UNIVERSITYOF
BIRMINGHAM

iversit}/]ofBirmin am
esearch at Birmingham

Probabilistic model checking and autonomy

Kwiatkowska, Marta; Norman, Gethin; Parker, David

DOI:
10.1146/annurev-control-042820-010947

License:
None: All rights reserved

Document Version _
Peer reviewed version

Citation for published version (Harvard):
Kwiatkowska, M, Norman, G & Parker, D 2021, 'Probabilistic model checking and autonomy', Annual Review of
Control, Robotics, and Autonomous Systems. https://doi.org/10.1146/annurev-control-042820-010947

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is the accepted manuscript for a forthcoming publication in Annual Review of Control, Robotics, and Autonomous Systems. The final
version of record will be available at: https://www.annualreviews.org/journal/control

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

*Users may freely distribute the URL that is used to identify this publication.

*Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

*User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
*Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.1146/annurev-control-042820-010947
https://doi.org/10.1146/annurev-control-042820-010947
https://birmingham.elsevierpure.com/en/publications/fb5ef43a-a4fe-48a9-a219-4f692973daef

Posted with permission from the Annual
Review of Control, Robotics, and
Autonomous Systems, Volume 5;
copyright 2022 Annual Reviews,
https://www.annualreviews.org/

Marta Kwiatkowska,! Gethin Norman? and
David Parker®

1Department of Computer Science, University of Oxford, UK, OX1 3QD; email:
marta.kwiatkowska@cs.ox.ac.uk

2School of Computing Science, University of Glasgow, UK, G12 8RZ; email:
gethin.norman@glasgow.ac.uk

3School of Computer Science, University of Birmingham, UK; email:
d.a.parker@cs.bham.ac.uk

Keywords

probabilistic modelling, temporal logic, model checking, strategy
synthesis, stochastic games, equilibria

Abstract

Design and control of autonomous systems that operate in uncertain
or adversarial environments can be facilitated by formal modelling and
analysis. Probabilistic model checking is a technique to automatically
verify, for a given temporal logic specification, that a system model
satisfies the specification, as well as to synthesise an optimal strategy
for its control. This method has recently been extended to multi-agent
systems that exhibit competitive or cooperative behaviour modelled via
stochastic games and synthesis of equilibria strategies. In this paper,
we provide an overview of probabilistic model checking, focusing on
models supported by the PRISM and PRISM-games model checkers.
This includes fully observable and partially observable Markov decision
processes, as well as turn-based and concurrent stochastic games, to-
gether with associated probabilistic temporal logics. We demonstrate
the applicability of the framework through illustrative examples from
autonomous systems. Finally, we highlight research challenges and sug-
gest directions for future work in this area.

https://www.annualreviews.org/

1. INTRODUCTION

As autonomous systems become embedded within computing infrastructure, from informa-
tion systems through to security and robotics, there is a growing need for methodologies
that ensure their safe, secure, reliable, timely and resource efficient execution. Design of
computer systems can be facilitated by formal modelling and verification, and in partic-
ular model checking, which aims to automatically check if a system model satisfies given
requirements typically expressed in temporal logic. Autonomy, however, creates additional
demands of controllability, since autonomous systems operate in uncertain or adversarial
environments, and strategic reasoning, to ensure effective coordination of cooperative or
competitive behaviour of system components (agents).

Probabilistic model checking is a collection of techniques for the modelling of systems
that exhibit probabilistic and non-deterministic behaviour, which supports not only their
model checking against temporal logic, but also synthesis of optimal controllers (strate-
gies) from temporal logic specifications. Probability is used to quantify environmental
uncertainty and stochasticity, while non-determinism represents model decisions. Markov
decision processes (MDPs) are typically employed to model and reason about the strategic
behaviour of an agent against a stochastic environment, where specifications are expressed
in probabilistic extensions of the temporal logics CTL or LTL. Partially observable Markov
decision processes (POMDPs) permit similar modelling and analysis, but for contexts where
the agent has limited power to observe its environment.

MDPs and POMDPs, however, are unable to faithfully represent the behaviour of mul-
tiple players competing or cooperating to achieve their individual goals. To this end, we
employ multi-agent systems modelled via stochastic games and reason about their strate-
gic behaviour for both zero-sum and nonzero-sum (equilibria) properties. For zero-sum
properties, the utilities of an agent are the negation of the utility of its opponent, whereas
for nonzero-sum each agent is pursuing its own quantitative objective. Probabilistic model
checking has been recently extended to encompass both turn-based and concurrent stochas-
tic games, together with an extension of the temporal logic that inherits the coalition op-
erator from ATL, as well as synthesis of optimal Nash equilibria strategies (more precisely,
subgame-perfect social welfare optimal strategies).

In this paper, we provide an overview of recent advances in probabilistic model check-
ing, focusing on the model checking and strategic reasoning methods implemented in the
PRISM (1) and PRISM-games (2) tools for discrete probabilistic models. The review covers
fully observable and partially observable Markov decision processes (Sections 2 and 3 re-
spectively), as well as turn-based and concurrent stochastic games (Sections 4 and 5 respec-
tively), together with associated probabilistic temporal logics. We discuss the core types of
quantitative analyses available for each model, as well as extensions such as multi-objective
analysis and continuous-time, also called real-time in the model checking literature, models
(Section 6). We demonstrate the applicability of the framework through illustrative exam-
ples, with emphasis on the areas of robotics and autonomy. Finally, we highlight challenges
and suggest directions for future work in this area (Section 7).

2. MARKOV DECISION PROCESSES

We begin with Markov decision processes (MDPs) (3), which are a classic model for deci-
sion making under uncertainty. This is a discrete-time model, with discrete sets of states
and actions, that allows both non-determinism, e.g., to represent the choices made by the

Kuwiatkowska et al.

{hazard} west {goal}

Figure 1

Left: A simple MDP representing a robot navigating through a grid; a (deterministic, memoryless)
optimal policy for the property Pyax—2[“hazard U goal] is marked in bold. Right: A topological
map from (4) used to build a similar style MDP modelling a mobile robot exploring a building.

controller of a robot or vehicle, and discrete probabilistic choice, to model environmental
uncertainty arising due to, for instance, the presence of humans, noisy sensors, unreliable
communication media or faulty hardware.

We give a formal definition of MDPs below. Here, and in the remainder of the pa-
per, Dist(X) denotes the set of (discrete) probability distributions over a finite set X, i.e.,
functions p : X — [0, 1] such that > p(z) = 1.

Definition 1 (Markov decision process). A Markov decision process (MDP) is a tuple
M= (S,5,A,0, AP, L) where:

e S is a finite set of states and § € S is an initial state;

e A is a finite set of actions;

e 0 : (SxA) — Dist(S) is a (partial) probabilistic transition function, mapping state-
action pairs to probability distributions over S;

2AP

e AP is a set of atomic propositions and L: S — is a state labelling function.

The execution of an MDP M proceeds as follows. When in a state s, there is a non-
deterministic choice over the actions that are available in the state, defined as the actions
a € A such that §(s,a) is defined and denoted A(s). It is assumed that the set of available
actions is non-empty for every state. After an action a € A(s) has been chosen in s, it is
performed and the probability of transitioning to state s’ € S equals §(s,a)(s’).

Example 1. A simple example of an MDP is shown in Figure 1 (left); it models the
movement of a robot through locations in a 3 x 2 grid. Each state (s;) represents a location
and actions taken in states result in probabilistic transitions to other locations. For example,
in state s; there is a choice between moving east and southeast; if east is chosen, then with
probability 0.6 the robot moves east and with probability 0.4 the robot remains in its
current location. Also shown are atomic propositions (goal and hazard) needed for property
specification. Figure 1 (right) shows a topological map used to build a larger, similar-style
MDP modelling a mobile robot traversing locations within an office building (1).

A path of M is defined by an alternating sequence of action choices and transitions. More
formally, a path is a finite or infinite sequence T = sp —% 51 — 59 —% --- such that so = 3,
a; € A(s;) and (i, a:)(si+1) > 0 for all ¢ > 0. FPathsm and IPathsm denote the sets of
finite and infinite paths of M, respectively.

www. annualreviews.org ¢ Probabilistic Model Checking and Autonomy

We next introduce the notion of a strategy (often also called a policy) of an MDP M,
which resolves the non-determinism present in M. In particular, strategies decide which
actions to take in states of the MDP, depending on its execution to date.

Definition 2 (MDP strategy). A strategy of an MDP M is a function o : FPathsm —
Dist(A) such that, if o(7)(a) > 0, then a € A(last(r)) where last(m) is the final state of .

The set of all strategies of M is denoted ¥m. We classify a strategy o € Xu in terms of its
use of randomisation and memory.

e Randomisation: o is deterministic (or pure) if o(mw) picks a single action with
probability 1 for all finite paths 7, and randomised otherwise.

e Memory: o is memoryless if o(m) depends only on last(r) for all finite paths 7, and
finite-memory if there are finitely many modes such that, for any m, o(7) depends only
on last(m) and the current mode, which is updated each time an action is performed;
otherwise, it is infinite-memory.

Under a particular strategy, the behaviour of MDP M is fully probabilistic and we can reason
about the probability of different events. For a strategy o of M, we denote by FPathsy, and
IPathsyy the set of finite and infinite paths that correspond to the choices of o. Following (5),
we can definite a probability measure Proby; over IPathsy, that corresponds to the behaviour
of the MDP under o. Using this probability measure we can then also define, for a random
variable X : IPathsm — R, the expected value Ef;(X) of X under o.

Random variables can be used to introduce a variety of quantitative properties of MDPs.
This is often achieved by augmenting an MDP with reward structures (these can in some
cases represent costs, but for consistency we will use the term rewards). Example applica-
tions of rewards include: the energy consumption of a device, the number of tasks completed
by a robot or the number of packets lost by a communication protocol.

Definition 3 (MDP reward structure). A reward structure for an MDP M is a tuple
r = (rs,Ta), where rs : S — Rxg is a state reward function and r4 : (SxA) — Rxo is an
action reward function.

2.1. Property Specifications for MDPs

In order to formally specify the required behaviour of a system modelled as an MDP, we
use quantitative extensions of temporal logic. Below, we show a fragment of the logic used
as the property specification language for the PRISM model checker (1), which we refer to
here as the PRISM logic. This is based on the logics PCTL (probabilistic computation tree
logic) (6) and LTL (linear temporal logic) (7), and also incorporates operators to specify
expected reward properties (8).

Definition 4 (Property syntax). The syntax for a core fragment of the PRISM logic is:

P = Pugp[9] | Riaglp]

Vo= ¢ | W | vAY | X [pUF Y | YUY
p =T | Cc*[F¢
¢ = true | a | 2d | dAQ

where a € AP is an atomic proposition, <€ {<, <, >,>}, p € [0,1], r is a reward structure,
q€Ryoand ke N.

Kuwiatkowska et al.

Above, we assume that a property ® for an MDP comprises a single probabilistic (P) or
reward (R) operator. The syntax also includes path (¢) and reward (p) formulae, both
evaluated over paths, and propositional logic (¢) formulae, evaluated over states. The
intuitive meaning of the P and R operators, from the initial state of an MDP, is:

e Py [t)] — the probability of a path satisfying path formula v satisfies the bound i p;
e Rl [p] — the expected value of reward formula p, under reward structure r, satisfies
the bound i q.

A propositional formula ¢ is satisfied (or holds) in a state s if it evaluates to true in that
state, where an atomic proposition a is true if s is labelled with a (i.e., a € L(s)) and the
logical connectives (=, A) are interpreted in the usual way.

For path formulae v, the core temporal operators are:

e X4 (next) — 1 is satisfied in the next state;

o 1)1 USF ¢y (bounded until) — 12 is satisfied within k steps, and 1 is satisfied until
that point;

e 1 U s (until) — 12 is eventually satisfied, and 11 is satisfied until then.

As is standard in model checking, we use the equivalences F ¢y = true U ¢ (eventually)
and G ¢ = —F ¢ (always). If we restrict the sub-formulae of a path formula to be atomic
propositions, then we get the following common property classes:

F a (reachability) — eventually a stated labelled with a is reached;

G a (invariance) — a labels all states;

FS* a (step-bounded reachability) — a labels a state within the first k steps;

GSF a (step-bounded invariance) — a labels states for at least the first k steps.

Without this restriction, path formulae allow temporal operators to be nested. In fact the
syntax of path formulae given in Definition 4 is that of linear temporal logic (LTL) (7).
LTL can express a range of useful property classes, including;:

e GF 1 (recurrence) — 1 is satisfied infinitely often;

e F G 1) (persistence) — eventually 1 is always satisfied;

e G (Y1 — X12) — whenever 1 is satisfied, 12 is satisfied in the next state;
e G (11 — F 12) — whenever v, is satisfied, 1 is satisfied in the future.

Finally, considering reward formulae p, the three key operators are:

o I7% (instantaneous reward) — state reward at time step k;
o CSF (bounded cumulative reward) — reward accumulated over k steps;
e F ¢ (reachability reward) — reward accumulated until a state satisfying ¢ is reached.

Although omitted from the syntax here for simplicity, it is also common to generalise the
third case and consider the expected reward accumulated until some co-safe LTL formula
is satisfied. Intuitively, these are path formulae 1 whose satisfaction occurs within finite
time; examples include (F a1) A (F a2) and F (a1 AF ag), which require states labelled with
a1 and az to be reached, either in any order (first case) or in a specified order (second case).

www. annualreviews.org * Probabilistic Model Checking and Autonomy

2.2. Probabilistic Model Checking of MDPs

Probabilistic model checking is an automated technique for constructing probabilistic mod-
els such as MDPs and then analysing them against behavioural specifications expressed
in temporal logic. It can be used either to verify that a specification is always satisfied,
regardless of any adversarial behaviour, or to synthesise a strategy under whose control the
system’s behaviour can be guaranteed to satisfy a specification.

These ideas are formalised below for the PRISM logic. We first require the following
notation. Satisfaction of a path formula ¢ can be represented by a random variable X% :
IPathsym — R where X¥(7) = 1 if path 7 satisfies ¢ and 0 otherwise. For a reward structure
r and formula p, the random variable X™* : IPathsm — R is such that X"?(7) equals the
state reward or accumulated reward corresponding to r and p for path .

Verifying that an MDP M satisfies a formula ®, denoted M |= ®, is defined as follows.

Definition 5 (Verification problem for MDPs). The verification problem is: given an MDP
M and a formula ®, verify whether M |= ®, defined as:

MEPw[¢] & Vo€ Su. (ER(XY)xp)
MERL,[p] & Vo€ Su (ER(X"*)xq).

In practice, we often solve a numerical verification problem: given an MDP M, formula
Popt—2[t] or R%,_+[p], where opt € {min, max}, compute Eyf*(X) where X = X¥ or
X = X™P respectively, and:
i ef . o X ef o
ER™(X) = infoen, ER(X) and ER™(X) = sup,cx,, ER(X).
Closely related is the strategy synthesis problem.

Definition 6 (Strategy synthesis problem for MDPs). The strategy synthesis problem is:
given an MDP M and formula ® of the form Puqp[1)] or Rig,[p], find a strategy o € Xm such
that @ is satisfied in M under o, i.e., such that E(X¥) 0ap or Ef(X™") < ¢, respectively.

The numerical strategy synthesis problem is: given M and a formula of the form
Popt=2[%] or RG,—+[p], where opt € {min, max}, find an optimal strategy ¢* € Xwu such
that By, (X) = EpP*(X) for X = X¥ or X = X", respectively.

For general path formulae, optimal strategies are finite-memory and deterministic. On the
other hand, for some common cases (e.g., the probability or expected accumulated reward
to reach a target), memoryless deterministic strategies are sufficient.

Example 2. Returning to the MDP from Example 1, verification-style queries using the
PRISM logic include:

° P)o,g[Fglogoal] — under all possible strategies, the robot reaches its goal location
within 10 steps with probability at least 0.8;

o R CS20] — for all possible strategies, the expected number of times that the robot
enters the hazard location within the first 20 steps is at most 1.5;

and examples of numerical queries include:

® Piax=7[—hazard U goal| — what is the maximum probability that the goal can be
reached while avoiding the hazard location?

e R7»_,[F goal] — what is the minimum expected number of steps to reach the goal?

Above, we use the following reward structures: 7g.ps, which assigns 1 to all state-action
pairs; and 7hazard, Which assigns 1 to all states labelled with atomic proposition hazard.

Kuwiatkowska et al.

2.3. Model Checking Algorithms

Probabilistic model checking for MDPs requires a combination of graph-based algorithms,
automata-based methods and numerical computation. The main components of the model
checking procedure require computing optimal probabilities for path formulae and optimal
expected values for reward formulae. For the simplest of these cases (e.g., the probability
or expected accumulated reward to reach a target), various standard techniques for MDPs
can be used (3), including: solving a linear programming problem; policy iteration (which
builds a sequence of strategies until an optimal one is reached); and value iteration (which
computes increasingly precise approximations to the optimal probability or expected value).
Of these, value iteration is most commonly used in probabilistic model checking tools,
for scalability and performance reasons, but variants that offer sound guarantees on the
accuracy of results have also been introduced, e.g., (9, 10), as well as methods that employ
simulation and heuristics, e.g., (10, 11). For finite-horizon (i.e., step-bounded) formulas.
computation of the required values involves a finite number of steps of value iteration.

For reward formula, graph-based precomputation is often also needed. For example,
given a reachability reward formula, a graph-based analysis must first be performed to find
the states that reach the target with probability 1 under either all or at least one strategy
(depending on whether we are interested in the minimum or maximum expected value).

For more complex path formulae, i.e., full LTL, one must first build a deterministic
Rabin automaton (DRA) representation of the path formula and then construct a product
MDP consisting of the MDP under study and the DRA. Next, through graph analysis, we
identify states of the product MDP for which the probability of satisfaction is 0 or 1, and
the mazimal end components of the product. Informally, an end component is a set of
states for which, under at least one strategy, it is possible to remain in forever once entered
and a maximal end component has no other end component as a subset. After this step,
numerical computation is performed on the product in the usual way.

The overall complexity for model checking MDPs against the PRISM logic is doubly
exponential in the formula and polynomial in the size of the MDP. However, if we restrict
the sub-formulae of path formulae to be atomic formulae, then DRAs are not required and
the complexity reduces to linear in the formula and polynomial in the size of the MDP.
Further details on the techniques needed to analyse MDPs can be found in, e.g., (8, 12, 13)
and in standard texts on MDPs (14, 3).

2.4. Extensions, Tools and Applications

We conclude our discussion of MDPs by surveying extensions to the basic model checking
problems, available software and some practical applications.

2.4.1. Extensions. One important extension of probabilistic model checking is to multi-
objective model checking. This concerns verifying the satisfaction of, or synthesising a strat-
egy that satisfies, multiple properties. The first work in this area concerned multi-objective
model checking and strategy synthesis of MDPs against conjunctions of probabilistic LTL
specifications (15). The approach has since been extended to general Boolean combinations
of LTL properties (15, 16) and to include reward formulae (16, 17). The synthesised strate-
gies for multi-objective queries have two forms of (finite-)memory: the first corresponds to
the satisfaction of the individual objectives and the second, when objectives include general
path formulae, the progress towards the satisfaction of such objectives.

www. annualreviews.org ¢ Probabilistic Model Checking and Autonomy

8

Pareto Front

Energy

002 004

1
(Target) 0
p(rargel) p(Collision)

Figure 2

Left: Pareto curve, from (18), showing the trade-off between three objectives (collision avoidance,
target reaching and energy consumption) for different localisation strategies along a particular
trajectory of a mobile autonomous robot. Right: sampled executions for a synthesised strategy.

Multi-objective model checking has also been extended to numerical queries, which find
the optimal value for one numerical objective when restricting to strategies that satisfy the
remaining objectives (15, 16). In (17) this has been generalised to allow the analysis of the
trade-offs between objectives by constructing the corresponding Pareto curve. Figure
shows results from (18), which uses multi-objective probabilistic model checking of MDPs
to study resource-performance trade-offs in mobile autonomous robots.

Another important extension incorporates parametric techniques. In this approach,
one or more aspects of the MDP or specification under study, e.g. certain probabilities in
the transition function or the step bound in a reward formula, are given as parameters.
For Boolean-valued queries, parameter synthesis determines the set of parameter values
for which the specification is satisfied. For numerical queries, parametric model checking
returns a symbolic expression for the result, which is a function of the given parameters.

These techniques were first developed for models with only probabilistic behaviour,
originally due to (19) and subsequently extended and optimised in (20) and (21), which
represented transition probabilities as rational functions and applied language-theoretic
techniques to return symbolic expressions for reachability probabilities. This approach has
since been extended to MDPs (22) for a subclass of the PRISM logic. An alternative ap-
proach applied to MDPs is parameter lifting (23), where parametric transitions are replaced
by non-deterministic choices over the extremal values. This non-determinism is placed un-
der the control of a separate player, and therefore the analysis is then performed through
probabilistic model checking of a two-player game (see Section 4).

Interval MDPs (24) generalise MDPs by having interval-valued transition probabilities,
and therefore support modelling of systems when there is uncertainty or variation in the
probabilistic behaviour. More general notions of such uncertain MDPs allow, for example,
convexr uncertainty sets to represent transition probabilities. Model checking algorithms
have been developed for these models on a subset of the PRISM logic (25, 26), in a robust
setting, i.e., where specifications are satisfied for any possible transition probabilities in the
allowed set. Extensions to multi-objective queries also exist (27).

2.4.2. Tool support. A number of different software tools are available for model checking
MDPs. Probably the most widely used is PRISM (1), which supports the logic of Defini-

Kuwiatkowska et al.

tion 4 as well as both multi-objective specifications and parametric queries. The tool uses
the PRISM modelling language, which is a simple, state-based language, based on Reac-
tive Modules (28). STORM (29) is another tool that supports model checking of MDPs,
for a subset of the logic in Definition 4, plus multi-objective and parametric extensions,
and others such as long run average rewards and conditional probabilities. Models can be
specified in a number of different modelling formalisms, including the PRISM language and
JANT (30). Other general purpose probabilistic model checking tools include the Modest
Toolset (31) and ePMC (32). PARAM (33) and PROPhESY (34) both offer tool support
for parametric model checking and synthesis of MDPs.

2.4.3. Applications. Applications of MDP-based probabilistic model checking for au-
tonomous systems include: motion planning (35, 36, 37), spacecraft reconfiguration (38),
task allocation and planning for mobile robots (4, 39), analysis of the safety and reliability of
robots in extreme environments (410), human-on-the-loop systems (41), robot battery charge
scheduling (42) and autonomic computing (43). For a survey on using formal methods (in-
cluding probabilistic model checking) for the verification of autonomous robotic systems
see (44).

3. PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

Partially observable MDPs (POMDPs) extend MDPs by restricting the extent to which
their current state can be observed, in particular by the strategies that control them. In
the context of robotics, e.g., it may not be possible to accurately identify a robot’s cur-
rent location due to either limited precision or unreliability of their sensors. For security
applications, participants in a protocol may rely on the use of private data.

Definition 7 (POMDP). A POMDP is a tuple P = (S, 5, A,5, AP, L, O, obs) where:

e (S5,5,A,6,AP,L) is an MDP (see Definition 1);
e O is a finite set of observations;
e obs: S — O is a labelling of states with observations;

such that A(s) = A(s’) for any states s,s’ € S with obs(s) = obs(s').

In a POMDP, the current state s cannot be directly determined; only the corresponding ob-
servation obs(s) € O is known. Notice that Definition 7 requires observationally equivalent
states to have the same available actions. This follows from the fact that states that have
different sets of actions available would be observationally distinguishable as the available
actions are not hidden, and hence should not have the same observations.

Above, we adopt a simple notion of observability, used in e.g. (45, 46), which is state-
based and deterministic. More general notions of observations are also commonly used, and
may depend on actions performed or are probabilistic. However, as demonstrated by (47),
given a POMDP with these more general notions of observations, we can construct an
equivalent (polynomially larger) POMDP of the form used here.

The notions of paths, strategies, probability measures and reward structures given in
Section 2 for MDPs transfer directly to POMDPs. The one difference is that the set Yp of
all strategies for a POMDP P only includes observation-based strategies.

Definition 8 (POMDP strategy). A strategy of a POMDP P = (5,3, A,d, AP, L,O, obs)
is a function o : FPathsp — Dist(A) such that:

www. annualreviews.org * Probabilistic Model Checking and Autonomy

10

west
0y o, {hazard} : o, {goal}

Figure 3

Left: POMDP variant of the MDP from Figure 1, where states s3 and s are observationally
equivalent, and therefore cannot be distinguished by strategies. Right: Illustration of the POMDP
under the control of a finite-memory strategy; states are labelled with the strategy’s current belief
as to its current state (as a probability distribution over states).

e o is a strategy of the MDP (S, 35, A4,5, AP, L);

, ’

a, a [e ' al , a al ,
e for any paths m = sp — s1 — ++ —> sp and ' = s5 — s7 — - — s,

satisfying obs(s;) = obs(s}) and a; = a for all i, we have o(7) = o(n').

Example 3. Figure 3 (left) shows a POMDP version of the MDP from Example | (Fig-
ure 1). The underlying states, transition probabilities and labels are identical, but we
assume that the grid locations for states s3 and ss are observationally indistinguishable due
to localisation issues: these states map to the same observation (0s5), while other states
have unique observations (o; for s;).

3.1. Model Checking for POMDPs

Properties for POMDPs can be specified using the same logic as for MDPs, presented
in Section 2.1. The only change to the verification and strategy synthesis problems (see
Definitions 5 and 6) is that the quantification is over observation-based strategies. However,
probabilistic model checking for POMDPs is more challenging than for MDPs since the
verification problem for core properties of the PRISM logic is undecidable (48).

Verification and strategy synthesis for POMDPs against finite-horizon problems, as
well as discounted reward problems, is well studied in the fields of artificial intelligence and
planning, and tool support exists, e.g., (49). However, the PRISM logic incorporates infinite-
horizon properties such as unbounded probabilistic reachability (Pup[F a]) and expected
reward accumulated to reach a target (R%q,[F a]), without discounting, where the problem
becomes undecidable (48). For further undecidability and complexity results of various
POMDP model checking problems, see e.g., (45, 46).

Probabilistic model checking of POMDPs was proposed in (50) for a subset of the
PRISM logic where path formulae only have propositional formulae as sub-formulae (i.e.,
without full LTL). The approach uses grid-based techniques (51, 52), which transform
the POMDP under study to a fully observable belief MDP with uncountably many states
and then approximate its solution based on a finite subset of states (grid points). Since
the problem is undecidable, the approach only returns lower and upper bounds on the
quantitative property of interest, and if the bounds are not precise enough, the grid can be
refined and analysis repeated. The efficiency of this approach is improved in (53) using an
abstraction-refinement loop to build smaller MDP approximations.

Strategy synthesis can be incorporated into these methods based on an analysis of the

Kuwiatkowska et al.

belief MDP approximation. The resulting strategies are deterministic but require memory.
Note that these methods assume a fixed initial state (or belief), in constrast to the methods
for MDPs discussed above which can be performed for all states at once.

Similar methods have been extended to LTL queries (54) by translating such formulae
to DRAs and using a product MDP construction. In the qualitative case (checking if the
optimal probability equals 0 or 1), under the restriction to finite-memory strategies, model
checking algorithms are given in (55) for LTL specifications.

Other approaches to POMDP model checking also work by imposing a limit on the
memory available to strategies; this includes (56), which converts the problem to one of to
parametric model checking, and (57) which uses a reduction to model checking for stochastic
games using PRISM-games (2). A related method from (58) synthesises finite-memory
POMDP strategies represented as recurrent neural networks.

Alternative methods include (47) which, under the requirement that all rewards in the
POMDP are positive, extends approaches developed for finite-horizon objectives to approx-
imate minimum expected reachability rewards. There is also (59), which uses counter-
example-driven refinement to approximately solve MDPs in which components have partial
observability of each other; and (60), which synthesises concurrent program constructs using
a search over memoryless strategies in a partially observable stochastic game.

Example 4. Consider again the POMDP of Example 3 (Figure 3, left) and the property
specification Pyax=7[—hazard U goal]. Any memoryless strategy (i.e., always choosing south
or east in both s3 and s5) has zero probability of achieving this. Figure 3 (right) illustrates
a finite-memory strategy for the POMDP of Example 3 (Figure 3, left), which chooses east
twice, increasing the chance of being in s5, and then south. States are annotated with the
current belief, i.e., the probability of being in each state.

3.2. Extensions, Tools and Applications

PRISM (1) implements the algorithms of (50) for a subset of the PRISM logic. STORM (29)
also supports POMDP analysis, via the methods in (57, 56, 53). Extensions to synthesise
robust strategies for uncertain POMDPs, as discussed earlier for MDPs, can be found in,
e.g., (61). Applications of POMDP-based model checking for autonomous systems include
robot motion planning (55, 57) and human-in-the-loop planning (62).

4. TURN-BASED STOCHASTIC GAMES

We now move beyond MDPs to stochastic games, which allow for the modelling of cooper-
ative or competitive behaviour between multiple agents, in the presence of adversarial or
uncertain environments. We start with turn-based stochastic multi-player games (TSGs),
which have the same structure as MDPs, except that the states are partitioned amongst
a set of players. Each state is controlled by one player, who resolves the action choices in
that state. Formally, we have the following definition.

Definition 9 (Turn-based stochastic game). A turn-based stochastic (multi-player) game
(TSG) is a tuple T = (N, S, (S;)i=1, 5, A, 6, AP, L), where:

e (S,5,A,6,AP, L) represents an MDP (see Definition 1);
e N ={1,...,n} is a finite set of players;
e (S;)i=; is a partition of S.

www. annualreviews.org * Probabilistic Model Checking and Autonomy

11

12

1.0
0.9
0.8
0.7
0.6

p1(0)=0.2, py(0)=0.1

p(0)=0.3, 1, (0)=0.1

Sos| mO-09.
z ,(0)=0.8
o4l @
0.3 pi(0)=0.5,
0.2 P (0)=0.4
0.1
0.0 =
450 500 550 600 650 700
Figure 4 timel[s]

Left: A simple TSG modelling alternating decisions between a human operator and an
autonomous robot. Right: Results from a more complex, but similar style TSG analysed in (63)
for an unmanned aerial vehicle partially controlled by a human operator.

As for MDPs, in each state s of a TSG T, there is a set of available actions denoted A(s),
which are the actions a for which (s, a) is defined. However, in this case the choice of which
available action is taken in s is under the control of a single player: the unique player i < n
such that s € S;. If player i selects action a € A(s) in s, then, as for MDPs, the probability
of transitioning to state s’ equals §(s,a)(s’).

The notion of paths and reward measures are the same as for MDPs. In the case of
TSGs we do not have a single strategy, but instead a strategy for each player i of the TSG
that resolves the choice of action in each state under the control of player i, based on the
game’s execution so far. Furthermore, to reason about the behaviour of a TSG we need a
strategy for every player, called a strategy profile.

Definition 10 (TSG strategy). A strategy of a TSG T is a function o; : {w € FPaths |
last(mw) € Si} — Dist(A) such that, if o;(7)(a)>0, then a € A(last(n)). The set of all
strategies of player i < n is represented by X% and a strategy profile is a tuple o = (0;)1-;
where o; € ZiT for all 7 < n.

Similarly to MDPs, for a TSG T and profile o, we denote by FPathsT and IPaths{ the
set of finite and infinite paths of T that correspond to the choices made by the profile o.
Furthermore, for a given profile o, we can define a probability measure Probs over the set
of infinite paths IPathsT and, for a random variable X : IPathst — R, we can define the
expected value EF(X) of X under o.

Example 5. Figure 4 (left) shows a fragment of a simple TSG modelling a human-robot
system. Navigation decisions (east or west) are taken by a human operator (circular states,
coloured green); then the robot decides autonomously how to follow these instructions
(square states, coloured blue), here by choosing the speed (slow or fast) with which to pro-
ceed. Figure 4 (right) shows results from probabilistic model checking of a more complex
TSG model in which an unmanned aerial vehicle performs surveillance under partial control
of a human operator (63). It shows the trade-off between mission time and the likelihood
of straying into “restricted operating zones” (ROZs) as operator accuracy varies.

4.1. Property Specifications for TSGs

To specify properties of TSGs, we consider an extension of the logic presented earlier for
MDPs and POMDPs. This uses the coalition operator ((C)) from alternating temporal logic
(ATL) (64) to define zero-sum formulae. An extended version of this logic was presented
as TPATL (and RPATL*) in (65).

Kuwiatkowska et al.

Definition 11 (Property syntax for zero-sum games). The syntax of extended PRISM
logic for zero-sum games is:

P = (C)Pep[¢] | (CYRa[r]

where path formulae ¢ and reward formulae p are defined in identical fashion to the PRISM
logic in Definition 4, C' C N is a coalition of players, <€ {<, <, >, >}, p € [0,1], 7 is a
reward structure and ¢ € Ryo.

The zero-sum formulae (C)Ppp[9] and (C)RTq,[p] can be understood as specifying that
the players in the coalition C' can collectively ensure that the formula Pup[t] or Rig,[p],
respectively, is satisfied, against all possible strategies of the players in the set N\ C. In
order to formalise the semantics of the extended PRISM logic, for a TSG T and coalition
C, we denote by T¢ the coalition game, that is, the 2-player TSG T¢ in which the first
player makes all the choices of all players in C' and the second all players in N \ C.

When model checking TSGs, the verification and strategy synthesis problems coincide,
since checking a property ® reduces to showing that there exists a strategy for one coalition
of players that satisfies a property for all strategies of another coalition.

Definition 12 (Verification and strategy synthesis problems for TSGs). The wverification
problem is: given a TSG T and formula @, verify whether T = ®, defined as:

T (C)Ppl¥] & ot €Sk, (Voz € 3 7L (X¥) bap)
TE(C)Riylp] < 3Joi €S, (Voz € E%c.IE?C’Uz (X"P)>aq)
where T