experimental results
show the effectiveness and competitiveness of the proposed GrEA
in balancing convergence and diversity. The solution set obtained
by GrEA can achieve a better coverage of the Pareto front than
that obtained by other algorithms on most of the tested problems.
Additionally, a parametric study reveals interesting insights of the
division parameter in grid and also indicates useful values for
problems with different characteristics.

Index Terms—Evolutionary multiobjective optimization, many-
objective optimization, convergence, diversity, grid.

I. INTRODUCTION

IN the real world, it is not uncommon to face a problem
with several objectives to be met simultaneously, which

is known as a multiobjective optimization problem (MOP).
Due to the conflicting nature of objectives, there is usually no
single optimal solution but rather a set of alternative solutions,
called the Pareto set, for MOPs. Evolutionary algorithms (EAs)
have been recognized to be well suitable for MOPs due to
their population-based property of achieving an approxima-
tion of the Pareto set in a single run. Over the past few
decades, a number of state-of-the-art evolutionary multiob-
jective optimization (EMO) algorithms have been proposed.
Generally speaking, these algorithms share two common but
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often conflicting goals—minimizing the distance of solutions
to the optimal front (i.e., convergence) and maximizing the
distribution of solutions over the optimal front (i.e., diversity).

A many-objective optimization problem usually refers to
an optimization problem with more than three objectives. It
appears widely in industrial and engineering design, such as
water resource engineering [38], industrial scheduling problem
[64], control system design [19], [23], molecular design [44],
and so on [18], [31], [36]. In recent years, many-objective
optimization has been gaining an increasing attention in the
EMO community [60], [63]. Some related techniques have
been developed rapidly in the domain, including test functions
scalable to any number of conflicting objectives [16], [24],
[25], [61], performance assessment metrics suitable for a high-
dimensional space [14], [34], and visualization tools designed
for the display of solutions with four or more objectives
[33], [43], [55], [67]. These have made it possible to deeply
investigate the performance of algorithms on many-objective
problems. As a consequence, various experimental [9], [21],
[32] and analytical [8], [62], [65] studies have been presented
and some new observations and conclusions have been made
in the many-objective optimization landscape [18], [42], [56].

Balancing convergence and diversity is not an easy task
in many-objective optimization. Most classical Pareto-based
EMO algorithms, such as the improved nondominance sorting
genetic algorithm (NSGA-II) [11] and the improved strength
Pareto EA (SPEA2) [73], noticeably deteriorate their search
ability when more than three objectives are involved [39], [66].
One major reason for this occurrence is that the proportion of
nondominated solutions in a population rises rapidly with the
number of objectives. This makes the Pareto-based primary
selection fail to distinguish individuals and the secondary
selection based on diversity play a leading role in determining
the survival of individuals. In this case, the performance of
algorithms may worsen since they prefer dominance resistant
solutions [29] (i.e., the solutions with an extremely poor value
in at least one of the objectives, but with near optimal values in
the others). Consequently, the solutions in the final solution set
may be distributed uniformly in the objective space, but away
from the desired Pareto front. In fact, some studies have shown
that a random search algorithm may even achieve better results
than Pareto-based algorithms in MOPs with a high number of
objectives [42], [45], [56].

A straightforward idea to solve this problem (i.e., the
ineffectiveness of classical Pareto-based EMO algorithms in
many-objective optimization) is to modify or enhance the
Pareto dominance relation to increase the selection pressure
towards the Pareto front. There are a large number of studies
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that address this issue in different ways, e.g., dominance area
control [6], [59], k-optimality [18], preference order ranking
[17], subspace dominance comparison [2], [35], ϵ-dominance
[46], and fuzzy Pareto dominance [43]. Experimental results
indicate that the selection based on these modified Pareto
dominance relation is able to search towards the Pareto front
significantly better than that based on the standard Pareto
dominance relation. On the other hand, some non-Pareto-based
techniques, such as average rank [49], ranking dominance [45],
favour relation [64], winning score [51], and some distance-
based rank methods [20], [53], [69], [75], have also been found
to be promising in converging towards the optimum. Despite
the risk of leading the final set to converge into a sub-area in
the Pareto front [9], [34], they provide some new alternatives
for evolutionary many-objective optimization.

Another avenue to deal with this problem is to improve
the diversity maintenance mechanism of the algorithms. As
a result of the increase of the objective space in size, the
conflict between the convergence and diversity requirements
is gradually aggravated [1], [56]. Most of the diversity main-
tenance techniques (e.g., niche, crowding distance, clustering,
and k-th nearest distance [12]) not only cannot strengthen the
selection pressure towards the Pareto front, but also hinder the
evolutionary search to some extent due to their favour on dom-
inance resistant solutions [56]. Apparently, a feasible way for
solving this problem is to decrease the diversity requirement
in the selection process. Some efforts in this direction have
been attempted. Adra and Fleming [1] employed a diversity
management operator to control the diversity requirement in
order to maintain the balance between the two requirements.
Wagner et al. [66] demonstrated that the assignment of a zero
distance (instead of an infinity distance) to boundary solutions
would clearly improve the performance of NSGA-II for many-
objective problems.

Recently, some selection methods which naturally integrate
proximity and diversity into a single criterion have been
developed, e.g., the aggregation-based criterion [26], [28],
[71] and indicator-based criterion [3], [4], [74]. Some EMO
algorithms based on them, e.g., MSOPS [26] and SMS-EMOA
[4], have been found to perform well in balancing convergence
and diversity for many-objective problems [66]. The former
uses the idea of single-objective aggregated optimization to
search in parallel for points that lie on the Pareto front.
The latter aims at maximizing the hypervolume contribution
of the population by selecting the individuals in a steady
state evolutionary scheme. While a large computation cost is
required in the exact calculation of the hypervolume indicator
in a high-dimensional space, efforts [7], [68] to address
this issue are being made; on the other hand, approximate
estimation of the hypervolume indicator has recently been
developed by Monte Carlo sampling, leading to the appearance
of hypervolume-based algorithms designed specially for many-
objective optimization, such as HypE [3].

The above studies provide a variety of alternatives to
address many-objective optimization problems and many of
them offer bright prospects to the domain. Nevertheless, great
improvements are still needed before EMO algorithms can be
considered as an effective tool for many-objective problems as

for 2- or 3-objective problems. As highlighted by Purshouse
et al. in [57], research into evolutionary many-objective op-
timization is still in its infancy, and the need for efficient
methodologies is pressing.

This paper proposes a grid-based EA (GrEA) to solve many-
objective optimization problems. The aim of the paper is to
exploit the potential of the grid-based approach to strengthen
the selection pressure towards the optimal direction while
maintaining an extensive and uniform distribution among
solutions.

Grid has an inherent property of reflecting the information
of convergence and diversity simultaneously. Each solution in
the grid has a deterministic location. The performance of a
solution regarding convergence can be estimated by its grid
location compared with other solutions, and the performance
of a solution regarding diversity can be estimated by the
number of solutions whose grid locations are identical with
or similar to its grid location. Moreover, in contrast to the
Pareto dominance criterion, a grid-based criterion can not only
qualitatively compare solutions but also give the quantitative
difference in each objective among them. This seems to be
more suitable for many-objective problems, considering the
increase of selection pressure from the quantitative comparison
of objective values among solutions [9], [31]. However, so
far the advantage of grid is not utilized adequately in the
literature (see Section II for an overview of existing studies).
Most existing grid-based EMO algorithms perform well on
problems with two or three objectives, but often fail to deal
with many-objective problems. In addition, some aggregation-
based algorithms that have been found to be successful in both
multi- and many-objective problems, such as cellular EAs [54]
and the multiobjective EA based on decomposition (MOEA/D)
[71], also employ grid-structure to guide the search. However,
an essential difference from the grid-based approaches here
is that they decompose an MOP into many single-objective
problems by a set of weight vectors with grid structure, and
steer the search towards the Pareto front in different directions
according to these uniformly-distributed weight vectors.

As the first attempt to capture and utilize the properties of
grid for evolutionary many-objective optimization, we recently
developed a grid-based fitness strategy [50]. Three fitness
assignment criteria based on individuals’ grid coordinates are
used to reinforce the selection pressure towards the optimal
front. The comparison studies in [50] has shown that the
proposed strategy is competitive with several EMO algorithms
on the tested many-objective problems. Motivated by the
encouraging experimental results of the preliminary attempt,
this paper conducts a further and thorough investigation along
this line and proposes the GrEA to tackle many-objective
optimization problems.

The main contributions of GrEA distinguished from its
predecessor can be summarized as follows.

• A concept of grid dominance is introduced to compare
individuals in both the mating and environmental selec-
tion processes.

• An elaborate density estimator of an individual in the
population is designed, which takes into account not
only the number of its neighbors but also the distance
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Fig. 1. An illustration of individuals in grid in a bi-objective space.

difference between itself and these neighbors.
• An improved fitness adjustment technique is developed

to avoid partial overcrowding as well as guide the search
towards different directions in the archive set.

In this paper, systematic experiments are carried out to
compare GrEA with five other state-of-the-art algorithms on
three groups of many-objective continuous and combinatorial
optimization problems. In addition, a detailed investigation of
the grid division parameter is also included in our study.

The remainder of this paper is organized as follows. In
Section II, the motivation of using grid to solve many-
objective problems and the related work concerning grid-
based techniques are delineated and discussed. Section III is
devoted to the description of the proposed algorithm for many-
objective optimization problems. Section IV presents the al-
gorithm settings, test functions, and performance metrics used
for performance comparison. The experimental results and
discussions are given in Section V. Finally, Section VI provides
some concluding remarks along with pertinent observations.

II. MOTIVATION AND RELATED WORK

Grid has a natural ability to reflect the distribution of solu-
tions in the evolutionary process by their own grid locations
(i.e., grid coordinates). The difference between grid coordi-
nates of solutions indicates the distance between solutions
and further images the density information of solutions in the
population. For example, Fig. 1 illustrates individuals in grid in
a bi-objective space. For individuals A, B, and C in the figure,
their grid coordinates are (0, 4), (1, 1), and (3, 1), respectively.
Clearly, the difference of grid coordinates between A and C
(i.e., (3 − 0) + (4 − 1) = 6) is larger than that between A
and B (i.e., (1− 0) + (4− 1) = 4), which indicates that C is
farther away from A than B. In addition, given that there exists
another individual (D) which has the identical grid coordinate
with C (i.e., the difference of grid coordinates between them
is 0), C can be considered to be of a greater crowding degree
in comparison with A and B.

On the other hand, grid is also capable of indicating the
evolutionary status of solutions in terms of convergence. The
grid coordinate takes into account not only whether one
solution is better than another solution but also the difference
in objective values between them. For example, considering

individuals A and B with their own grid coordinates (0, 4)
and (1, 1) in Fig. 1, it is clear that the difference in objective
f2 between them is greater than that in objective f1 (i.e.,
(4−1) > (1−0)). This means that grid can further distinguish
the solutions when they are on a tie in the sense of Pareto
dominance, thereby providing a higher selection pressure in
the evolutionary many-objective optimization process.

Over the last decade, grid-based techniques are widely
applied in the EMO community, resulting in the appearance of
several grid-based EMO algorithms. Their characteristics have
also been well studied, both theoretically and experimentally
[15], [41], [46], [58], [72]. In the first known study of this
kind, grid was introduced into Pareto-based evolution strategy
(PAES) proposed by Knowles and Corne [40] to maintain
the diversity of the archive set. The crowding degree of a
solution is estimated by the number of solutions sharing its
grid location. When a nondominated candidate is to join an
archive that is full, it replaces one of the solutions with the
highest crowding degree if its own crowding degree is lower.
Some extended theoretical and practical studies were also
presented in [10], [41].

Yen and Lu [70] presented a dynamic multiobjective EA
(DMOEA), using adaptive grid-based rank and density esti-
mation. Unlike PAES and PESA, grid, here, is regarded as an
implement to store the information of both convergence and
diversity of solutions. Each cell in grid is assigned a rank and
a density value according to the Pareto dominance relation and
grid location of solutions.

The concept of ϵ-dominance proposed firstly by Laumanns
et al. [46] can be seen as a grid-based technique to combine
the convergence properties of an EMO algorithm with the
need to preserve a diverse set of solutions. Deb et al. [15]
also developed a steady-state algorithm ϵ-MOEA using ϵ-
dominance. It divides the objective space into hyperboxes by
the size of ϵ and each hyperbox contains at most a single
individual. However, the boundary solutions may be lost in
the evolutionary process of the algorithm due to the feature of
ϵ-dominance [15], [22]. To address this issue, Hernández-Dı́az
et al. [22] proposed a variant of the algorithm, called Pareto
adaptive ϵ-dominance.

Rachmawati and Srinivasan [58] introduced a dynamic grid
resizing strategy, which is capable of shrinking or expand-
ing hyperboxes as necessity dictates. The strategy uses two
metrics—the mean occupancy and neighbor occupancy—to
detect the setting of grid sizes, and further adjusts them
correspondingly.

More recently, Karahan and Köksalan [37] developed a
territory-based EMO algorithm, TDEA, to solve MOPs. Sim-
ilar to ϵ-MOEA, TDEA is also a steady-state algorithm. It
defines a territory τ around an individual to maintain diversity.
Its main difference from ϵ-MOEA lies in that the hyperbox
of TDEA is based on individuals rather than independent on
them.

Overall, the above grid-based EMO algorithms are very suc-
cessful, and most of them perform very well on the problems
with two or three objectives. However, it is interesting that
their application to many-objective problems has received little
attention and consideration. This occurrence may mainly be
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attributed to three reasons, summarized as follows.
• The need of data storage and computational time in-

creases exponentially. The calculation of most existing
grid-based algorithms revolves around hyperboxes in
grid. Such box-centered calculation often needs to store
the information of each hyperbox in grid (e.g., the number
of individuals in each hyperbox). As pointed out by Corne
and Knowles [9], these algorithms may not be suitable for
many-objective problems since their operation relies on
the data structures that exponentially grow in size with
the number of objectives. Additionally, the computational
cost for high dimensional problems would also be tremen-
dous when the box-centered calculation is implemented
[39]. If we traverse each hyperbox in an m-dimensional
grid, there will be rm hyperboxes to be accessed, where
r is the number of divisions in each dimension.

• The properties of grid are not utilized or exploited suffi-
ciently. The selection criterion of some grid-based EMO
algorithms (such as PAES, DMOEA, and TDEA), in the
sense of convergence, is based on the Pareto dominance
relation, and thus may fail to provide enough selection
pressure towards the desired direction in the evolutionary
process of many-objective optimization.

• The density estimator may fail to reflect the distribution
of solutions accurately. Since the number of hyperboxes
in grid exponentially increases with the number of ob-
jectives, the solutions for many-objective problems are
likely to disperse in different hyperboxes. Consequently,
existing grid-based EMO algorithms which only consider
the number of individuals in a single hyperbox would not
discriminate individuals by means of their distribution,
as the values are almost equal based on this density
estimation method.

Clearly, the above difficulties would largely limit the ap-
plication of existing grid-based EMO algorithms to many-
objective problems. However, we argue that these difficulties
do not seem to be insurmountable. Firstly, box-centered cal-
culation can be replaced by individual-centered calculation. In
this case, grid is merely regarded as a “pointer” to depict the
address of individuals. Secondly, a selection criterion based
on the difference of grid coordinates can be introduced to
strengthen the selection pressure. Finally, the failure of density
estimation may also be addressed if the density value of
individuals relies on the records not in a single hyperbox but
rather in a region constructed by a set of hyperboxes whose
range increases with the number of objectives.

Bearing these ideas and motivations in mind, a grid-based
evolutionary many-objective optimization algorithm is sug-
gested, investigated, and discussed in the following sections.

III. DEVELOPMENT OF THE PROPOSED ALGORITHM

In this section, we first introduce some definitions used
in GrEA. Then, we present the framework of the proposed
algorithm. Next, we describe the fitness assignment process.
Finally, the strategies for mating and environmental selection
processes are given in Section III-D and Section III-E, respec-
tively.

Fig. 2. Setting of grid in the kth objective.

A. Definitions and Concepts

Without loss of generality, an MOP may be stated as a
minimization problem and defined as follows:

Minimize F (x) = (F1(x), F2(x), ..., FM (x))
Subject to x ∈ Ω

(1)

where x denotes a solution vector in the feasible solution
space Ω , and Fi (i = 1, 2, ...,M ) is the ith objective to be
minimized.

Definition (Pareto Dominance): Let x,y ∈ Ω ,x ≺ y: ⇔

∀i ∈ (1, 2, ...,M) : Fi(x) ≤ Fi(y) ∧
∃j ∈ (1, 2, ...,M) : Fj(x) < Fj(y)

(2)

where “x ≺ y” denotes that “x dominates y”. The Pareto
dominance relation reflects the weakest assumption about the
preferred structure of the decision maker. A decision vector
that is not dominated by any other vectors is denoted as Pareto
optimal. The set of the optimal solutions in the decision space
is denoted as the Pareto set, and the corresponding set of
objective vectors is denoted as the Pareto front.

In GrEA, grid is used as a frame to determine the location of
individuals in the objective space. Therefore, its adaptability
with the evolutionary population seems to be advisable. In
other words, when a new population is generated, the location
and size of grid should be adapted and adjustable so that
it just envelops the population. Here, we adopt the adaptive
construction of grid, borrowing ideas from the adaptive genetic
algorithm (AGA) presented by Knowles and Corne [41].

The grid setting in the kth objective is shown in Fig. 2.
First, the minimum and maximum values regarding the kth
objective among the individuals in a population P are found
and denoted as mink(P ) and maxk(P ), respectively. Then,
the lower and upper boundaries of the grid in the kth objective
are determined according to the following formulas:

lbk = mink(P )− (maxk(P )− mink(P ))/(2× div) (3)

ubk = maxk(P ) + (maxk(P )− mink(P ))/(2× div) (4)

where div denotes the number of the divisions of the objective
space in each dimension (e.g., in Fig. 2, div = 5). Accordingly,
the original M -dimensional objective space will be divided
into divM hyperboxes. Thus, the hyperbox width dk in the
kth objective can be formed as follows:

dk = (ubk − lbk)/div (5)



5

In this case, the grid location of an individual in the kth
objective can be determined by lbk and dk:

Gk(x) = ⌊ (Fk(x)− lbk)/dk ⌋ (6)

where “⌊·⌋” denotes the floor function, Gk(x) is the grid
coordinate of individual x in the kth objective, and Fk(x)
is the actual objective value in the kth objective. For example,
in Fig. 2, the grid coordinate of individuals (from left to right)
in the kth objective is 0, 1, 2, 3, 4, and 4. In the following,
two concepts used in the comparison between individuals are
defined based on their grid coordinates.

Definition (Grid Dominance): Let x,y ∈ P,x ≺grid y: ⇔

∀i ∈ (1, 2, ...,M) : Gi(x) ≤ Gi(y) ∧
∃j ∈ (1, 2, ...,M) : Gj(x) < Gj(y)

(7)

where “x ≺grid y” denotes that “x grid-dominates y”, M
is the number of objectives, and the grid environment is
constructed by the population P . Apparently, the concept of
grid dominance is the same as that of Pareto dominance if
the grid coordinates of individuals are replaced by their actual
objective values. Their specific relationship is as follows. If
one solution Pareto-dominates another solution, the latter will
not grid-dominate the former, and vice versa. On the other
hand, the grid dominance relation permits one solution to
dominate another solution if the former is slightly inferior to
the latter in some objectives but largely superior to the latter in
some other objectives, e.g., the individuals B and C in Fig. 1.

The grid dominance relation is also similar to the ϵ-
dominance relation, considering that both of them are the
relaxed form of the Pareto dominance relation. But, one
important difference is that the degree of relaxation of grid
dominance is determined by the evolutionary status of the
population. The division number div in GrEA is a fixed
parameter set by the user beforehand, leading the convergence
and diversity requirements to be adjusted adaptively with the
evolution of the population. A widely-distributed population
in the objective space (often appearing at the initial stage of
evolution) has a larger relaxation degree (i.e., a larger size of a
cell in the grid), thereby providing a higher selection pressure;
as the population evolves toward the more concentrated Pareto
front region, the relaxation degree becomes lower, leading the
diversity to be more emphasized.

In addition, the usage of grid dominance in our study is
totally different from that of ϵ-dominance in the ϵ-dominance-
based algorithms. In the ϵ-dominance-based algorithms, ϵ-
dominance is used to determine the survival of individuals.
Only nondominated individuals can be preserved in the archive
set. However, in GrEA, grid dominance is mainly used to
prevent individuals from being archived earlier than their com-
petitors that grid-dominate them (see the fitness adjustment
strategy in Section III-E). This means that grid-dominated
individuals can also have the chance to enter the archive set,
which is useful for the maintenance of boundary solutions in
the population to some extent.

Definition (Grid Difference): Let x,y ∈ P , the grid difference

Algorithm 1 Grid-Based Evolutionary Algorithm (GrEA)
Require: P (population), N (population size)

1: P ← Initialize(P )
2: while termination criterion not fulfilled do
3: Grid setting(P )
4: Fitness assignment(P )
5: P ′ ←Mating selection(P )
6: P ′′ ← V ariation(P ′)
7: P ← Environmental selection(P

∪
P ′′)

8: end while
9: return P

between them is denoted as:

GD(x,y) =
M∑
k=1

| Gk(x)−Gk(y) | (8)

Grid difference is influenced by the number of divisions div,
ranging from 0 to M(div−1). The larger the div, the smaller
the size of a cell and the higher the grid difference value
between individuals.

B. Framework of the Proposed Algorithm

Algorithm 1 gives the framework of GrEA. The basic
procedure of the algorithm is similar to most generational
EMO algorithms like NSGA-II [11] and SPEA2 [73]. Firstly,
N individuals are randomly generated to form an initial popu-
lation P . Then, the grid environment for the current population
P is set as described in the previous section, and the fitness
of individuals in P is assigned according to their location
in the grid. Next, mating selection is performed to pick out
promising solutions for variation. Finally, the environmental
selection procedure is implemented to keep a record of the N
best solutions (elitists) for survival.

C. Fitness Assignment

In order to evolve the population towards the optimum as
well as diversify the individuals uniformly along the obtained
trade-off surface, the fitness of individuals should contain the
information in terms of both convergence and diversity. This
paper takes three grid-based criteria into account to assign
the fitness of individuals. They are grid ranking (GR), grid
crowding distance (GCD), and grid coordinate point distance
(GCPD). The first and last criteria are used to evaluate the
convergence of individuals while the middle one is concerned
with the diversity of individuals in the population.

GR is a convergence estimator to rank individuals based on
their grid locations. For each individual, GR is defined as the
summation of its grid coordinate in each objective:

GR(x) =

M∑
k=1

Gk(x) (9)

where Gk(x) denotes the grid coordinate of individual x in
the kth objective, and M is the number of objectives.

GR can be considered as a natural tradeoff between the num-
ber of objectives for which one solution is better than another
and the difference of values in a single objective between two
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Fig. 3. Illustration of fitness assignment. The numbers in the brackets
associated with each solution correspond to GR and GCD, respectively.

solutions. On the one hand, if an individual performs better
than its competitors in the majority of objectives, it would
have a higher likelihood of obtaining a lower GR value. On
the other hand, the difference in a single objective is also
an important part of influencing the GR value. For instance,
considering individuals C and A in Fig. 3, C will obtain a
worse GR value than A (6 against 4) since the advantage in
f2 is less than the disadvantage in f1.

Note that the behavior of GR is closely related to the
shape of the Pareto front of a multiobjective problem; e.g.,
individuals around the center of the Pareto front have good
evaluations when the shape is convex, and individuals located
in the edges of the Pareto front are preferable when the shape
is concave. This may drive the population towards a certain
area of the Pareto front, like the knee of the Pareto front. In
our study, a GR adjustment strategy will be introduced to deal
with this issue in the environmental selection process.

Density estimation of solutions is an important item in the
fitness assignment process since a set of well-distributed solu-
tions will play a crucial role in driving the search towards the
entire Pareto front. However, the existing grid-based density
estimators, which record the number of solutions occupying a
single hyperbox, may fail to reveal their distribution because of
the exponential increase of the number of hyperboxes with the
number of objectives. Here, we enlarge the range of regions
being considered and introduce the concept of the neighbors
of a solution. A solution y is regarded as a neighbor of a
solution x if GD(x,y) < M , where GD(x,y) denotes the
grid difference between x and y, and M is the number of
objectives. GrEA considers the distribution of neighbors of
a solution with respect to its density estimation. Specifically,
the density estimator—grid crowding distance (GCD)—of x
is defined as:

GCD(x) =
∑

y∈N(x)

(M −GD(x,y)) (10)

where N(x) stands for the set of neighbors of x. For instance,
in Fig. 3, the neighbors of individual G are E and F, and the
GCD of G is 3, i.e., (2− 1) + (2− 0) = 3.

Clearly, the GCD of a solution depends on both the range
of neighborhood (i.e., the region in which other solutions are

regarded as its neighbors) and the grid difference between it
and other solutions. On the one hand, a larger neighborhood
range generally contains more solutions, thus contributing to
a higher GCD value. Note that the neighborhood range is
determined by M . The number of considered hyperboxes will
gradually increase with the number of objectives, which would
be consistent with the total number of hyperboxes in the
grid environment, hence providing a clear distinction of the
crowding degree among individuals. On the other hand, GCD
also indicates the position information of solutions in the
neighborhood since the grid difference metric is involved. The
farther the neighbors are located, the smaller the contribution
to GCD is. For example, considering individuals C and F in
Fig. 3, the GCD of C is smaller than that of F (2 against 3)
although the number of their neighbors is exactly equal.

Although GR and GCD have already provided a good
measure of individuals in terms of convergence and diversity,
they may still fail to discriminate individuals. Since their
calculation is based on the grid coordinates of individuals,
both GR and GCD have an integral value, which means that
some individuals may have the same GR and GCD values, e.g.,
individuals B and D in Fig. 3. Here, inspired by the strategy in
ϵ-MOEA [15], we calculate the normalized Euclidean distance
between an individual and the utopia point in its hyperbox (i.e.,
the best corner of its hyperbox), called grid coordinate point
distance (GCPD), as follows:

GCPD(x) =

√√√√ M∑
k=1

( (Fk(x)− (lbk +Gk(x)× dk))/dk )2

(11)
where Gk(x) and Fk(x) denote the grid coordinate and
actual objective value of individual x respectively in the kth
objective, lbk and dk stand for the lower boundary of the grid
and the width of a hyperbox, respectively, for the kth objective,
and M is the number of objectives. Clearly, a lower GCPD
is preferable. Individuals F and G in Fig. 3 also illustrate this
criterion.

According to the three grid-based criteria GR, GCD, and
GCPD, the evolutionary status of individuals can be reflected
effectively. In the following, we will employ these criteria to
compare individuals in the selection process.

D. Mating Selection

Mating selection which aims to make a good preparation for
exchanging the information of individuals plays an important
role in EMO algorithms. It is usually implemented by selecting
promising solutions from the current population to form a
mating pool. Here, we use a type of binary tournament
selection strategy based on the dominance relation and density
information to pick out individuals for variation.

Algorithm 2 gives a detailed procedure of this strategy. First,
two individuals are randomly chosen from the population. If
one Pareto-dominates or grid-dominates the other, the former
is chosen. Otherwise, it indicates that these two solutions
are non-dominated to each other regarding both the Pareto
dominance and grid dominance relations. In this case, we
prefer the solution with a lower density estimation value (i.e.,
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Algorithm 2 TournamentSelection

Require: individuals p, q randomly chosen from the population
1: if p ≺ q or p ≺grid q then
2: return p
3: else if q ≺ p or q ≺grid p then
4: return q
5: else if GCD(p) < GCD(q) then
6: return p
7: else if GCD(q) < GCD(p) then
8: return q
9: else if random(0, 1) < 0.5 then

10: return p
11: else
12: return q

13: end if

GCD). Finally, if GCD still fails to distinguish between the
two solutions, the tie will be split randomly.

E. Environmental Selection

Environmental selection which aims to obtain a well-
approximated and well-distributed archive set is implemented
by picking out the “best” solutions from the previous pop-
ulation and the newly created population. A straightforward
way to do the selection is based on the fitness of solutions.
However, a shortcoming of this way is that it may lead to the
loss of diversity since adjacent solutions often have similar
fitness values. For example, solutions E, F, and G in Fig. 3
have similar fitness values, and thus a high likelihood of
being eliminated or preserved simultaneously. Here, a fitness
adjustment mechanism is introduced to address this issue.

1) Fitness Adjustment: GrEA selects individuals by hierar-
chically comparing them according to the three fitness criteria:
GR, GCD, and GCPD. GR is the primary criterion, GCD is
regarded as the secondary one activated when the GR value of
individuals is incomparable (i.e., equal), and when the first two
criteria fail to discriminate individuals, the third one GCPD
is used to break a tie. Here, we focus the adjustment on the
primary criterion.

When an individual is selected into the archive, the GR value
of its “related” individuals will be punished. However, how
to implement the GR punishment operation (i.e., determine
the “related” individuals and assign how much they would be
punished) is not a trivial task. Several crucial factors need
to be considered in order to achieve a good balance between
convergence and diversity in the archive.

• A severe penalty should be imposed on individuals that
have the same grid coordinate as the picked individual.

• The individuals grid-dominated by the picked individual
should be punished more heavily than the individuals
not grid-dominated by it. For instance, consider a set of
individuals A, B, and C which have the grid coordinate
(0, 3), (0, 5), and (5, 0), respectively. Obviously, C is
preferable to B after A has already entered the archive,
because C is helpful to the evolution towards different
directions.

• In order to further prevent crowding, the neighbors of the
picked individual should be penalized, and the punish-

Algorithm 3 GR adjustment(P, q)

Require: P (candidate set), q (picked individual), M (number
of objectives), PD(p) (maximum punishment degree of p),
E(q) := {p ∈ P |GD(p, q) = 0}, G(q) := {p ∈ P |q ≺grid p},
NG(q) := {p ∈ P |q ⊀grid p}, N(q) := {p ∈ P |GD(p, q) <
M}

1: for all p ∈ E(q) do
2: GR(p)← GR(p) + (M + 2)
3: end for
4: for all p ∈ G(q) do
5: GR(p)← GR(p) +M
6: end for
7: for all p ∈ NG(q) ∧ p /∈ E(q) do
8: PD(p)← 0
9: end for

10: for all p ∈ N(q) ∩NG(q) ∧ p /∈ E(q) do
11: if PD(p) < M −GD(p, q) then
12: PD(p)←M −GD(p, q)
13: for all r ∈ G(p) ∧ r /∈ G(q) ∪ E(q) do
14: if PD(r) < PD(p) then
15: PD(r)← PD(p)
16: end if
17: end for
18: end if
19: end for
20: for all p ∈ NG(q) ∧ p /∈ E(q) do
21: GR(p)← GR(p) + PD(p)

22: end for

ment degree should decline with the distance from them
to the picked individual.

• When implementing penalty on the neighbors of the
picked individual, the individuals grid-dominated by them
may also need to be punished. For example, for a
set of four individuals A(0, 0, 1), B(0, 1, 0), C(1, 0, 0),
and D(3, 0, 0), assume that three individuals need to be
selected into the archive. Apparently, the best choice is
to eliminate the last individual D. However, individual C
may fail to be selected after A and B are in the archive,
since punishments were imposed on C as the neighbor of
A and B, leading C to have a worse GR than D. Therefore,
a punishment on the individuals grid-dominated by the
neighbors of the picked individual is advisable, which
can improve the convergence of the archive set largely.

Keeping the above factors in mind, a GR adjustment pro-
cedure is presented in Algorithm 3. Clearly, individuals can
be classified into three groups in the GR adjustment process:
the individuals whose grid coordinate is equal to that of the
picked individual (lines 1–3), the ones who are grid-dominated
by the picked individual (lines 4–6), and the ones who are
not grid-dominated by and have a different grid coordinate
from the picked individual (lines 7–22). They correspond to
the punishment degrees M + 2, M , and within [0,M − 1],
respectively, where M denotes the number of objectives.
Specifically, for the individuals in the last group, a neighbor p
of the picked individual q is imposed the punishment degree
at least M −GD(p, q) (lines 11 and 12), and correspondingly
the individuals grid-dominated by p is imposed the punishment
degree more than or equal to that of p (lines 13–17). This can
prevent the individuals from being archived earlier than their
better competitors in the sense of the grid dominance relation.
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Algorithm 4 Environmental selection(P )

Require: N (archive size)
1: Generate an empty set Q for archive
2: (F1, F2, ..., Fi, ...)← Pareto nondominated sort(P )

/∗ Partition P into different fronts (F1, F2, ..., Fi, ...)
by using the fast nondominated sorting approach and find the
critical front Fi (i.e., 0 ≤ N − |F1 ∪ F2 ∪ ... ∪ Fi−1| < Fi) ∗/

3: Q← F1 ∪ F2 ∪ ... ∪ Fi−1

4: if |Q| = N then
5: return Q
6: end if
7: Grid setting(Fi) /∗ Set grid environment for Fi

∗/
8: Initialization(Fi)
9: while |Q| < N do

10: q ← Findout best(Fi)
11: Q← Q ∪ {q}
12: Fi ← Fi \ {q}
13: GCD calculation(Fi, q)
14: GR adjustment(Fi, q)
15: end while
16: return Q

To summarize, by the fitness adjustment operation, GR will
not be viewed as a simple convergence indicator, but rather
a combination of information among proximity, density, and
evolution direction of individuals in the archive set. Next, we
give the main procedure of environmental selection.

2) Main Procedure: Algorithm 4 shows the main procedure
of environmental selection. Similar to NSGA-II [11], GrEA
considers the critical Pareto nondominated front in the can-
didate set. The candidate solutions are divided into different
fronts (F1, F2, ..., Fi, ...) by using the fast nondominated sort-
ing approach. The critical front Fi (|F1∪F2∪ ...∪Fi−1| ≤ N
and |F1 ∪ F2 ∪ ... ∪ Fi−1 ∪ Fi| > N , where N denotes the
archive size) is found, and correspondingly the first (i − 1)
nondominated fronts (F1, F2, ..., Fi−1) are moved into the
archive (lines 2–6). In fact, since the solutions in many-
objective problems are Pareto nondominated to each other, the
critical front is often the first front, namely i = 1.

In Algorithm 4, function Initialization (line 8) is used to
initialize the information of individuals in the grid environ-
ment set in line 7. The fitness of individuals with regard to
convergence (i.e., GR and GCPD) is calculated by Eqs. (9)
and (11). It is necessary to point out that the initial density
value of individuals (i.e., GCD) is assigned to zero in the
function. Unlike the convergence estimator, which can be
directly calculated by the own location of an individual, the
diversity one has to be estimated by the relation to other
individuals. It may be meaningless to consider the crowding
relation among the individuals in the candidate set rather than
in the archive set, since the latter is only the population to be
preserved. Here, GrEA estimates the density of individuals
by calculating their crowding degree in the archive (line
13). Algorithms 5 and 6 give the pseudocode of functions
Initialization and GCD calculation, respectively.

Function Findout best (line 10) in Algorithm 4 is designed
to find out the best individual in the considered front. The
pseudocode is shown in Algorithm 7. As stated previously, the
function hierarchically compares the three criteria GR, GCD,

Algorithm 5 Initialization(P )

1: for all p ∈ P do
2: GR assignment(p)

/∗ Assign GR according to equation (9) ∗/
3: GCPD assignment(p)

/∗ Assign GCPD according to equation (11) ∗/
4: GCD(p)← 0 /∗ Assign zero to GCD ∗/

5: end for

Algorithm 6 GCD calculation(P, q)

Require: P (candidate set), q (picked individual), N(q) := {p ∈
P |GD(p, q) < M}

1: for all p ∈ N(q) do
2: GCD(p)← GCD(p) + (M −GD(p, q))

3: end for

Algorithm 7 Findout best(P )

Require: q (best solution in P ), pi (the ith solution in P )
1: q ← p1
2: for i = 2 to |P | do
3: if GR(pi) < GR(q) then
4: q ← pi
5: else if GR(pi) = GR(q) then
6: if GCD(pi) < GCD(q) then
7: q ← pi
8: else if GCD(pi) = GCD(q) then
9: if GCPD(pi) < GCPD(q) then

10: q ← pi
11: end if
12: end if
13: end if
14: end for
15: return q

and GCPD. A lower value is preferable in all criteria.
An example that illustrates the working principle of the

whole environmental selection process is given in the sup-
plement document of this paper.

IV. EXPERIMENTAL DESIGN

This section is devoted to the experimental design for
investigating the performance of GrEA. We first give the test
problems and performance metrics used in the experiment.
Then, we briefly introduce five state-of-the-art EMO algo-
rithms: ϵ-MOEA [15], POGA [17], HypE [3], MSOPS [26],
and MOEA/D [71] which are used to validate the proposed
algorithm. Finally, the general experimental setting is provided
for the comparative studies of these algorithms.

A. Test Problems and Performance Metrics

As a basis for the comparisons, the DTLZ [16],
DTLZ5(I,M ) [60], and multiobjective traveling salesman
problem (MOTSP) [9] test problem suites are considered. All
these problems can be scaled to any number of objectives
and decision variables. In this study, we divided them into
four groups according to their characteristics of challenging
different abilities of algorithms.

For the DTLZ suite, the problems DTLZ1 to DTLZ7 can
be classified into two groups. One group, including DTLZ2,
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TABLE I
SETTINGS OF THE TEST PROBLEMS

Name Number of ObjectivesNumber of Variables Parameter(M ) (n)
DTLZ1 4, 5, 6, 8, 10 M − 1 + k k = 5
DTLZ2 4, 5, 6, 8, 10 M − 1 + k k = 10
DTLZ3 4, 5, 6, 8, 10 M − 1 + k k = 10
DTLZ4 4, 5, 6, 8, 10 M − 1 + k k = 10
DTLZ5 4, 5, 6, 8, 10 M − 1 + k k = 10
DTLZ6 4, 5, 6, 8, 10 M − 1 + k k = 10
DTLZ7 4, 5, 6, 8, 10 M − 1 + k k = 20

DTLZ5(I,M ) 10 M − 1 + k
k = 10,

I = 3, 4, 5, 6, 7, 8, 9

MOTSP 5, 10 30
TSPcp =

−0.4,−0.2, 0, 0.2, 0.4

DTLZ4, DTLZ5, and DTLZ7, is used to test the ability of an
algorithm to cope with the problems with different shapes and
locations. The other group, including DTLZ1, DTLZ3, and
DTLZ6, creates more obstacles for an algorithm to converge
into the Pareto front [16].

The DTLZ5(I,M ) suite, originating from DTLZ5, is a set
of test problems where the actual dimensionality I of the
Pareto front against the original number M of objectives in
the problem can be controlled by the user. In these problems,
all objectives within {f1, ..., fM−I+1} are positively corre-
lated, while the objectives in {fM−I+2, ..., fM} are conflicting
with each other. A detailed description of the DTLZ and
DTLZ5(I,M ) problem suites can be found in [16], [60].

The MOTSP is a typical combinatorial optimization prob-
lem and can be stated as [9]: given a network N = (V,C),
where V = {v1, v2, ..., vn} is a set of nodes and C =
{ck : k ∈ {1, 2, ...,M}} is a set of cost matrices between
nodes (ck : V × V ), determine the Pareto optimal set for
the minimum length Hamiltonian cycles. The M matrices,
according to [9], can be constructed as follows.

The matrix c1 is first generated by assigning each distinct
pair of nodes with a random number between 0 and 1. Then
the matrix ck+1 is generated according to the matrix ck:

ck+1(i, j) = TSPcp× ck(i, j) + (1− TSPcp)× rand (12)

where ck(i, j) denotes the cost from node i to node j in
matrix ck, rand is a function to generate a uniform random
number in [0, 1], and TSPcp ∈ (−1, 1) is a simple TSP
“correlation parameter”. When TSPcp < 0, TSPcp = 0,
or TSPcp > 0, it introduces negative, zero, or positive
interobjective correlations, respectively. In our study, TSPcp
is assigned to −0.4, −0.2, 0, 0.2, and 0.4 respectively to
represent different characteristics of the problem. In each case,
the number of nodes (i.e., decision variables) is set to 30.

The summary of settings for all test problems is shown in
Table I.

In order to compare the performance of the selected algo-
rithms, we introduce two widely-used quality metrics, inverted
generational distance (IGD) [5], [48] and hypervolume (HV)
[12]. The former requires a reference set of representing the
Pareto front, and is used to evaluate algorithms on DTLZ and
DTLZ5(I,M ) since their optimal fronts are known. The last
one is used to assess the performance of algorithms on MOTSP
whose Pareto front is unknown.

A reference point is required in the HV calculation. Here,
we regard the point with the integer value 22 for each
objective as the reference point, considering that it is slightly
larger than the worst value of all the obtained solution sets.
In addition, since the exact calculation of the hypervolume
metric is infeasible for a solution set with 10 objectives, we
approximately estimate the hypervolume result of a solution
set by the Monte Carlo sampling method used in HypE [3].
According to [3], 10,000,000 sampling points are used to
evaluate the result.

B. Five Other Algorithms in Comparison

In order to validate the proposed GrEA, we consider five
state-of-the-art EMO algorithms as the peer algorithms:

• ϵ-dominance based Multiobjective Evolutionary Al-
gorithm (ϵ-MOEA) [15]. ϵ-MOEA1 is a steady-state
algorithm using the ϵ-dominance relation. It divides the
objective space into hyperboxes by a size of ϵ. Each
hyperbox is assigned at most a single point on the
basis of ϵ-dominance for different hyperboxes and Pareto
dominance for an identical hyperbox. ϵ-MOEA has been
found to perform well for many-objective optimization
problems in a recent study [21].

• Preference Order based Genetic Algorithm (POGA)
[17]. POGA2 uses a preference order-based approach to
solve many-objective optimization problems. By consid-
ering the concept of efficiency of order in the subsets of
objectives, POGA provides a higher selection pressure
towards the Pareto front than Pareto dominance-based
algorithms.

• Hypervolume Estimation Algorithm (HypE) [3].
HypE3 is a Hypervolume-based evolutionary many-
objective optimization algorithm. It uses Monte Carlo
simulation to approximate the exact hypervolume value,
significantly reducing the time cost of the HV calculation
and enabling hypervolume-based search to be widely
applied on many-objective optimization.

• Multiple Single Objective Pareto Sampling (MSOPS)
[26]. MSOPS4 uses the idea of single-objective aggre-
gated optimization to search in parallel for points that lie
on the Pareto front. MSOPS is a very popular algorithm
to tackle many-objective optimization problems since it
can achieve a good balance between convergence and
diversity [27], [66].

• Multiobjective Evolutionary Algorithm based on De-
composition (MOEA/D) [71]. MOEA/D5, one of the
most popular EMO algorithms developed recently, is
also an aggregation-based algorithm. Unlike MSOPS
where a number of weight vectors correspond to an
individual, MOEA/D specifies an individual with only
one weight vector. MOEA/D has demonstrated its ad-

1The code of ϵ-MOEA is available at http://www.iitk.ac.in/kangal.
2The code of POGA is written by ourselves.
3The code of HypE is available at http://www.tik.ee.ethz.ch/pisa.
4The code of MSOPS is available at http://code.evanhughes.org/.
5The code of MOEA/D is available at http://dces.essex.ac.uk/staff/zhang

/webofmoead.htm.
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TABLE II
PARAMETER SETTINGS IN GREA AND ϵ-MOEA, WHERE M IS THE SUMBER OF OBJECTIVES

Problem M = 4 M = 5 M = 6 M = 8 M = 10 Problem M = 10 Problem M = 5 M = 10
div ϵ div ϵ div ϵ div ϵ div ϵ (I, M) div ϵ (TSPcp) div ϵ div ϵ

DTLZ1 10 0.0520 10 0.0590 10 0.0554 10 0.0549 11 0.0565 DTLZ5(3,10) 9 0.06 MOTSP(–0.4) 12 2.4 11 6.5
DTLZ2 10 0.1312 9 0.1927 8 0.2340 7 0.2900 8 0.3080 DTLZ5(4,10) 10 0.12 MOTSP(–0.2) 11 1.9 10 4.8
DTLZ3 11 0.1385 11 0.2000 11 0.2270 10 0.1567 11 0.8500 DTLZ5(5,10) 10 0.16 MOTSP(0) 11 1.4 10 3.8
DTLZ4 10 0.1312 9 0.1927 8 0.2340 7 0.2900 8 0.3080 DTLZ5(6,10) 10 0.2 MOTSP(0.2) 11 0.95 10 2.6
DTLZ5 35 0.0420 29 0.0785 14 0.1100 11 0.1272 11 0.1288 DTLZ5(7,10) 8 0.24 MOTSP(0.4) 10 0.6 10 1.8
DTLZ6 36 0.1200 24 0.3552 50 0.7500 50 1.1500 50 1.4500 DTLZ5(8,10) 8 0.25
DTLZ7 9 0.1050 8 0.1580 6 0.1500 5 0.2250 4 0.5600 DTLZ5(9,10) 9 0.26

vantage in both multi-objective [47] and many-objective
optimization [30].

C. General Experimental Setting

Parameter settings for all conducted experiments are given
as follows unless otherwise mentioned.

• Parameter setting for crossover and mutation: A
crossover probability pc = 1.0 and a mutation probability
pm = 1/n (where n denotes the number of decision
variables) were used. For DTLZ and DTLZ5(I,M ), the
operators for crossover and mutation are simulated binary
crossover (SBX) and polynomial mutation with both
distribution indexes 20 (i.e., ηc = 20 and ηm = 20) [12].
As to MOTSP, the order crossover (OX) and inversion
operator [52] are chosen as crossover and mutation oper-
ators, respectively.

• Number of runs and stopping condition: We inde-
pendently run each algorithm 30 times on each test
problem. The termination criterion of an algorithm is a
predefined number of evaluations. For the first problem
group (DTLZ2, DTLZ4, DTLZ5, and DTLZ7) and the
third problem group (DTLZ5(I,M )), it was set to 30,000,
and for the second group (DTLZ1, DTLZ3, and DTLZ6)
and the fourth group (MOTSP), it was set to 100,000.

• Population and archive size: For general EMO algo-
rithms, the population size was set to 100, and the archive
was also maintained with the same size if required. Note
that the population size, in MOEA/D, is the same as
the number of weight vectors. Due to the combinatorial
nature of uniformly distributed weight vectors, the pop-
ulation size cannot be arbitrarily specified. Here, we use
the closest integer to 100 among the possible values as
the population size (i.e., 120, 126, 126, 120, and 55 for
4-, 5-, 6-, 8-, and 10-objective problems, respectively).
In ϵ-MOEA, the population size is determined by the ϵ
value. In order to guarantee a fair comparison, we set ϵ so
that the archive of ϵ-MOEA is approximately of the same
size as that of the other algorithms (shown in Table II).

• Parameter setting in MSOPS, MOEA/D, and GrEA:
In MSOPS, the number of weight vectors was set to
100 as suggested in [66]. Following the practice in [33],
the Tchebycheff function in MOEA/D was selected as
the scalarizing function and the neighborhood size was
specified as 10% of the population size. In GrEA, the
setting of grid division div is shown in Table II. A
detailed study of div will be given in Section V-B.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we validate the performance of GrEA
according to the experimental design described in the previous
section. Our experiments can be divided into two parts. The
first one is to compare GrEA with the five state-of-the-art EMO
algorithms. The second one is to investigate the effect of the
grid division parameter in the proposed algorithm.

A. Performance Comparison

1) The DTLZ2, DTLZ4, DTLZ5, and DTLZ7 Test Problems:
Table III shows the IGD results in terms of the mean and
standard deviation over 30 runs of the six EMO algorithms on
DTLZ2, DTLZ4, DTLZ5, and DTLZ7, where the best mean
for each problem is shown with a gray background. As can be
seen from the table, GrEA performs the best on DTLZ2 and
DTLZ7 with respect to all considered numbers of objectives.
For the other problems, MSOPS and GrEA have their own
strong points. For DTLZ4, MSOPS obtains the best IGD value
in the low-dimension objective space, and GrEA outperforms
the other algorithms when the number of objectives is larger
than four. For DTLZ5, GrEA performs well on the 4-objective
problem, and MSOPS obtains better results with the increase
of the number of objectives.

Note that the MOEA/D algorithm, which has recently
been found to be very successful in the EMO community,
obtains a worse IGD value than GrEA, MSOPS, and ϵ-MOEA
in general. In fact, the solution set obtained by MOEA/D
is very close to the Pareto front for some test problems,
such as DTLZ2 and DTLZ4 (the convergence and diversity
comparison results of the six algorithms can be found in
the supplement document of the paper). But it has a worse
coverage of the Pareto front than that obtained by GrEA,
MSOPS, and ϵ-MOEA for most of the problems, thereby
resulting in a worse IGD value on these problems. This oc-
currence may be attributed to the aggregation-based selection
operation in MOEA/D. Although a set of uniformly-distributed
weight vectors is selected to specify the search targets (i.e., the
points on the Pareto front), it cannot ensure that these points
are located uniformly, especially for some problems with
irregular shape. In addition, the Tchebycheff-based scalarizing
function may not be a good tool to maintain diversity of
solutions. Many weight vectors may correspond to only one
Pareto-optimal point by this scalarizing function [13]. Similar
observations have been reported in [13], [33].

Further studies with these algorithms have been conducted
to exhibit their evolutionary trajectories. Figure 4 plots the
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TABLE III
IGD RESULTS OF THE SIX ALGORITHMS ON DTLZ2, DTLZ4, DTLZ5, AND DTLZ7

Problem Obj. ϵ-MOEA POGA HypE MSOPS MOEA/D GrEA

DTLZ2

4 1.348E–1 (2.4E–3) 1.486E–1 (6.7E–3) 2.452E–1 (3.9E–2) 1.757E–1 (1.2E–2) 2.124E–1 (2.1E–3) 1.271E–1 (2.5E–3)
5 1.945E–1 (1.2E–2) 2.758E–1 (1.8E–2) 4.245E–1 (7.5E–2) 3.625E–1 (2.8E–2) 2.674E–1 (1.1E–3) 1.750E–1 (2.9E–3)
6 3.161E–1 (6.7E–3) 5.882E–1 (5.8E–2) 4.738E–1 (5.7E–2) 3.698E–1 (2.2E–2) 4.132E–1 (1.9E–2) 2.985E–1 (5.2E–3)
8 4.408E–1 (1.3E–2) 9.903E–1 (9.3E–2) 6.147E–1 (5.0E–2) 5.681E–1 (3.6E–2) 6.365E–1 (7.1E–2) 3.957E–1 (4.6E–3)
10 5.323E–1 (2.4E–2) 1.162E+0 (1.0E–1) 6.972E–1 (5.5E–2) 7.658E–1 (4.3E–2) 7.257E–1 (6.5E–2) 4.842E–1 (2.9E–3)

DTLZ4

4 4.150E–1 (2.7E–1) 2.663E–1 (6.8E–2) 4.976E–1 (3.4E–1) 1.449E–1 (4.4E–3) 5.382E–1 (2.8E–1) 1.913E–1 (1.1E–1)
5 6.330E–1 (3.4E–1) 3.970E–1 (7.0E–2) 7.018E–1 (2.8E–1) 3.147E–1 (3.2E–2) 5.857E–1 (3.0E–1) 2.154E–1 (9.7E–2)
6 6.035E–1 (1.7E–1) 9.541E–1 (1.6E–1) 6.672E–1 (1.0E–1) 3.685E–1 (1.1E–2) 6.498E–1 (1.6E–1) 3.007E–1 (4.6E–3)
8 6.459E–1 (1.1E–1) 1.175E+1 (2.2E–1) 9.199E–1 (6.1E–2) 5.400E–1 (2.5E–2) 7.600E-1 (8.6E–2) 4.020E–1 (3.2E–3)
10 6.267E–1 (9.2E–2) 8.668E–1 (2.7E–1) 1.074E+0 (6.1E–2) 8.178E–1 (4.5E–2) 8.311E–1 (8.4E–2) 4.928E–1 (3.9E–3)

DTLZ5

4 4.819E–2 (5.3E–3) 5.217E–2 (9.8E–3) 1.216E–1 (4.1E–2) 3.016E–2 (3.0E–3) 2.563E–2 (1.1E–4) 1.846E–2 (3.3E–3)
5 8.956E–2 (7.5E–3) 7.437E–1 (1.6E–2) 1.459E–1 (5.3E–2) 3.002E–2 (4.1E–3) 4.544E–2 (1.5E–3) 4.333E–2 (2.2E–2)
6 1.278E–1 (1.1E–2) 7.467E–1 (9.8E–4) 1.734E–1 (5.9E–2) 1.859E–2 (1.7E–3) 6.947E–2 (4.3E–3) 9.575E–2 (1.6E–2)
8 1.589E–1 (2.1E–2) 7.473E–1 (1.3E–3) 1.754E–1 (6.9E–1) 2.525E–2 (2.5E–3) 1.088E–1 (7.4E–3) 2.327E–1 (3.5E–2)
10 1.690E–1 (2.1E–2) 1.219E+0 (7.7E–1) 1.560E–1 (4.8E–2) 4.025E–2 (3.9E–3) 1.959E–1 (1.3E–2) 3.462E–1 (6.1E–2)

DTLZ7

4 3.492E–1 (1.8E–1) 2.151E–1 (8.6E–3) 4.846E–1 (1.9E–1) 1.547E+0 (4.1E–1) 5.152E–1 (7.2E–2) 1.897E–1 (6.8E–3)
5 6.310E–1 (2.1E–1) 4.127E–1 (1.6E–2) 8.972E–1 (2.1E–1) 7.581E+0 (1.3E+0) 6.444E–1 (8.7E–2) 3.238E–1 (1.0E–2)
6 5.856E–1 (1.9E–1) 6.608E–1 (3.0E–2) 9.894E–1 (1.9E–1) 1.085E+1 (2.5E+0) 7.551E–1 (6.1E–2) 4.888E–1 (1.6E–2)
8 8.971E–1 (5.1E–1) 2.293E+0 (4.1E–1) 1.065E+0 (4.1E–2) 1.945E+1 (2.0E+0) 1.064E+0 (1.3E–1) 7.643E–1 (3.5E–2)
10 1.180E+0 (3.6E–1) 4.211E+0 (7.5E–1) 1.224E+0 (8.1E–2) 2.670E+1 (3.4E+0) 1.546E+0 (2.0E–1) 1.057E+0 (3.8E–2)

TABLE IV
IGD RESULTS OF THE SIX ALGORITHMS ON DTLZ1, DTLZ3, AND DTLZ6

Problem Obj. ϵ-MOEA POGA HypE MSOPS MOEA/D GrEA

DTLZ1

4 4.866E–2 (2.3E–3) 9.301E–1 (3.7E–2) 1.355E–1 (7.1E–2) 5.762E–2 (3.0E–3) 9.653E–2 (1.1E–4) 4.624E–2 (5.3E–3)
5 6.930E–2 (8.1E–3) 4.470E+0 (4.3E+0) 3.107E–1 (3.8E–1) 8.673E–2 (3.8E–3) 1.192E–1 (1.3E–4) 6.257E–2 (7.5E–3)
6 9.877E–2 (8.4E–2) 1.284E+1 (1.7E+1) 5.554E–1 (5.9E–1) 1.808E–1 (1.1E–1) 1.377E–1 (6.4E–3) 8.543E–2 (1.0E–2)
8 3.069E–1 (3.4E–1) 1.012E+1 (6.9E+0) 1.017E+0 (1.4E+0) 7.770E–1 (6.8E-1) 1.852E–1 (5.8E–3) 1.060E–1 (4.8E–3)
10 4.071E–1 (3.8E–1) 1.370E+1 (9.2E+0) 1.485E+0 (1.8E+0) 1.623E+0 (1.0E+0) 2.188E–1 (6.4E–3) 2.864E–1 (1.0E–1)

DTLZ3

4 1.417E–1 (8.9E–3) 1.317E+1 (5.7E+0) 1.029E+0 (7.1E–1) 1.072E+1 (6.8E+0) 2.130E–1 (1.7E–3) 1.522E–1 (4.7E–2)
5 2.267E–1 (3.3E–2) 2.341E+1 (1.1E+1) 4.708E+0 (5.6E+0) 2.896E+1 (1.5E+1) 2.677E–1 (7.8E–4) 2.804E–1 (8.3E–2)
6 4.578E–1 (1.4E–1) 3.239E+1 (1.2E+1) 2.689E+0 (1.7E+0) 4.665E+1 (1.6E+1) 4.085E–1 (3.2E–2) 4.368E–1 (1.5E–1)
8 1.122E+1 (1.4E+1) 2.733E+1 (1.2E+1) 7.476E+0 (9.6E+0) 6.095E+1 (1.9E+1) 6.106E–1 (7.5E–2) 5.546E–1 (2.3E–1)
10 2.040E+1 (2.7E+1) 3.157E+1 (1.4E+1) 6.226E+0 (6.2E+0) 6.312E+1 (1.8E+1) 6.599E–1 (5.5E–2) 7.743E–1 (2.5E–1)

DTLZ6

4 4.671E–1 (2.8E–2) 2.226E+0 (3.0E–1) 3.919E+0 (6.5E–1) 4.178E+0 (6.4E–1) 8.015E–2 (2.7E–2) 7.045E–2 (3.1E–2)
5 1.678E+0 (1.5E–1) 1.801E+0 (4.5E–1) 5.431E+0 (5.6E–1) 6.560E+0 (5.0E–1) 1.194E–1 (3.8E–2) 1.429E–1 (4.3E–2)
6 2.705E+0 (2.8E–1) 2.245E+0 (6.0E–1) 5.679E+0 (5.7E–1) 6.862E+0 (5.1E–1) 1.569E–1 (3.7E–2) 4.544E–1 (9.1E–2)
8 1.987E+0 (1.3E+0) 5.807E+0 (3.9E+0) 6.165E+0 (6.2E–1) 6.813E+0 (4.4E–1) 1.830E–1 (2.8E–2) 5.971E–1 (3.8E–1)
10 3.737E+0 (2.0E+0) 8.941E+0 (1.4E–1) 6.428E+0 (4.1E–1) 6.728E+0 (4.8E–1) 2.692E–1 (3.0E–2) 9.432E–1 (7.8E–1)

performance trajectories of IGD for the six algorithms on the
10-objective DTLZ2. Clearly, GrEA performs better than the
other five algorithms. Although ϵ-MOEA outperforms GrEA
in the initial stage of evolution, the latter exceeds the former
at around 6,000 evaluations and keeps a clear advantage until
the end.

2) The DTLZ1, DTLZ3, and DTLZ6 Test Problems: The
IGD results of the six EMO algorithms on this problem
group are shown in Table IV. It is clear that the algorithms
GrEA and MOEA/D in general outperform the other four
algorithms. They obtain the best IGD value in 6 and 7 out of 15
test instances, respectively. More specifically, GrEA performs
the best on the 8-objective DTLZ3, 4-objective DTLZ6, and
DTLZ1 for all considered numbers of objectives except 10.
MOEA/D outperforms the other algorithms on the 10-objective
DTLZ1, 6- and 10-objective DTLZ3, and DTLZ6 with the
number of objectives larger than 4. For the rest of the problems
(i.e., the 4- and 5-objective DTLZ3), ϵ-MOEA reaches the best
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Fig. 4. Evolutionary trajectories of IGD for the six algorithms on the ten-
objective DTLZ2.

result.
It is interesting to note that MOEA/D, unlike on the first

group of test problems, is very competitive on this group of
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TABLE V
IGD RESULTS OF THE SIX ALGORITHMS ON DTLZ5(I,M ), WHERE M = 10.

I ϵ-MOEA POGA HypE MSOPS MOEA/D GrEA

3 6.435E–2 (2.2E–3) 1.810E+1 (1.9E+1) 2.068E–1 (2.5E–2) 5.433E–1 (5.1E–2) 3.060E–1 (8.7E–3) 1.418E–1 (6.7E–2)
4 1.402E–1 (1.7E–2) 2.271E+1 (1.7E+1) 2.997E–1 (2.9E–2) 3.291E–1 (9.7E–4) 3.586E–1 (3.3E–2) 1.528E–1 (8.8E–3)
5 2.605E–1 (1.1E–1) 1.354E+1 (1.7E+1) 3.923E–1 (9.4E–2) 2.982E–1 (9.4E–3) 3.753E–1 (5.0E–2) 1.932E–1 (1.4E–2)
6 4.024E–1 (1.2E–1) 8.689E+0 (9.6E+0) 6.885E–1 (1.2E–1) 6.031E–1 (1.1E–1) 5.838E–1 (7.5E–2) 3.214E–1 (1.5E–2)
7 4.894E–1 (1.3E–1) 1.061E+1 (1.1E+1) 7.911E–1 (1.0E–1) 7.934E–1 (1.1E–1) 6.343E–1 (8.6E–2) 3.808E–1 (1.1E–2)
8 5.119E–1 (9.0E–2) 8.520E+1 (9.8E+0) 8.584E–1 (8.9E–2) 9.273E–1 (1.1E–1) 6.520E–1 (6.5E–2) 4.352E–1 (6.8E–2)
9 5.694E–1 (1.1E–2) 5.823E+1 (9.0E+0) 9.180E–1 (7.5E–2) 1.062E+0 (1.3E–1) 7.411E–1 (7.6E–2) 4.564E–1 (5.1E–3)

TABLE VI
HV RESULTS OF THE SIX ALGORITHMS ON THE MOTSP.

Obj. TSPcp ϵ-MOEA POGA HypE MSOPS MOEA/D GrEA

5

–0.4 1.125E+6 (5.3E+4) 1.128E+6 (5.2E+4) 1.962E+5 (5.3E+4) 7.963E+5 (4.5E+4) 9.615E+5 (5.8E+4) 1.231E+6 (4.8E+4)
–0.2 1.014E+6 (4.5E+4) 1.012E+6 (3.7E+4) 2.493E+5 (4.8E+4) 8.048E+5 (4.2E+4) 9.687E+5 (4.8E+4) 1.121E+6 (3.8E+4)

0 9.211E+5 (2.7E+4) 8.445E+5 (3.2E+4) 3.596E+5 (4.6E+4) 7.837E+5 (3.0E+4) 8.729E+5 (2.8E+4) 9.844E+5 (3.5E+4)
2 8.543E+5 (3.1E+4) 7.565E+5 (3.2E+4) 4.251E+5 (6.7E+4) 7.651E+5 (3.4E+4) 7.530E+5 (3.1E+4) 8.836E+5 (2.3E+4)
4 8.177E+5 (2.1E+4) 7.206E+5 (4.8E+4) 5.259E+5 (5.5E+4) 7.737E+5 (2.5E+4) 7.255E+5 (4.3E+4) 8.466E+5 (2.4E+4)

10

–0.4 1.026E+11 (1.4E+10) 2.520E+11 (5.7E+10) 3.634E+09 (1.7E+09) 1.706E+11 (2.4E+10) 1.539E+10 (3.2E+09) 3.772E+11 (1.6E+10)
–0.2 1.203E+11 (1.3E+10) 1.761E+11 (4.9E+10) 1.198E+10 (3.7E+09) 1.820E+11 (1.8E+10) 3.376E+10 (5.1E+09) 3.097E+11 (1.0E+10)

0 1.260E+11 (1.5E+10) 1.181E+11 (4.1E+10) 2.386E+10 (7.0E+09) 1.704E+11 (1.2E+10) 5.458E+10 (8.8E+09) 2.551E+11 (8.3E+09)
2 1.400E+11 (1.2E+10) 8.500E+10 (2.5E+10) 3.404E+10 (8.3E+09) 1.529E+11 (1.0E+10) 7.450E+10 (1.1E+10) 2.136E+11 (5.9E+09)
4 1.467E+11 (1.1E+10) 8.095E+10 (1.7E+10) 5.298E+10 (9.2E+09) 1.447E+11 (6.8E+09) 1.068E+11 (1.3E+10) 1.818E+11 (6.8E+09)

test problems which provide more obstacles for an algorithm
to converge into the Pareto front. An important reason is that
in contrast to some of the other algorithms (such as POGA,
HypE, and MSOPS) whose solution set fails to approximate
the Pareto front, MOEA/D still works well in terms of conver-
gence for most of the problems in this group, thereby obtaining
better IGD results.

3) The DTLZ5(I,M ) Test Problem: In this section, we
concentrate on the DTLZ5(I,M ) problem suite, which tests
the ability of an EMO algorithm to find a lower-dimensional
Pareto front while working with a higher-dimensional objec-
tive space. Table V shows the IGD results of the six algorithms
on DTLZ5(I, 10), where I ranges from 3 to 9.

Clearly, GrEA and ϵ-MOEA perform better than the other
four algorithms. Specifically, ϵ-MOEA outperforms the other
algorithms when I is equal to 3 or 4, and GrEA performs the
best for the rest of the problems. MOEA/D, which obtains the
best convergence results for all test instances of this problem
group (see the supplement document of this paper), has a poor
coverage of the Pareto front, leading to a worse IGD result than
GrEA and ϵ-MOEA.

4) The MOTSP Test Problem: One important property
of the MOTSP problem is that the conflict degree among
the objectives can be adjusted according to the parameter
TSPcp ∈ (−1, 1), where a lower value means a greater degree
of conflict. From the HV results shown in Table VI, it can be
seen that GrEA significantly outperforms the other algorithms
for all cases.

In addition, for this combinatorial optimization problem
the compared algorithms show some different behavior from
for the continuous ones. POGA, which generally performs
the worst in the previous test problems, works well when
a greater conflict degree among the objectives of MOTSP
is involved. ϵ-MOEA performs well for both the 5- and 10-
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Fig. 5. Evolutionary trajectories of HV for the six algorithms on the five-
objective MOTSP, where TSPcp = −0.2.

objective problems, and HypE always obtains the worst HV
value for all 10 instances. MSOPS, which does not work very
well in the 5-objective MOTSP, takes the second place for most
of the problems with 10 objectives. The result of MOEA/D
for the 10-objective MOTSP is not as good as that for the 5-
objective problem, with a worse HV value than MSOPS and
ϵ-MOEA.

In order to demonstrate the evolutionary process of the six
algorithms, Fig. 5 plots their trajectories of HV during 100,000
evaluations on the 5-objective MOTSP with TSPcp = −0.2.
As can be seen from the figure, the HV trajectory of GrEA
rapidly increases in the initial stage of evolution, and keeps
a clear advantage over the other algorithms during the whole
evolutionary process.

Overall, from the study on the problems with different
characteristics, we can conclude that the proposed algorithm
has been successful in providing a balance between conver-
gence and diversity in many-objective optimization. GrEA
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TABLE VII
PERFORMANCE OF GREA WITH DIFFERENT NUMBER OF DIVISIONS ON THE SIX-OBJECTIVE DTLZ2

Division 5 7 8 9 10 12 15 20 30 50

GD 3.944E–3 3.643E–3 3.475E–3 2.724E–3 2.112E–3 1.823E–3 1.729E–3 1.516E–3 1.464E–3 1.110E–3
(1.0E–3) (7.5E–4) (8.0E–4) (7.0E–4) (6.6E–4) (6.1E–4) (6.1E–4) (4.5E–4) (4.6E–4) (4.4E–4)

DM 7.145E–1 8.812E–1 8.834E–1 8.363E–1 7.713E–1 6.886E–1 6.436E–1 4.654E–1 3.542E–1 1.852E–1
(3.7E–2) (2.8E–2) (3.2E–2) (2.5E–2) (2.8E–2) (3.6E–2) (4.2E–2) (4.4E–2) (7.6E–1) (1.4E–1)

IGD 3.509E–1 2.993E–1 2.985E–1 3.172E–1 3.357E–1 3.647E–1 4.115E–1 4.576E–1 5.820E–1 7.155E–1
(8.1E–3) (4.8E–3) (5.2E–3) (4.4E–3) (5.7E–3) (3.4E–3) (3.5E–3) (5.9E–3) (2.0E–2) (1.3E–1)
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Fig. 6. IGD of GrEA with different number of divisions on DTLZ2.

outperforms the other five state-of-the-art algorithms in 36 out
of all 52 test instances.

Due to space limitation, the investigation of the computa-
tional complexity of GrEA and the comparison between GrEA
and its predecessor are given in the supplement document of
the paper.

B. Study of Different Parameter Configurations

In GrEA, a parameter, the grid division (div), is introduced
to divide the grid environment. This section investigates the
effect of div and try to provide a proper setting for the user.
Here, we show the results for the DTLZ2 problem. Similar
results can be obtained for other test cases.

To study the sensitivity of the proposed algorithm to div, we
repeat the experiments carried out in the previous section for
div ∈ [5, 50] with a step size 1. All other control parameters
are kept unchanged. In addition, we expand the number of
objectives for the problem to make a clearer observation of
GrEA’s performance with the variation of div. Figure 6 shows
the results of IGD for different divisions on the problem with
3, 4, 5, 6, 8, 10, 12, and 15 objectives.

It is clear from the figure that the IGD value, in general,
varies regularly with the number of divisions. In most cases,
the trajectory of performance ranging from divisions 5 to
around 9 rapidly decreases and then gradually rises until the
boundary. Moreover, the sensitivity of the algorithm increases
with the number of objectives. For the number of objectives
under eight, the performance trajectory remains smooth, and
the proposed algorithm appears to perform well during a
segment of the range of divisions. When the number of
objectives is larger than eight, the effect of division becomes
more obvious. A slight variation of div may result in a huge

change in the performance of the algorithm. This indicates that
a more careful setting of divisions should be conducted for a
problem with a larger number of objectives.

On the other hand, considering the most suitable divisions
for different numbers of objectives, the best values are dis-
tinguishing but similar in general. GrEA performs the best at
16, 9, 9, 8, 7, 7, 8, and 9 divisions for the 3-, 4-, 5-, 6-,
8-, 10-, 12-, and 15-objective DTLZ2 problems, respectively.
This phenomenon may be due to the adaptability of the fitness
adjustment strategy in the algorithm that tunes the GR of
individuals adaptively according to the number of objectives.

IGD is a comprehensive performance metric that covers
both goals (minimizing the distance to the Pareto front and
maximizing the distribution over the optimal front) of an EMO
algorithm, but fails to reflect them separately. In the following,
we further study the effect of the grid division parameter via
separately investigating its effect on convergence and diversity.
In our study, two widely-used quality metrics, convergence
measure (CM) and diversity measure (DM) [14], are selected.
CM assesses the convergence of a solution set by calculating
the average normalized Euclidean distance from the set to the
Pareto front. A low value is preferable. DM measures the
diversity of a solution set by comparing it with a reference
set representing the Pareto front. It takes the value between
zero and one, and a larger value means a better coverage of
the Pareto front. Detailed descriptions of these two metrics
can be found in [14]. In addition, in some trials, we observed
that the problems with different objectives have similar results
with the variation of divisions. Here, only the results on the
6-objective DTLZ2 are demonstrated for brevity.

Table VII shows the results of CM and DM for differ-
ent division settings on the 6-objective DTLZ2. Clearly, the
number of divisions has different influence on convergence
and diversity. For CM, the algorithm performs better with
the increase of the number of divisions, although the level
of variation is not remarkable—it performs well even if the
number of divisions falls to five. The main influence is
the distribution results of the algorithm. GrEA can maintain
“good” diversity during the middle segment of the range of
divisions, but when the number of divisions is smaller than 7
or greater than 10, poor performance will be obtained.

This occurrence is probably due to the fitness assignment
and adjustment strategies in GrEA. A large hyperbox size (i.e.,
a small division) would make many solutions located in a
single hyperbox and hence assigned the same GR and GCD
values (i.e., the former two criteria of fitness). In this case, the
third criterion GCPD is activated to distinguish solutions and
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further guide them evolving and gathering around the utopia
point of a unit hyperbox. On the other hand, a small hyperbox
size would lead to the increase of the difference of solutions
in terms of the criterion GR. This means that the degree of
the punishment for preventing crowding in the environmental
selection process is decreased relatively, thus resulting in the
failure of solutions covering the Pareto front.

Overall, although the performance of GrEA varies with
the number of grid divisions, it can achieve a good balance
between convergence and diversity under a proper setting. Our
experiments suggest that a division value around 9 may be
reliable on an unknown optimization problem. Furthermore, a
slightly larger div is recommended if the problem in hand is
found to be hard to converge, and a slightly lower value may
be more suitable if the coverage of the solutions to the Pareto
front is more emphasized.

VI. CONCLUSION

This paper exploits the potential of grid to handle many-
objective optimization problems. The proposed algorithm,
GrEA, can mainly be characterized as: 1) executing individual-
centered calculation instead of grid-centered calculation
throughout the algorithm; 2) increasing the selection pressure
towards the optimal front by introducing three grid-based
relations: GR, GCPD, and grid dominance; 3) estimating the
density of individuals by using adaptive neighborhood whose
range varies with the number of objectives; and 4) adjusting
the fitness of individuals in the environmental selection process
considering both neighborhood and grid dominance relations.

Systematic experiments have been carried out to make an
extensive comparison of GrEA with five state-of-the-art EMO
algorithms. Several groups of widely used test problems are
chosen for challenging different abilities of the algorithms.
The results reveal that GrEA is very competitive with the
other algorithms in terms of finding a well-approximated and
well-distributed solution set in many-objective optimization.
Furthermore, the effect of a key parameter, the number of
grid divisions, on GrEA has been experimentally investigated.
The results show that although the performance of GrEA
varies with the number of grid divisions, GrEA can achieve
a good tradeoff among convergence and diversity under a
proper setting. The division 9 is recommended for an unknown
optimization problem, and a slightly higher (or lower) value
is suggested when the problem is found to be hard to achieve
a good approximation (or coverage) of the Pareto front.

One major future work is to further investigate the proposed
algorithms in more MOPs with different characteristics from
our previous study, such as WFG [25] and some real-world
problems [13], [63]. Moreover, a deeper insight into the
behavior of the algorithm is also the focus of our future
study. In this context, the effects of the population size and
the punishment degree in environmental selection will be first
investigated.
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and E. Horst, “Combining aggregation with Pareto optimization: A case
study in evolutionary molecular design,” in Evolutionary Multi-Criterion
Optimization. Springer Berlin / Heidelberg, 2009, pp. 453–467.

[45] S. Kukkonen and J. Lampinen, “Ranking-dominance and many-objective
optimization,” in Proc. Congr. Evol. Comput., 2007, pp. 3983–3990.

[46] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining conver-
gence and diversity in evolutionary multiobjective optimization,” Evol.
Comput., vol. 10, no. 3, pp. 263–282, Sep. 2002.

[47] H. Li and Q. Zhang, “Multiobjective optimization problems With
complicated Pareto sets, MOEA/D and NSGA-II,” IEEE Trans. Evol.
Comput., vol. 13, no. 2, pp. 284–302, 2009.

[48] M. Li and J. Zheng, “Spread assessment for evolutionary multi-objective
optimization,” in Proc. 5th Int. Conf. Evol. Multi-Criterion Optimization,
EMO ’2009, Nantes, France, 2009, pp. 216–230.

[49] M. Li, J. Zheng, K. Li, Q. Yuan, and R. Shen, “Enhancing diversity for
average ranking method in evolutionary many-objective optimization,”
in Parallel Problem Solving from Nature, PPSN XI. Springer Berlin /
Heidelberg, 2010, pp. 647–656.

[50] M. Li, J. Zheng, R. Shen, K. Li, and Q. Yuan, “A grid-based fitness
strategy for evolutionary many-objective optimization,” in Proc. 12th
Annual Conf. Genetic Evol. Comput., GECCO ’10, 2010, pp. 463–470.

[51] K. Maneeratana, K. Boonlong, and N. Chaiyaratana, “Compressed-
objective genetic algorithm,” in Parallel Problem Solving from Nature -
PPSN IX. Springer Berlin / Heidelberg, 2006, pp. 473–482.

[52] Z. Michalewicz and D. B. Fogel, How to solve it: Modern heuristics.
Springer, 2000.

[53] S. Mostaghim and H. Schmeck, “Distance based ranking in many-
objective particle swarm optimization,” in Parallel Problem Solving from
Nature PPSN X. Springer Berlin / Heidelberg, 2008, pp. 753–762.

[54] T. Murata, H. Ishibuchi, and M. Gen, “Specification of genetic search
directions in cellular multi-objective genetic algorithms,” in Evolutionary
Multi-Criterion optimization. Springer, 2001, pp. 82–95.

[55] S. Obayashi and D. Sasaki, “Visualization and data mining of Pareto
solutions using self-organizing map,” in Evolutionary Multi-Criterion
Optimization. Springer Berlin / Heidelberg, 2003, pp. 796–809.

[56] R. C. Purshouse and P. J. Fleming, “On the evolutionary optimization of
many conflicting objectives,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 770–784, 2007.
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