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BEST RESPONSE DYNAMICS ON RANDOM GRAPHS

JORDAN CHELLIG, CALINA DURBAC, AND NIKOLAOS FOUNTOULAKIS

Abstract. We consider evolutionary games on a population whose underlying topology
of interactions is determined by a binomial random graph G(n, p). Our focus is on 2-
player symmetric games with 2 strategies played between the incident members of such a
population. Players update their strategies synchronously: each player selects the strategy
that is the best response to the current set of strategies its neighbours play. We show that
such a system reduces to generalised majority and minority dynamics. We show rapid
convergence to unanimity for p in a range that depends on a certain characteristic of the
payoff matrix. In the presence of a bias among the pure Nash equilibria, we determine
a sharp threshold on p above which the largest connected component reaches unanimity
with high probability. For p below this critical value, we identify those substructures
inside the largest component that block unanimity.

1. Introduction

The need for a dynamic game theory was pointed out by von Neumann and Morgenstern
in their seminal book [37] which set the foundations of modern game theory. Research on
dynamic games on populations was stimulated by settings in evolutionary biology. In
1973 John Maynard Smith and George Price [28] set the foundations of evolutionary game
theory, trying to explain phenomena that arise in animal fighting, which contradict the
traditional Darwinian theory.

Maynard Smith and Price [28] considered a variation of the well-known hawk-dove game
(see below for a precise description of its payoff matrix) with more than two strategies,
which range from purely altruistic to hawkish behaviour. They argued that altruistic
behaviour in such a population may have higher payoff compared to the payoff in a pure
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2 BEST RESPONSE DYNAMICS ON RANDOM GRAPHS

population consisting only of hawks. Introducing the notion of an evolutionary stable
strategy, they argued that natural selection would favour the co-existence of behaviours
in a given population. In this setting, every member of the population may interact with
any other member. That is, in graph-theoretic terms, this is an evolutionary system on a
complete graph.

Later on, Nowak and May [33] considered settings with non-trivial underlying topology.
They considered a population of agents that are located on the vertices of a 2-dimensional
lattice, in which every agent interacts only with its four neighbours. The interaction is that
any two adjacent agents play the prisoner’s dilemma (which we describe below) in which
they may cooperate or defect. The dynamics that was considered there depends on the total
payoff of each agent that is accumulated by the four games it plays with its neighbours
(or three or two, if it is located on the boundary of the lattice). The agents update their
strategies synchronously, with each agent adopting the strategy of a neighbour who had the
largest total payoff in the previous round. The main observation in [33] is the co-existence
of the two strategies in the long term, despite the fact that the defect strategy is a Nash
equilibrium for this game: that is, in a game between two players who both defect none
has interest in cooperating, given that the other does not. Similar dynamics were studied
by Santos and Pacheko [36] in the preferential attachment model, which typically yields
graphs that have some properties of complex networks.

In this paper, we consider a class of dynamics of games on networks in which agents seek
to choose a local dominating strategy. In this process, every agent switches their strategy
to the one which maximises their own payoff, given the strategies of its opponents. In
other words, in each round each agent tries to give their best response to the current
choice of strategies of their opponents. This dynamics was first considered by Gilboa and
Matsui [18] in continuous-time setting and for a population with no underlying topology,
where everyone interacts with everyone else. Gilboa and Matsui showed the existence
of cyclically stable sets. Roughly speaking, these are sets of configurations of the population
in which the best response dynamics is trapped.

We consider a discrete setting and study the evolution of best response dynamics on a
random graph. Adjacent agents are able to interact with each other via a symmetric game
with 2 strategies, on a round-by-round basis. In a given round, each agent will choose one
of the two (pure) strategies, which they will use against all of their neighbours. For each
game played, the agent will receive a payoff determined by the corresponding entry in the
payoff matrix; subsequently, each agent will also receive a total payoff, which is the sum
of all of the individual payoffs that the agent received in that round. In the next round,
agents will choose to execute the strategy which would have given them the largest payoff
in the previous round. In essence, each agent is focused on maximising their own total
payoff by utilising information gained from the previous round. Our central result concerns
the rapid rate at which agents will settle into a global unanimous strategy on a typical
sample of the underlying random graph.
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In our analysis, we consider arbitrary 2-player symmetric1 games and we show that best
response dynamics reduce to generalised majority or minority dynamics. These terms refer
to a general class of discrete processes on graphs where vertices have two states and at
each round a vertex adopts the state of the majority or the minority of its neighbourhood,
respectively. Majority games reward the individuals who follow strategies which are in
line with the popular opinion; such games are clearly co-operative, and thus agents will
tend to form large unanimous coalitions; see [20]. On the other hand, minority games
capture the idea that agents will benefit from making choices that oppose the popular
consensus. The idea of a minority game was introduced to characterise the behaviour of
agents within the El Farol Bar problem. The problem describes a fixed population who
will repeatedly attempt to synchronously choose their favourite evening location; however,
only the individuals who choose less crowded locations will be rewarded [11, 13]. This
problem captures the underlying tension of minority games. Choosing the lucrative option
will clearly reward agents with the greatest payoff, however this payoff is easily spoiled if
too many of the participants think alike. If agents adopt this line of thinking, then we
deduce that the entire population will reject the optimal payoff, regardless of the fact that
the most lucrative option will tend to be uncontested. In the case of the El Farol Bar
problem, any deterministic strategy will ultimately fail to satisfy anyone.

While the study of evolutionary games on populations with arbitrary mutual interac-
tions is well established, a new focus has now been given to systems of agents which possess
an underlying topology. Within these systems, agents are only able to interact with their
topological neighbours and not necessarily with everyone. The topology of these interac-
tions is commonly represented by means of an underlying network. Consideration of an
underlying topology allows us to analyse how local decisions in the system can cascade out
to form a global consensus. In the context of best response dynamics Lelarge [26] shows
that a small set of agents which oppose the current consensus can cause a large contagion of
opposing opinions to spread throughout the network. Therein, a coordination mechanism
described by Morris [30] is considered on a population whose topology is that of a random
graph with a given degree sequence. As we shall see shortly, this coordination mechanism
falls under the framework of generalised majority dynamics. Furthermore, all agents up-
date their strategies synchronously. Lelarge [26] gives a condition for the parameter of
the coordination game, which determines whether contagion occurs with high probability.
Here, the term “contagion” does not necessarily mean complete domination of the invading
strategy, but adoption of this strategy by a positive fraction of the population.

An asynchronous setting has been considered by Kreindler and Young [25] as well as
by Arieli et al. [3]. Kreindler and Young [25] consider the setting where agents update
their strategies at random times (following a Poisson clock independently of any other
agent) according to a stochastic best response rule. The update procedure takes place
with some probability that may be bounded away from 0 and 1. To this end, they use
the logit function. The underlying topology is that of a regular graph which they go on
to generalise to a graph with a given degree sequence. They show that the expected time

1Here, the term “symmetric” means that the roles of the two players are interchangable.
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until at least half of the agents adopt the invading strategy is bounded by a constant. This
has been generalised by Arieli et al. [3] where arbitrary response functions are considered
and furthermore the underlying network may be evolving.

Other classes of mechanisms which model or represent the spread of an invading strategy
(or an innovation) within a network of agents have also been studied. However, these have
non-game-theoretic flavour. Such is the class of bootstrap percolation processes where the
agents synchronously adopt a certain strategy, if this has been adopted by a certain number
of their neighbouring agents. Also, there are variations of these processes where a strategy
is adopted if a certain fraction of the neighbouring agents have adopted it. Such processes
have their origins in statistical physics [12], but have been studied in a variety of networks
(random and non-random) - see for example [2, 5–7, 15, 22, 24, 29]. A quantity that is of
interest in this context is the final size of the set of agents who have adopted this strategy.
Note that these mechanisms are monotone in the sense that once the particular strategy
has been adopted it cannot change. Another mechanism of non-game-theoretic flavour
which is non-monotone is the voter model. Here, the update of each agent’s strategy takes
place asynchronously. At these random times each agent adopts the strategy of one of its
neighbours that has been randomly selected according to some distribution. This model
was introduced by Holley and Liggett in the context of interacting particle systems on an
infinite setting [21,27]. Bounds on the expected time to consensus on some finite (random
and non-random) graphs results were derived by Yildiz et al. [38] in the case where the
choice is made uniformly among the neighbouring agents.

The underlying topology which is the main focus of our work is that of a binomial random
graph G(n, p). This classic model has been central in the study of random graphs and was
first considered by Gilbert [17]. In this model, on a set of n vertices each edge appears
independently with probability p = p(n). We shall consider the evolution of best response
dynamics on G(n, p) for an arbitrary symmetric game with two players played on the vertex
set of a G(n, p) random graph, starting with a random assignment of strategies. As we
shall see in our analysis, best response dynamics will reduce to the analysis of generalised
majority or minority dynamics on G(n, p).

Our results show that in a wide range of densities best response dynamics stabilises
rapidly and one of the strategies dominate within the population entirely or almost entirely.
We prove a general result which shows that this is achieved in at most 4 rounds when
np = Ω(n1/2). However, if the game exhibits a certain form of bias in terms of its pure
Nash equilibria, then we get very precise results on how this dynamics evolves for p such
that np � 1. Let us recall that in this range G(n, p) may not be connected. However,
typically its largest connected component contains almost all vertices, whereas each one of
the other components is a tree and has order at most log n. (The books [10, 23] provide a
detailed description of the typical structure and the evolution of G(n, p).) For p such that
G(n, p) is not connected with high probability, it is the largest connected component we
focus our study on. In the presence of such a bias, we determine a sharp threshold on p
above which the largest connected component reaches consensus among its vertices. For
p below this critical value, we identify those substructures inside the largest component
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that are in disagreement with the majority of the vertices therein. Hence, we are able to
characterise the co-existence of strategies very precisely.

We layout our paper as follows: In Section 2 we provide key definitions for our analysis
and define the interacting node system on a graph. In Section 3, we consider our first
approaches to analysing the model and state our two main results. The first concerns the
formation of a consensus when the underlying networks is both random and suitably dense.
The second result shows that a consensus can be achieved in a sparser regime of G(n, p),
given that there exists a certain form of bias among the pure Nash equilibria of the game.
This is analysed in Section 4. In this case, we identify a sharp threshold for p above which
consensus is reached in the largest component of G(n, p) in at most β log n rounds, for a
positive constant β, where log · is the natural logarithm. This critical value is determined
by the payoff matrix and is below the well-known connectivity threshold of G(n, p) which
is log n/n. Furthermore, we show that if np > c log n, for some c > 1 which depends on the
parameters of the system, then in fact the system reaches consensus only after one round.

In Section 5, we consider games where this bias is no longer present. In this scenario,
we observe that the interacting node system reduces to the so-called majority or minority
dynamics on G(n, p). We sample a selection of results from [16], which concern the rapid
stabilisation of agent strategies when playing a majority game on a dense random graph.
Using these results as a basis, we proceed to prove our result concerning the formation of
consensus strategies in the minority game analogue of the random graph majority game.
By combining the above results, we may readily deduce that for any 2×2 real-valued payoff
matrix and a suitably dense random graph, the agents of the interacting node system will
reach a consensus after at most four rounds, with high probability.

2. Iterative Games on Graphs

Let Q = (qi,j) be a 2 × 2 matrix with entries in R; we refer to Q as the payoff matrix.
(The rows and columns of Q are indexed by {0, 1}, which are assumed to represent the
strategies.) Each player will now choose a strategy from {0, 1}. Player 1 will then receive
a payoff given by qi,j, where i is the strategy chosen by Player 1, and j is the strategy
chosen by Player 2. Analogously, Player 2 will receive a payoff qj,i.

The interactions of the agents/players are represented by a fixed graph G = (V,E). The
nodes of G represent the agents, and if two nodes are adjacent, then the corresponding
agents interact with each other by playing the game with payoff matrix Q. We refer to this
process as an interacting node system (G,Q,S), which we detail formally as follows. We
fix a graph G, a payoff matrix Q, and for every v ∈ V (G) an initial vertex strategy S(v)
where S : V (G)→ {0, 1}. We consider a discrete time process. For each t ∈ N0 := N∪{0},
we denote by St(v) the strategy played by vertex v at step t. Thus, St : V (G) → {0, 1}.
Let NG(v) denote the set of neighbours of a vertex v ∈ V (G) in G. For a vertex v ∈ V (G),
a step t ∈ N0 and j ∈ {0, 1}, we set nt(v; j) = |NG(v) ∩ {u : St(u) = j}|. To each vertex
v ∈ V (G), we assign the initial state S0(v) = S(v). To progress from round t to round
t + 1, the following evolution rule is applied: Each vertex v will play the game against
each one of its neighbours, playing strategy St(v). For each game played, the vertex will
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receive a payoff given by the corresponding entry in the payoff matrix Q. We denote the
total payoff for a vertex v at time step t to be the sum of all payoffs that v received
in that round. Therefore, for a vertex v with St(v) = i, we define the total payoff of
v at time t as Tt(v) := nt(v; 0)qi,0 + nt(v; 1)qi,1. We define the alternative payoff of v
at time t, as the total payoff the vertex would have received, had they played the other
available strategy. Hence, the alternative payoff for a vertex v with St(v) = i is given as:
T ′t(v) := nt(v; 0)q1−i,0 + nt(v; 1)q1−i,1. The value of St+1(v) is determined by comparing
the values of the current payoff and the alternative payoff. If the alternative payoff is
strictly greater than the total payoff, then the vertex will switch to strategy 1− i in round
t+ 1; otherwise it will continue with its current strategy. For a vertex v at time t, we can
succinctly express the evolution rule as follows:

St+1(v) =

{
St(v) if Tt(v) ≥ T ′t(v);

1− St(v) if Tt(v) < T ′t(v).

We wish to analyse the global evolution of the strategies as time elapses. We say that a
vertex’s strategy is periodic if there exist some T, p ∈ N, such that ST (v) = ST+kp for all
k ∈ N. We call the least possible p which satisfies this definition the period. We say that
the evolution of a system is unanimous, if there exists some T ∈ N such that for all t ≥ T
and all distinct pairs of vertices u, v ∈ V (G), we have that St(u) = St(v). We say that the
system is stable if there exists T ∈ N such that for all v ∈ V (G) and t ≥ T, we have that
St(v) = ST (v).

3. Main results

The evolution of the node system is largely governed by the entries present in the payoff
matrix Q. As a consequence of choosing specific entries for Q, it can be the case that one
strategy is strictly more beneficial than the other. In this case the evolution of the system
is trivial, as all agents will unanimously maximise their payoff; we capture this behaviour
with the notion of degeneracy. We say that a payoff matrix Q = (qi,j) with i, j ∈ {0, 1} is
non-degenerate, if one of the following holds:

(i) We have that q0,0 > q1,0 and q0,1 < q1,1.
(ii) Or, q0,0 < q1,0 and q0,1 > q1,1.

Otherwise, we say that Q is degenerate. The behaviour of interacting node systems with
degenerate payoff matrices will be discussed in Section 3.2.

We consider an interacting node system where the underlying graph G is both random
and suitably dense. We let G(n, p) be the binomial random graph on vertex set Vn := [n] :=
{1, 2 . . . , n}, where each edge appears independently with probability p. We introduce a
random binomial initial state, which we refer to as S1/2 ∈ {0, 1}[n]. For every vertex v ∈ Vn,
we have that P(S1/2(v) = 1) = P(S1/2(v) = 0) = 1/2, independently of any other vertex.
We say that a sequence of events En defined on a sequence of probability spaces with
probability measure Pn occurs asymptotically almost surely (or a.a.s.) if Pn(En) → 1 as
n→∞.
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We now state our first result which describes the vertex strategies of an interacting node
system on G(n, p), with initial state S1/2. We denote this system by (G(n, p), Q,S1/2).

Theorem 3.1. Let Q be a 2 × 2 non-degenerate payoff matrix. For any ε ∈ (0, 1) there

exist positive constants Λ, n0 such that for all n ≥ n0, if p > Λn−
1
2 , then with probability

at least 1 − ε, across the product space of G(n, p) and S1/2, the interacting node system
(G(n, p), Q,S1/2) will be unanimous after at most four rounds.

Proof sketch. Suppose we have a node system I, with payoff matrixQ.We introduce the fol-
lowing quantity, which we refer to as the payoff skew, λ = λ(Q) := (q1,1 − q0,1) / (q0,0 − q1,0).
We do a case analysis, depending on whether or not λ is equal to one. In the case λ 6= 1
we can deduce that a.a.s all vertices will choose the same strategy after the first round.
Indeed, consider a vertex and expose its neighbourhood. By the Chernoff bound (3) we
can show that the ratio n0(v; 0)/n0(v; 1) can be made arbitrarily close to one, for n large
enough. The value of λ then imposes a bias which causes the vertex to switch to a specific
strategy. It can then be shown that this applies to all vertices in the network. This argu-
ment is captured by Lemma 4.8, the proof of which can be found in Section 4.3. The case
of λ = 1 is considered in Section 5. We show that the node system reduces to majority or
minority dynamics, depending on the form of the matrix. In the case of majority dynamics,
the theorem follows from Therorem 5.1, which states that with high probability majority
dynamics achieves unanimity within four rounds. This was proved in [16]. Thereafter, we
show the analogous result (Theorem 5.2) for minority dynamics. The idea here is that for
a given minority game, we construct a majority game which approximates the behaviour
of the vertices in the minority game. We show that there is a discordant set of vertices
which resist this approximation. Nevertheless, this set is small enough so as to not affect
the evolution of the system. So, essentially the system evolves as in majority dynamics
and reaches unanimity within four rounds.

3.1. The skew of the payoff matrix Q. Suppose a vertex v at time t has picked a
strategy St(v) = i. From the above discussion, we observe that the incentive for v to switch
strategy is the condition that Tt(v) < T ′t(v). Expanding both terms and re-arranging, we
observe the condition for a vertex playing strategy i to switch to strategy 1− i is as follows:

nt(v; 0) (qi,0 − q1−i,0) < nt(v; 1) (q1−i,1 − qi,1) .

If Q is non-degenerate, there are two possible cases: Either q0,0 > q1,0 and q1,1 > q0,1; or
we have that q0,0 < q1,0 and q0,1 > q1,1.

We lead with the former case. By substituting values of i ∈ {0, 1}, we can rephrase the
evolution conditions for each agent in terms of nt(v; 0) and nt(v; 1). We recall the definition
of the payoff skew of the payoff matrix Q:

λ = λ(Q) := (q1,1 − q0,1) / (q0,0 − q1,0) .
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We remark that λ(Q) is positive and well-defined, if and only if, Q is non-degenerate. If
St(v) = i, then we can write:

St+1(v) =

{
1− i if nt(v; i) < λ1−2int (v; 1− i)
i otherwise

. (1)

Suppose now that the latter case holds, that is, q0,0 < q1,0 and q0,1 > q1,1. Then if St(v) = i,

St+1(v) =

{
1− i if nt(v; i) > λ1−2int (v; 1− i)
i otherwise

. (2)

We refer to the system governed by the evolution rules from (1) as the majority regime;
while we refer to the system described in (2) as the minority regime. We will tackle each
of these systems separately. The intuition for these names arises from how each individual
agent tends to think of its neighbours. In the majority regime, agents will tend to follow the
strategies which are shared by the majority of their neighbours; however, in the minority
regime agents will generally choose the least popular strategy seen across their neighbours.
The value of λ determines the strength of this tendency.

In game-theoretic terms, it is easy to see that payoff matrices in the majority regime
give rise to two pure Nash equilibria: namely with both players simultaneously playing
strategy one or strategy zero. On the other hand, payoff matrices in the minority regime
have two pure Nash equilibria: those in which the two players play opposite strategies. (In
both regimes, there is also a mixed Nash equilibrium.) Hence, games of the former type
are sometimes called coordination games, whereas those of the latter type are called anti-
coordination games. From this point of view, the parameter λ can be seen as some form
of bias between the two pure Nash equilibria.

Examples. We give two examples of games that are well studied in game theory and reflect
the above classification.
1. Stag-Hare game In this game, two hunters need to decide whether to co-operate on
hunting or not. There two possible species to hunt: a stag or a hare. However, hunting a
stag is difficult for each one on their own to catch, so they can only do this if they work
together. Nevertheless, each one of them can hunt on their own, but then it will only be
possible to hunt for a hare, which offers a smaller reward. This setting can be described
in the following payoff matrix QS−H in which the first column and row correspond to the
stag strategy whereas the second column and row correspond to the hare strategy:

QS−H =

[
S 0
H H/2

]
,

where H < S. Here, S is the reward they both earn if they cooperate and go for a stag.
If one goes for a stag but the other goes for a hare, the former will get no reward, as it is
impossible to hunt a stag on their own, but the other will get some reward H < S which
comes from catching a hare. Now, if they both go for a hare, they will both receive a smaller
reward, H/2, as they will split what they will catch. This is an example of a coordination
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game with two pure Nash equilibria, namely when both players have a common strategy.
This belongs to the majority regime.
2. The Hawk-Dove game. Here, a population of animals consists of two types of individuals
which are differentiated by the amount of aggression they display during their interactions.
There is the most aggressive type (hawk) and the least aggressive, or most cooperative,
type (dove). When two of them interact over some fixed resource, the outcome depends
on their types. If two hawks compete over the resource they get injured, because of the
fighting, and one of them (at random) manages to grab the resource. Hence, if R is the
gain from the resource, each is expected to gain R/2 out of the fight, but they pay a price
P > R for their injuries, whereby their overall gain is (R− P )/2. If a hawk interacts with
a dove, then the hawk grabs the resource gaining R, whereas the dove walks away with
nothing. Finally, if two doves interact, then they share the resource each gaining R/2.
Thus, if QH−D denotes the payoff matrix of the Hawk-and-Dove game, this is

QH−D =

[
R−P

2
R

0 R
2

]
,

where first row and column correspond to the hawk strategy and the second row and
column correspond to the dove strategy. Hence, this is a non-degenerate payoff matrix in
the minority regime with

λ(QH−D) =
R

P −R
.

3. The Prisoners dilemma. In this game, two individuals are arrested while committing a
crime together, but they are put in different cells. The police do not have enough evidence
to convict them, but they make an offer to each one separately. If one of them confesses
(defects) but the other remains silent (cooperates), then the former is released but the other
is sentenced to imprisonment of P > 0 years. If they both confess, they are sentenced to
R > 0 years of imprisonment, for R < P . Finally, if both remain silent, they are both
sentenced to S years imprisonment for some minor offence, as the police do not have enough
evidence. In this case, S < R.

Thus, 0 < S < R < P . The payoff matrix of the Prisoners dilemma game QPD is

QPD =

[
−R 0
−P −S

]
,

where the first row and column correspond to the Defect strategy and the second row and
column correspond to the Cooperate strategy. (Here, we put the − sign in front of these
quantities, as imprisonment is thought of as a loss.) Hence, this is a case of a degenerate
payoff matrix.

Our second result concerns non-degenerate interacting node systems in a sparser regime
compared to that covered in Theorem 3.1. In this setting, we assume that λ 6= 1 and we are
able to consider smaller values of p, below the connectivity threshold of G(n, p). Among the
first results on the theory of random graphs due to Gilbert [17] is that the connectivity of
G(n, p) undergoes a sharp transition. More specifically, let ω : N→ R+ be a function such
that ω(n)→∞ as n→∞; if np = log n+ ω(n), then a.a.s. G(n, p) is connected, whereas
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if np = log n−ω(n), then a.a.s. G(n, p) has at least one isolated vertex. Analogous results
were proved by Erdős and Rényi [14] on the uniform model of random graphs with a given
number of edges.

In the subcritical regime, we cannot hope for unanimity. For 1 � np < log n, all
connected components of G(n, p) besides the largest one are trees of order at most log n
and, in fact, many of them are isolated vertices (see for example [10] for a complete and
precise description of the structure of G(n, p)). However, a.a.s. the largest connected
component contains most vertices of G(n, p), when np � 1. So, if we want to make a
statement about almost all vertices of G(n, p) it suffices to focus on its largest component.
This is what lies behind the next theorem, which states that almost all vertices of G(n, p)
reach uninanimity after a logarithmic (in n) number of rounds. Futhermore, for certain
densities not much above the aforementioned connectivity threshold, we are able to show
that the process reaches complete unanimity after a single round.

Theorem 3.2. Let p = d/n ≤ 1, where d � 1, and let Q be a 2 × 2 non-degenerate
payoff matrix. Suppose that (G(n, p), Q,S1/2) is an interacting node system with payoff
skew λ 6= 1. For any ε > 0 there exists β = β(λ, ε) > 0 such that a.a.s. at least n(1 − ε)
vertices in G(n, d/n) will be unanimous after at most β log n rounds. Moreover, there exists
a constant α(λ) > 1 such that if d > α(λ) log n, then a.a.s. G(n, d/n) will be unanimous
after one round.

Proof sketch. The part of the above theorem for np > c log n with c > α(λ) implies and,
in fact, it is much stronger than Theorem 3.1. That is, for λ 6= 1 the system goes into
unanimity in one round for much lower densities than n−1/2. The idea is to apply Lemma 4.8
from Section 4.3 in the first round. For even smaller densities, this lemma implies that the
number of vertices following the minority strategy after one round is at most sublinear.
We then consider the set of vertices in the giant component that do not have small degree;
these vertices comprise of almost all of the giant component. We show that amongst
these vertices, the number which utilise the most popular strategy increases by a constant
factor of its current size during each round. Thus amongst this set of vertices, we achieve
unanimity in a logarithmic number of rounds, thus providing the 1 − ε proportion, if
G is not connected. This procedure is outlined in Lemma 4.9 and proven in Appendix
D. Furthermore, if d > α(λ) log n, the graph is connected with high probability and,
therefore, the only vertices which are not unanimous are those of low degree. We prove a
sequence of structural lemmas concerning how these vertices are connected, which in turn
imply that structures which block unanimity do not appear. Thus the low degree vertices
synchronise with the high degree vertices. The proofs of the structural lemmas can be
found in Appendix C, while the full proof of this theorem can be found in Section 4.4.

We refine the above theorem focusing on the largest connected component of G(n, p)
which we denote by L1(G(n, p)) (formally, if there are at least two, we take the lexico-

graphically smallest one). Let u
(1)
n be the probability that L1(G(n, d/n)) will eventually

become unanimous. The next two theorems give the precise location of the threshold on
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p above which u
(1)
n approaches 1. In fact, there are two different thresholds for the two

regimes. We start with the majority regime. For λ > 0, let

`λ := dmax{λ, λ−1}e and cλ :=
1

`λ + 1
.

(For a real number x > 0, we let dxe = x, if x ∈ N, and dxe = bxc + 1, otherwise.) We
write Po(γ) for the Poisson distribution with parameter γ > 0.

Theorem 3.3. Suppose that λ 6= 1 and d = cλ log n+ log log n+ω(n). Then the following
hold in the majority regime.

(1) If ω(n)→ +∞ as n→ +∞, then

lim
n→+∞

u(1)
n = 1.

(2) If ω(n)→ c ∈ R as n→ +∞, then

lim sup
n→+∞

u(1)
n ≤

∞∑
k=0

(
1− 1

2`λ+1

)k
P
(
Po(ec(`λ+1)/`λ!) = k

)
.

and

lim inf
n→+∞

u(1)
n ≥

∞∑
k=0

(
1

2`λ+1

)k
P
(
Po(ec(`λ+1)/`λ!) = k

)
.

(3) If ω(n)→ −∞ as n→ +∞, then

lim
n→+∞

u(1)
n = 0.

The analogous result for the minority regime is as follows. For λ > 0, we let

`′λ = bmax{λ, λ−1}c.

Theorem 3.4. Suppose that λ 6= 1 and d = 1
2

log n +
1+`′λ

2
log log n + ω(n). Then the

following hold in the minority regime.

(1) If ω(n)→ +∞ as n→ +∞, then

lim
n→+∞

u(1)
n = 1.

(2) If ω(n)→ c ∈ R as n→ +∞, then

lim sup
n→+∞

u(1)
n ≤

∞∑
k=0

(
3

4

)k
P
(
Po(e2c/`′λ!) = k

)
.

and

lim inf
n→+∞

u(1)
n ≥ P

(
Po(e2c/`′λ!) = 0

)
.

(3) If ω(n)→ −∞ as n→ +∞, then

lim
n→+∞

u(1)
n = 0.
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Proof sketch. Essentially both of these theorems capture the threshold needed for the ex-
istence of structures which block unanimity. The exact structure which these theorems
describe is that of a blocking star ; this is introduced in Section 4.1. Unanimity is achieved
if and only if there is no induced copy of a suitable blocking star in the network. In each
regime, when p is below the threshold a suitable blocking star appears, while no induced
copies are found when p is above the threshold. It is worth noting that thresholds differ
between regimes. This follows due to the fact that differing evolution rules, require differ-
ent types of structures to block unanimity. The proofs of these results are supported by
a sequence of lemmas concerning the distribution of blocking stars in G(n, p). These are
stated in Section 4.1, and proved in Appendix B. The proofs of these two theorems can
be found in Section 4.4.

The reason for the existence of two different thresholds is that the structures that block
unanimity are different in the two regimes. Effectively, these are the thresholds for their
disappearance as subgraphs of G(n, p) and, as it turns out, as subgraphs of L1(G(n, p)).
Nevertheless, as our arguments show, in both regimes the unanimity of L1(G(n, p)) is
achieved in O(log n) steps.

During our analysis, we will see that there are two different kinds of unanimity depending
on whether the payoff matrix is in the majority or in the minority regime. In the majority
regime, all vertices of L1(G(n, p)) stabilise to one of the two strategies. However, in the
minority regime, the vertices of L1(G(n, p)) arrive at unanimity but they fluctuate inces-
santly between the two strategies. In other words, in the majority regime the subsystem
of L1(G(n, p)) becomes periodic with period 1, whereas in the minority regime the period
is equal to 2. Furthermore, we identify the strategy that is played at each step once this
subsystem has entered the periodic cycle.

We close this introductory section with a brief discussion on the case of degenerate payoff
matrices.

3.2. Degenerate payoff matrices. If Q is degenerate, then the behaviour of the inter-
acting node system is readily deduced. The system will either reach stability from the
outset, or it will reach stable unanimity after one round. We summarise this behaviour in
the following lemma.

Lemma 3.5. Let Q be a degenerate payoff matrix, G a connected graph, and S an initial
configuration of vertex strategies. Then the interacting node system (G,Q,S), evolves as
follows: Either the system is stable from T = 0, or the system is unanimous and stable
from T = 1.

Proof. We divide our proof into a number of cases. Firstly, we note that if q0,0 = q1,0 and
q0,1 = q1,1, then we must achieve stability from the initial state, since T0(v) = T ′0(v). Hence,
for all v ∈ V (G) we have that S0(v) = St(v) for t ≥ 0.

Suppose that the above case does not occur, and we have q0,0 > q1,0. For Q to be
degenerate, we are forced to have that q0,1 ≥ q1,1. Consequently, we now have top row
domination in Q. For any game played by vertex v, it is always optimal to play strategy
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zero. As G is connected, every vertex will play at least one game, and, in particular,
it is always optimal to play strategy 0, which corresponds to the top row of the payoff
matrix. Therefore, for all v we have that S1(v) = 0, and a stable unanimity is achieved.
A similar row domination argument follows for the remaining possibilities of degenerate
matrices. �

As Lemma 3.5 holds when G is any connected graph, it then follows that this argument
suffices as a proof of both Theorem 3.1 and Theorem 3.2 for the case that Q is a degenerate
payoff matrix.

3.3. Notation and probabilistic tools. We finish the introductory section giving some
notation. For two distinct vertices v, u ∈ V of a graph G(V,E), we write v ∼ u to
indicate that they are adjacent, that is, uv ∈ E. We also use the symbol ∼ in the
context of random variables. In particular, for a random variable X we will write X ∼
Bin(s, q) to indicate that the distribution of X is the binomial with parameters s ∈ N
and q ∈ [0, 1]. Furthermore, we write f(n) ∼ g(n) for two real-valued functions on N, if
limn→∞ |f(n)|/|g(n)| = 1. Also, we write f � g, if limn→∞ |f(n)|/|g(n)| =∞.

For a vertex v in a given graph, we will set d(v) := |NG(v)| to be the degree of v within
the graph G, and recall that NG(v) denotes the neighbourhood of v in G. The particular
graph we refer to will be made specific by the context. If S ⊂ V , we will be writing e(S)
for the number of edges that G spans inside S. Also, if v ∈ V we denote by dS(v) the
degree of v inside S.

When we consider the process on G(n, p) we shall use the symbols Pt and Nt to denote the
subsets of vertices whose agents play strategy 1 and 0, respectively, after the tth step. More
formally, for t ≥ 0, we define Pt = {v ∈ Vn : St(v) = 1} and Nt = {v ∈ Vn : St(v) = 0}.

The Chernoff bound. Throughout our arguments we will use the standard Chernoff bounds
for concentration of binomially distributed random variables. The inequality we will use
follows from Theorem 2.1 in [23]. If X is a random variable such that X ∼ Bin(N, q), then
for any δ ∈ (0, 1) we have

P(|X −Nq| ≥ δNq) ≤ 2e−δ
2Nq/3. (3)

4. Interacting node systems with skew λ 6= 1

4.1. Blocking structures and their properties. We will start with the identification of
those structures/induced subgraphs of G(n, p) which, roughly speaking, will stay immune
to what the rest of the graph is doing. Thus, these substructures act as obstructions to
unanimity.

In particular, the structure we consider is an (`, k)-blocking star. This is a star whose
central vertex has degree ` + k in G(n, d/n) and, furthermore, ` leaves of the star have
degree 1 inside G(n, d/n), whereas we impose no restriction on the degrees of the remaining
k leaves. We call the latter leaves the connectors of the blocking star, whereas the ` leaves
of degree 1 are called the blocking leaves. Such a structure is illustrated in Figure 1. An
(`, k)-blocking star has the property that it can block or absorb the influence of the external



14 BEST RESPONSE DYNAMICS ON RANDOM GRAPHS

v u

u1

u2

uk

v1

v2

v3

v`

Figure 1. A blocking star with central vertex v, blocking leaves v1, . . . , v`
and connectors u1, . . . , uk.

vertices depending on the choice of its parameters ` and k, respectively. Let us consider
first the minority regime. It will turn out that it will be sufficient to consider (1, k)-
blocking stars for a suitable defined k. Let i∗ ∈ {0, 1} be such that λ2i∗−1 = max{λ, λ−1}.
For i, j ∈ {0, 1}, we say that a star has the (i, j)-configuration if the blocking leaves play
strategy i whereas the centre plays strategy j.

Claim 4.1. Consider a (1, k)-blocking star with k ≤ bλ2i∗−1c. In the minority regime, if
the star ever gets into the (i∗, 1− i∗)-configuration, it will stay so forever.

Proof. Let v1 denote the blocking leaf and v denote the centre of the star. Suppose that
St(v1) = i∗ but St(v) = 1− i∗. By (2), the vertex v will change strategy, if nt(v; 1− i∗) >
λ2i∗−1nt(v; i∗). Since St(v1) = i∗, then nt(v; 1 − i∗) ≤ k ≤ bλ2i∗−1c. But also nt(v; i∗) ≥
1. So we would have bλ2i∗−1c > λ2i∗−1, which is impossible. Thus, St+1(v) = 1 − i∗.
Furthermore, St+1(v1) = i∗, since v1 has no neighbours playing i∗. �

Claim 4.2. Consider a (1, k)-blocking star with k > bλ2i∗−1c. In the minority regime, if
the k connectors simultaneously alternate between 1− i∗ and i∗, then the blocking leaf and
centre will eventually synchronise with them.

Proof. Let v1 be the blocking leaf, v be the centre and u1, . . . , uk be k connectors of the
star. Suppose that St(uj) = 1− i∗, for all j = 1, . . . , k.

If St(v) = 1 − i∗, then v will change strategy if nt(v; 1 − i∗) > λ2i∗−1nt(v; i∗) (cf. (2)).
But nt(v; 1− i∗) ≥ k and nt(v; i∗) ≤ 1. Since k > bλ2i∗−1c, the above inequality is indeed
satisfied. Hence, St+1(v) = i∗. Also, note that St+1(v1) = i∗.

On the other hand, if St(v) = i∗, then v will not change strategy if nt(v; i∗) ≤ λ1−2i∗nt(v; 1−
i∗). But nt(v; 1 − i∗) ≥ k > bλ2i∗−1c. Therefore, nt(v; 1 − i∗) > λ2i∗−1. So λ1−2i∗nt(v; 1 −
i∗) > 1. But nt(v; i∗) ≤ 1 and the inequality is satisfied. Therefore, St+1(v) = i∗. However,
now St+1(v1) = 1− i∗.

Suppose now that St(uj) = i∗, for all j = 1, . . . , k. If St(v) = 1 − i∗, then by (2)
v will change strategy if nt(v; 1 − i∗) > λ2i∗−1nt(v; i∗). But now nt(v; 1 − i∗) ≤ 1 and
nt(v; i∗) ≥ k > λ2i∗−1. Thus, the above inequality is not satisfied and St+1(v) = 1 − i∗.
Also, note that St+1(v1) = i∗.
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If St(v) = i∗, then v will not change strategy if nt(v; i∗) ≤ λ1−2i∗nt(v; 1 − i∗). Now,
nt(v; i∗) ≥ k > λ2i∗−1 > 1 but λ1−2i∗nt(v; 1 − i∗) ≤ λ1−2i∗ < 1. So the above inequality is
not satisfied and St+1(v) = 1− i∗. Furthermore, St+1(v1) = 1− i∗.

We thus conclude that in any case the centre v will synchronise with the k connectors.
Note that from the above four cases, we see that the blocking leaf v1 will synchronise with
v at the steps where it changes state. Hence, it will also synchronise with the k connectors
too. �

In the majority regime, it will turn out that we will need to consider (`, 1)-blocking
stars. We will show that if ` is sufficiently large, then the (`, 1)-blocking star can block the
influence of the external vertices and retain the strategy of its vertices.

Claim 4.3. Consider an (`, 1)-blocking star with ` ≥ dλ2i∗−1e. In the majority regime, if
it is set to the (1− i∗, 1− i∗)-configuration initially, then it will stay in this configuration
forever.

Proof. Suppose that v1, . . . , v` are the `-blocking leaves and v is the centre of the star.
Assume that all St(v) = St(v1) = · · · = St(v`) = 1 − i∗. By (1), the centre will change
strategy at step t + 1, if nt(v; 1 − i∗) < λ2i∗−1nt(v; i∗). But nt(v; 1 − i∗) = ` ≥ dλ2i∗−1e
and nt(v; i∗) ≤ 1. Hence, we should have dλ2i∗−1e < λ2i∗−1, which is impossible. So
St+1(v) = 1 − i∗. Further, note that the `-blocking leaves will adopt the strategy of the
centre at step t+ 1, since they have no other neighbours. Thus, St+1(vj) = 1− i∗, for any
j = 1, . . . , `, as well. �

Claim 4.4. Consider an (`, 1)-blocking star with ` ≥ 1. In the majority regime, if it is set
to the (i∗, i∗)-configuration initially, then it will stay in this configuration forever.

Proof. Suppose that v1, . . . , v` are the `-blocking leaves and v is the centre of the star.
Assume that all St(v) = St(v1) = · · · = St(v`) = i∗. By (1), the centre will change strategy
at step t + 1, if nt(v; i∗) < λ1−2i∗nt(v; 1 − i∗). But nt(v; i∗) ≥ 1 and nt(v; 1 − i∗) ≤ 1. So
the above inequality is not satisfied, since λ1−2i∗ < 1, and, therefore, St+1(v) = i∗. Finally,
the `-blocking leaves will retain the strategy of the centre at step t+ 1, since they have no
other neighbours. Thus, St+1(vj) = i∗, for any j = 1, . . . , `, as well. �

4.2. The distribution of blocking stars inside G(n, d/n). Now, we shall give a general
condition that determines the distribution of the (`, k)-blocking stars in G(n, d/n). The
following results will be useful both for the subcritical and the supercritical regime that
we analyse in the next subsection.

LetX`,k,n be the random variable which is the number of (`, k)-blocking stars inG(n, d/n)

and let X
(1)
`,k,n be the number of those (`, k)-blocking stars which are subgraphs of the largest

component, L1(G(n, d/n)). Clearly, X
(1)
`,k,n ≤ X`,k,n. However, the following result states

that a.a.s. these two random variables are approximately equal. In particular, we consider
the following two lemmas, the proofs of which can be found in Appendix B.

Lemma 4.5. Let ` ∈ N and p = d/n, where 1 � d = d(n) = O(log n). Then EX`,n ∼
nd

`+k

`!k!
e−d(`+1).
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Furthermore, if d = 1
`+1

log n+ `+k
`+1

log log n+ ω(n), then the following hold.

i. If ω(n)→ −∞ as n→ +∞, then EX`,k,n → +∞ as n→ +∞ and moreover, a.a.s.
X`,k,n ≥ EX`,k,n/2.

ii. If ω(n)→ c ∈ R as n→ +∞, then EX`,k,n → e(`+1)c

`!k!
as n→∞ and

X`,k,n
d→ Po

(
e(`+1)c

`!k!

)
.

iii. If ω(n)→ +∞ as n→ +∞, then P(X`,k,n > 0) < 2e−(`+1)ω(n), for any n sufficiently
large. Thus, a.a.s. X`,k,n = 0.

Let X
(2)
`,k,n = X`,k,n −X(1)

`,k,n.

Lemma 4.6. We have EX(2)
`,k,n = o(EX`,k,n).

So Markov’s inequality implies that a.a.s. X
(2)
`,k,n ≤ EX`,k,n/4. By Lemma 4.5, if d =

1
`+1

log n+ `+k
`+1

log log n+ ω(n), with ω(n)→ −∞, then a.a.s.

X
(1)
`,k,n ≥

1

4
EX`,k,n. (4)

Furthermore, note that any two (`, k)-blocking stars can share only their connector ver-
tices. So, if we consider the initial assignment of strategies, each (`, k)-blocking star inside
L1(G(n, d/n)) will be set into (i, j)-configuration with probability 1/2`+1, independently
of each other. Thus, the weak law of large numbers together with (4) imply the following.

Lemma 4.7. Let p = d/n, where d = 1
`+1

log n + `+k
`+1

log log n + ω(n), for k, ` ∈ N. Let
i, j ∈ {0, 1}.

i. If ω(n)→ −∞ as n→ +∞, then a.a.s. at least 1
8
· 1

2`+1EX`,k,n of the (`, k)-blocking
stars inside L1(G(n, d/n)) will be set into (i, j)-configuration at the beginning of the
process.

ii. If ω(n) → c ∈ R as n → +∞, then the number of (`, k)-blocking stars in-
side L1(G(n, d/n)) will be set into (i, j)-configuration at the beginning of the pro-
cess converges in distribution as n → ∞ to a random variable distributed as
Bin(Po(e(`+1)c/(`!k!)), 1

2`+1 ).

4.3. Analysis of first round, and a procedure for declaring unanimity in vertices
of high degree. In this subsection, we analyse the first round of the process. In Lemma
4.8 we show that after one round, a sublinear majority is formed. It then follows that if
G(n, p) is dense enough, then this majority is in fact unanimity. In sparser cases we show
that vertices of degree at least some (large) constant C, reach unanimity over a logarithmic
number of rounds. This argument is presented in Lemma 4.9. Suppose that I = (G,Q,S)
is an interacting node system with λ = λ(Q) 6= 1 and G = G(n, p). We denote by
mt = argmin{|Nt|, |Pt|} and µt = min{|Nt|, |Pt|}. The following lemma describes the first
round of the evolution; notably it describes the formation of a large majority after a single
round.
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Recall that i∗ ∈ {0, 1} is the strategy which satisfies λ1−2i∗ < 1. Note that since λ 6= 1,
exactly one of 0 or 1 satisfies this. Note further that λ1−2i∗ = min{λ, λ−1}. Hence,

max{λ, λ−1} · λ1−2i∗ = max{λ, λ−1} ·min{λ, λ−1} = λ · λ−1 = 1. (5)

We will use this identity later on.
Now, we will show that, in the majority regime, after one round strategy i∗ will become

the dominant strategy among the vertices of G(n, d/n). However, in the minority regime
it will be strategy 1− i∗ that will dominate.

Lemma 4.8. Let p = d/n where d � 1. For any 0 < λ 6= 1, there exists γ > 0 for
which the following holds. A.a.s. across the product space of G(n, p) and S1/2 : For the
interacting node system I = (G(n, p), Q,S1/2) with λ(Q) = λ, we have µ1 ≤ ne−γd. In
particular, after the first round, the majority of the vertices will be playing either strategy i∗

(majority regime) or strategy 1− i∗ (minority regime). Furthermore, there exists α(λ) > 1
such that if d > α(λ) log n, then a.a.s. µ1 = 0.

Proof. Suppose first that our system is in the majority regime. By (1), if a vertex
plays strategy 1 − i∗, then it will change strategy if n0(v; 1 − i∗) < λ1−2(1−i∗)n0(v; i∗) =
λ2i∗−1n0(v; i∗). Also, if a vertex plays strategy i∗, then it will stay there, if n0(v; i∗) ≥
λ1−2i∗n0(v; 1− i∗).

Suppose now that our system is in the minority regime. By (2), if a vertex plays strategy
1 − i∗, then it will remain there if n0(v; 1 − i∗) ≤ λ1−2(1−i∗)n0(v; i∗) = λ2i∗−1n0(v; i∗).
Also, if a vertex plays strategy i∗, then it will switch to strategy 1 − i∗, if n0(v; i∗) >
λ1−2i∗n0(v; 1− i∗).

For each v ∈ Vn and for δ ∈ (0, 1) we say that v is δ-balanced if for all i ∈ {0, 1}, we
have that

∣∣n0(v; i)−E[n0(v; i)]
∣∣ ≤ δE[n0(v; i)]. If v is not δ-balanced then we say that v is

δ-unbalanced, and we denote the set of δ-unbalanced vertices as Uδ. Now, note that if v is
δ-balanced, then provided that δ = δ(λ) ∈ (0, 1) is sufficiently small

λ1−2i∗ <
1− δ
1 + δ

≤ n0(v; 1− i∗)
n0(v; i∗)

≤ 1 + δ

1− δ
< λ2i∗−1.

In other words, if v is δ-balanced, then all the above four inequalities will be satisfied. We
thus arrive at the following conclusions:

1. if v is δ-balanced and Q is in the majority regime, then S1(v) = i∗;
2. if v is δ-balanced but Q is in the minority regime, then S1(v) = 1− i∗.

Furthermore, if the majority of the vertices in Vn are δ-balanced, then µ1 ≤ |Uδ|. We will
show that a.a.s. the majority of the vertices in Vn are δ-balanced, whereby they adopt
strategy i∗ or 1− i∗ after one step, as described above.

We will show that an arbitrary vertex v ∈ Vn is δ-balanced with probability 1−o(1). For
any v ∈ Vn the random variables n0(v; 0) and n0(v; 1) have identical distributions, namely
the binomial distribution Bin(n− 1, p/2). Therefore

E[n0(v; 1)] = E[n0(v; 0)] = (1− o(1))
d

2
.
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Set γ̄ = δ2/7. We bound the probability that v ∈ Uδ. By Chernoff’s inequality (3) we have:

P
[∣∣n0(v; 0)− E[n0(v; 0)]

∣∣ ≥ δE[n0(v; 0)]
]
≤ 2e−

δ2

3
(1−o(1))d

2 ≤ e−γ̄d.

where the last inequality holds for n sufficiently large. The same holds for n0(v; 1) as it is
identically distributed to n0(v; 0). Hence, by the union bound, for any v ∈ Vn

P [v ∈ Uδ] ≤ 2e−γ̄d.

Therefore, E [|Uδ|] ≤ 2ne−γ̄d.
By Markov’s inequality we have:

P[|Uδ| ≥ ne−γ̄d/2] ≤ 2ne−γ̄d

ne−γ̄d/2
= 2e−γ̄d/2 = o(1).

Therefore, a.a.s. we have that |Uδ| < ne−γ̄d/2. In turn, a.a.s. µ1 ≤ |Uδ| < ne−γ̄d/2.
Finally, note that the last inequality above implies that if d > α(λ) log n, for some α(λ) >

1 sufficiently large then the above is o(1), which shows the last part of the lemma. �

It suffices to focus on the case where d ≤ α(λ) log n, as otherwise a.a.s. the process
reaches unanimity after one step by the above lemma. For the analysis of the subsequent
rounds we will split the vertices of G(n, d/n) into two classes and we will consider their
evolution separately. More specifically, for C ∈ N we set

Hn(C) := H(C,G(n, d/n)) := {v ∈ Vn : d(v) ≥ C}
and

Ln(C) := L(C,G(n, d/n)) := Vn \H(C,G(n, d/n)) = {v ∈ Vn : d(v) < C}.
The following lemma concerns the evolution of the vertices in Hn(C). It shows that if

one of the strategies occupies only a sublinear number of vertices in Hn(C) (and we have
almost unanimity), then after one more round the size of the minority strategy will contain
only a fraction of these vertices. The proof of this lemma can be found in Appendix D.

Lemma 4.9. Let d = d(n) be such that 1 � d ≤ α(λ) log n, and let Q be a 2 × 2 non-
degenerate payoff matrix. For any ε > 0 there exists Cε,λ ∈ N such that for any γ > 0 and
for any C ≥ Cε,λ a.a.s. G(n, d/n) satisfies the following: for any initial configuration S
with |m0 ∩ Hn(C)| < ne−γd, the interacting node system I = (G(n, d/n), Q,S) will have
|m1 ∩Hn(C)| ≤ ε|m0 ∩Hn(C)|.

Remark 4.10. It is not very hard to show that in fact a.a.s. Hn(C) consists of the majority
of the vertices of G(n, d/n) if d� 1. (For example, an application of the Chernoff bound
can show that most vertices have degree around d.) More specifically, if d� 1, then by (3)
for any vertex v ∈ Vn

P(d(v) ≤ C) = o(1).

Hence, E(|Ln(C)|) = o(n). By Markov’s inequality for any ε > 0 a.a.s.

|Ln(C)| < εn,

as long as d� 1.
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4.4. Small degree vertices, their structure and their role in unanimity: proof
of Theorems 3.2, 3.3 and 3.4. Lemma 4.9 above implies that Hn(C) will become
unanimous after a number of rounds. So now, it remains to characterise when Ln(C) will
synchronise with Hn(C). In order to do this we need to consider which structures can occur
within Ln(C) and observe what this implies for the evolution rules. We will now state a
selection of lemmas which describe the structure of the subgraph induced by the vertices
in Ln(C), for any fixed integer C ≥ 2. Their proofs can be found in Appendix C. Let us
recall that `λ = dmax{λ, λ−1}e and cλ = 1

`λ+1
.

Lemma 4.11. Suppose that p = d/n with cλ log n ≤ d ≤ α(λ) log n. A.a.s. there are no
`λ + 2 vertices in Ln(C) that have a common neighbour.

The above lemma implies in particular that a.a.s. at most `λ + 1 vertices in Ln(C) are
adjacent to each vertex in Hn(C). Thus, we see that if all vertices in Hn(C) play a certain
strategy simultaneously and C is large compared to `λ, then they may stay unaffected by
what the vertices in Ln(C) do. The following two lemmas state that connected components
in Ln(C) are both small, and can not be too complex. We will apply these assertions to
show unanimity occurring within Ln(C).

Lemma 4.12. Let ` ∈ N and let p = d/n where 1
`+1

log n ≤ d = d(n) ≤ α(λ) log n. A.a.s.
all connected sets of vertices in Ln(C) have size at most `+ 1.

Lemma 4.13. Let p = d/n where cλ log n ≤ d = d(n) ≤ α(λ) log n. A.a.s. all connected
sets of vertices in Ln(C) induce trees.

We now proceed with the proofs of Theorems 3.2, 3.3 and 3.4.

Proof of Theorem 3.2. Let us first point out that by Lemma 4.8, if d ≥ c log n with c >
α(λ), where α(λ) is as in the statement of that lemma, then a.a.s. µ1 = 0; so the last part
of Theorem 3.2 follows. Hence, we now assume that d ≤ α(λ) log n. We say that G(n, d/n)
has the minority decline property for some γ > 0, whenever for any configuration S on
Vn the node system I = (G(n, d/n), Q,S) is such that µ0 ≤ ne−γd, then |m1 ∩Hn(C)| ≤
|m0 ∩ Hn(C)|/10. Observe now that if G(n, d/n) has the minority decline property, and
I = (G(n, p,Q,S) is a node system with µ0 < ne−γd, for some γ > 0, then the vertices
in Hn will reach unanimity in a finite number of rounds, by repeated applications of this
definition.

By Lemma 4.8, a.a.s. µ1 < ne−γd for some γ > 0. But by Lemma 4.9, if C > C1/10,λ, then
a.a.s. G(n, p) has the minority decline property for γ > 0 as above. Thus, for every t ≥ 1
we have |mt∩Hn(C)| ≤ |m0∩Hn(C)|10−t. So for R = d(1/ log 10) log (|m1 ∩Hn(C)|)e+1 =
O(log n) we have

|mR ∩Hn(C)| ≤ |m1 ∩Hn(C)|10−R < 1.

So |mR ∩ Hn(C)| = 0. We now show that if C is sufficiently large and every vertex in
Hn(C) does not have too many neighbours inside Ln(C), then once Hn(C) has reached
unanimity, it will stay there. In particular, Lemma 4.11 states that a.a.s. no `λ+2 vertices
in Ln(C) have a common neighbour. Let us denote this event by Dn. Thus, on Dn all
vertices in Hn(C) have at most `λ + 1 neighbours inside Ln(C).
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Claim 4.14. If C > max{`λ + 4, (`λ + 1)2} and the vertices in Hn(C) are unanimous just
after step t, playing i∗ when in the majority regime, then on the event Dn, the vertices of
Hn(C) will stay unanimous after step t+ 1.

Proof of Claim 4.14. Indeed, suppose that at step t all vertices of Hn(C), for C to be
determined, are unanimous at playing strategy i ∈ {0, 1}. Consider a vertex v ∈ Hn(C). If
the event Dn is realised, then all but at most `λ+1 = dmax{λ, λ−1}e+1 neighbours of v play
strategy i. So nt(v; i) ≥ C−(`λ+1) and nt(v; 1−i) ≤ dmax{λ, λ−1}e+1 < max{λ, λ−1}+2.

Suppose first that we are in the majority regime. Then in this case i = i∗, by assumption.
Vertex v will change strategy if nt(v; i∗) < λ1−2i∗nt(v; 1− i∗) (cf. (1)). But

λ1−2i∗nt(v; 1− i∗) < λ1−2i∗(`λ + 1) ≤ λ1−2i∗(max{λ, λ−1}+ 2)
(5)
< 1 + 2 = 3.

Therefore must have that C − (`λ + 1) < 3. However, choosing C ≥ `λ + 4 leads to a
contradiction.

If we are in the minority regime, then we want to show that v will switch strategy.
By (2) if the entire set Hn(C) plays strategy i∗, then v ∈ Hn(C) will switch strategy if
nt(v; i∗) > λ1−2i∗nt(v; 1− i∗). But nt(v; i∗) ≥ C−(`λ+1) and nt(v; 1− i∗) ≤ `λ+1. As seen
above, if C ≥ `λ + 4 then nt(v; i∗) ≥ C− (`λ + 1) ≥ 3 > λ1−2i∗(`λ + 1) ≥ λ1−2i∗nt(v; 1− i∗).
Now, if the entire set Hn(C) plays strategy 1− i∗, then v ∈ Hn(C) will switch strategy if
nt(v; 1− i∗) > λ1−2(1−i∗)nt(v; i∗). But nt(v; i∗) ≤ `λ+1 whereas nt(v; 1− i∗) ≥ C− (`λ+1).
Thus v will switch strategy if C−(`λ+1) ≥ λ2i∗−1(`λ+1). Therefore, choosing C ≥ (`λ+1)2

verifies it and completes the proof of the claim. �

Remark 4.15. For the minority regime, the above claim and Lemma 4.8 imply that, when
unanimity occurs within Hn(C), its vertices will be playing strategy 1− i∗ at odd steps and
strategy i∗ at even steps. In the majority regime, they stabilise to strategy i∗.

Note that by Remark 4.10, if d� 1, then for any fixed C ∈ N we have a.a.s. |Hn(C)| ≥
n(1 − o(1)). Therefore, the above analysis implies that for any ε > 0 there exists β =
β(ε, λ) > 0 such that if d � 1, then a.a.s. at least n(1 − ε) vertices in G(n, d/n) will be
unanimous after at most β log n rounds. �

Proof of Theorem 3.3. Suppose first that d = cλ log n+log log n+ω(n), where ω(n)→ −∞
as n→ +∞. By Lemma 4.7 i., a.a.s. there are (`λ, 1)-blocking stars in L1(G(n, d/n)) that
are set to the (1−i∗, 1−i∗)-configuration. By Claim 4.3, those will retain this configuration

forever and, therefore, they will be in disagreement with the vertices in Hn(C). Hence, u
(1)
n ,

the probability that L1(G(n, d/n)) becomes eventually unanimous, tends to 0 as n→ +∞.
We will now consider the cases where d = cλ log n + log log n + ω(n), where either

ω(n)→ +∞ or ω(n)→ c ∈ R, as n→ +∞. We will need the following claim.

Claim 4.16. Let Q be in the majority regime. If a vertex v has at most `λ − 1 neighbours
playing strategy 1− i∗ but at least one playing strategy i∗, it will play strategy i∗ in the next
round.
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Proof of Claim 4.16. If v already plays strategy i∗, then it will change strategy if nt(v; i∗) <
λ1−2i∗nt(v; 1− i∗). But nt(v; i∗) ≥ 1 and nt(v; 1− i∗) ≤ `λ − 1.

λ1−2i∗nt(v; 1− i∗) ≤ λ1−2i∗(`λ − 1) < λ1−2i∗ ·max{λ, λ−1} (5)
= 1.

So v will not change strategy. Now, if v already plays strategy 1−i∗, then it will not change
its strategy if nt(v; 1− i∗) ≥ λ1−2(1−i∗)nt(v; i∗) = λ2i∗−1nt(v; i∗). But nt(v; 1− i∗) ≤ `λ − 1
whereas λ2i∗−1nt(v; i∗) ≥ λ2i∗−1 > `λ − 1. Therefore, v will change its strategy into i∗. �

Suppose that d = cλ log n + log log n + ω(n) with ω(n) → +∞ as n → +∞. Let
G(L)(n, d/n) denote the subgraph of G(n, d/n) induced by the vertices in Ln(C). By
Lemma 4.12 (with ` = `λ) and Lemma 4.13, every connected component of G(L)(n, d/n)
is a tree of order at most `λ + 1. Let T be one of these connected components that is a
subgraph of L1(G(n, d/n)).

If |T | ≤ `λ, then all its vertices have degree at most `λ−1 in T . For i ≥ 1, let T (i) denote
the set of vertices in T that are at distance i from Hn(C). Once the vertices in Hn(C) have
been unanimous on strategy i∗, they will stay there forever. By Claim 4.16 the vertices in
T (1) will adopt strategy i∗ and remain there forever. Assuming that the vertices T (i) have
adopted strategy i∗ for ever, then the vertices of T (i+1) will adopt strategy i∗ too (provided
it is non-empty) by Claim 4.16 and remain there forever. Hence, the entire vertex set of T
will adopt strategy i∗.

Suppose now that |T | = `λ + 1. If all its vertices have degree at most `λ − 1, then
eventually the vertices of T adopt strategy i∗, by the above argument. If there is a vertex
in T of degree `λ + 1 within T , then T must be a star. However, by Lemma 4.7 ii. a.a.s.
this is not an (`λ, 1)-blocking star. Thus, one of its leaves must have a neighbour in Hn(C).
Since it has degree 1 (≤ `λ − 1) inside T , then by Claim 4.16 it adopts strategy i∗ after
Hn(C) becomes unanimous and stays there forever. Subsequently, the centre of T will do
so (it also has at most `λ − 1 neighbours that are not playing strategy i∗) and finally the
remaining leaves adopt it as well.

Moreover, the above argument shows that the only connected components of G(L)(n, d/n)
which may not adopt strategy i∗ are the (`, 1)-blocking stars, for ` ≤ `λ. If there are no
(`λ, 1)-blocking stars, then L1(G(n, d/n)) will then become unanimous.

Firstly, let us observe that if ω(n) → c ∈ R as n → +∞, then by Lemma 4.5 iii. a.a.s.
there are no (`λ + 1, 1)-blocking stars as

P(X`λ+1,1,n > 0) ≤ 2e−Ω(logn) = o(1).

Furthermore, by Lemma 4.11 a.a.s. there are no `λ + 2 vertices of degree 1 that have a
common neighbour. Therefore, a.a.s. there are no (`, 1)-blocking stars for any ` ≥ `λ + 1.

Now, by Lemma 4.7 ii., the random variable X
(1)
`λ,1,n

converges in distribution as n→ +∞
to a random variable distributed as Po(ec(`λ+1)/`λ!). Thus, for any integer k ≥ 0, we have

P(X
(1)
`λ,1,n

= k)→ P
(
Po(ec(`λ+1)/`λ!) = k

)
as n→ +∞.



22 BEST RESPONSE DYNAMICS ON RANDOM GRAPHS

Suppose now that X
(1)
`λ,1,n

= k, for some k ∈ N0. The case k = 0 was treated above and

unanimity is attained a.a.s. (on the conditional space where X
(1)
`λ,1,n

= 0). Let us consider
the case k ≥ 1. If an (`λ, 1)-blocking star is initially set to (1−i∗, 1−i∗)-configuration, then
by Claim 4.3 it will stay in this configuration forever. We thus conclude that if unanimity
is achieved then no (`λ, 1)-blocking star is initially set to (1 − i∗, 1 − i∗)-configuration.
The probability of this is (1 − 1/2`λ+1)k. Also, if all (`λ, 1)-blocking stars attached to
L1(G(n, d/n)) are initially set to (i∗, i∗)-configuration, they will remain so forever (cf.
Claim 4.4) and will be synchronised with the vertices of Hn(C). Thus, L1(G(n, d/n)) will
be unanimous. The probability of this is 1/2k(`λ+1).

Consequently,

lim sup
n→+∞

u(1)
n ≤

∞∑
k=0

(
1− 1

2`λ+1

)k
P
(
Po(ec(`λ+1)/`λ!) = k

)
.

and

lim inf
n→+∞

u(1)
n ≥

∞∑
k=0

(
1

2`λ+1

)k
P
(
Po(ec(`λ+1)/`λ!) = k

)
.

Since Hn(C) will reach unanimity in at most β log n steps, the above case analysis implies
that a.a.s. if L1(G(n, d/n)) reaches unanimity, then this will happen within β log n+O(1)
steps. �

Proof of Theorem 3.4. Let us recall that `′λ = bmax{λ, λ−1}c = bλ2i∗−1c. Suppose first

that d = 1
2

log n+
1+`′λ

2
log log n+ ω(n), where ω(n)→ −∞ as n→ +∞. By Lemma 4.7 i.

(setting ` = 1 and k = `′λ therein), a.a.s. there are (1, `′λ)-blocking stars in L1(G(n, d/n))
that are initially set to the (i∗, 1 − i∗)-configuration. By Claim 4.1, those will retain
this configuration forever and, therefore, they will be in disagreement with the vertices in

Hn(C). Hence, u
(1)
n , the probability that L1(G(n, d/n)) becomes eventually unanimous,

tends to 0 as n→ +∞.
Now, suppose that d = 1

2
log n+

1+`′λ
2

log log n+ω(n), where ω(n)→ +∞. As before, we

let G(L)(n, d/n) denote the subgraph of G(n, d/n) induced by the vertices in Ln(C). By
Lemma 4.12 (with ` = 1) a.a.s. every connected component of G(L)(n, d/n) is of order at
most 2. That is, a.a.s. every component of G(L)(n, d/n) is either a vertex or an edge.

Let T be one of these connected components that is also a subgraph of L1(G(n, d/n)).
If T is a vertex, then it will synchronise with the vertices Hn(C) after the Rth step, where
the vertices of Hn(C) arrive at unanimity. Thus, all its neighbours (which lie in Hn(C))
will play the same strategy, say i, by (2) this vertex will adopt strategy 1 − i in the next
round and be in agreement with the vertices of Hn(C) (cf. Claim 4.14).

Suppose now that T is an edge with one of its endpoints being adjacent to vertices
in Hn(C). Hence, T is a (1, k)-blocking star for some k ∈ N. But in fact, k > `′λ as
ω(n) → +∞ and by Lemma 4.7 iii. a.a.s. there are no (1, k)-blocking stars with k ≤ `′λ.
Such a (1, k)-blocking star with k > `′λ, will have its k connectors inside Hn(C). But recall
that these will arrive at unanimity after step R and will start alternating simultaneously
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between states i∗ and 1− i∗. So by Claim 4.2, the (1, k)-blocking star will synchronise with
them.

Finally, suppose that T = v1v2 is an edge where both its endpoints v1 and v2 have at
least one neighbour in Hn(C). Let t ≥ R be a step at which St(v) = i∗, for all v ∈ Hn(C).
Assume that v1 and v2 are not unanimous with Hn(C). In particular, suppose that St(v1) =
St(v2) = 1 − i∗. Vertex v1 will not switch strategy, if nt(v1; 1− i∗) ≤ λ2i∗−1nt(v1; i∗). But
nt(v1; 1 − i∗) = 1, nt(v1; i∗) ≥ 1 and λ2i∗−1 > 1. So the inequality is satisfied. The same
holds for v2. Thereby, St+1(v1) = St+1(v2) = 1−i∗ and as St+1(v) = 1−i∗ for all v ∈ Hn(C),
thereafter v1, v2 will be synchronised with Hn(C).

Suppose now that St(v1) = 1 − i∗ but St(v2) = i∗. Then St+1(v1) = 1 − i∗ as v1

has no neighbours who play strategy 1 − i∗. Also, St+1(v2) = 1 − i∗, since nt(v2; i∗) >
λ1−2i∗nt(v2; 1− i∗). The latter holds since nt(v2; i∗) ≥ 1, nt(v2; 1− i∗) = 1 and λ1−2i∗ < 1.
As St+1(v) = 1− i∗ for all v ∈ Hn(C), thereafter v1, v2 will stay synchronised with Hn(C).
By symmetry, analogous argument can be used for the case St(v1) = i∗ but St(v2) = 1− i∗.
We thus conclude that if ω(n)→ +∞, then u

(1)
n → 1 as n→ +∞.

Finally, suppose that ω(n) → c ∈ R as n → +∞. By Lemma 4.7 ii., the random

variable X
(1)

1,`′λ,n
converges in distribution as n → +∞ to a random variable distributed as

Po(e2c/`′λ!). Thus, for any integer k ≥ 0, we have

P(X
(1)

1,`′λ,n
= k)→ P

(
Po(e2c/`′λ!) = k

)
as n→ +∞.

Suppose now that X
(1)

1,`′λ,n
= k, for some k ∈ N0. The case k = 0 was treated above and

unanimity is attained a.a.s. (on the conditional space where X
(1)

1,`′λ,n
= 0). Let us consider

the case k ≥ 1. If an (1, `′λ)-blocking star is initially set to (i∗, 1−i∗)-configuration, then by
Claim 4.1 it will stay in this configuration forever. In other words, if unanimity is achieved,
then no (1, `′λ)-blocking star is initially set to (i∗, 1− i∗)-configuration. The probability of
this is (1− 1/4)k = (3/4)k. Consequently,

lim sup
n→+∞

u(1)
n ≤

∞∑
k=0

(
3

4

)k
P
(
Po(e2c/`′λ!) = k

)
.

Since Hn(C) will reach unanimity in at most β log n steps, the above argument implies
that a.a.s. if L1(G(n, d/n)) reaches unanimity, then this will happen in at most β log n +
O(1) steps. �

5. Unbiased node systems in dense regimes: the λ = 1 case

5.1. Majority and minority dynamics. We recall that St(v) is the state of a vertex v
at a discrete time-step t ≥ 0. We consider a process running on a suitably dense realisation
of G(n, p), and also utilise the initial configuration S1/2. If our interacting node system
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(G(n, p), Q,S1/2) is in the majority regime with λ(Q) = 1, then its evolution coincides with
the majority dynamics process. The latter is defined by the following evolution rule:

St+1(v) =


1 if nt(v; 1) > nt(v; 0);

0 if nt(v; 1) < nt(v; 0);

St(v) if nt(v; 1) = nt(v; 0).

(6)

In other words, in the majority dynamics process, a node will always choose to adopt the
state shared by the majority of its neighbours. If there is a tie, then its state will remain
unchanged. Goles and Olivos [19] showed that majority dynamics on a finite graph becomes
eventually periodic with period at most 2. More specifically, there is a t0 depending on
the graph such that for any t > t0 and for any vertex v we have St(v) = St+2(v). Majority
dynamics is also a special case of voting with at least two alternatives; see [31]. Results on
the evolution of majority dynamics on the random graph G(n, p) were obtained recently
by Benjamini et al. [8]. The last author in collaboration with Kang, and Makai [16] proved
the following theorem confirming the rapid stabilisation of the majority dynamics process
on a suitably dense G(n, p), confirming a conjecture stated in [8]. This result was also
proved later by Berkowitz and Devlin [9] through a different approach. Let M0 be the
most popular vertex state seen across the initial configuration.

Theorem 5.1 [16]. For all ε ∈ [0, 1) there exist Λ, n0 such that for all n > n0, if p ≥ Λn−
1
2 ,

then G(n, p) is such that with probability at least 1− ε, across the product space of G(n, p)
and S1/2, the vertices in Vn following the majority dynamics rule, unanimously have state
M0 after four rounds.

We note that Theorem 5.1 allows us to conclude the stabilisation of the interacting node
system with λ = 1 in the majority regime.

On the other hand, if we consider an interacting node system in the minority regime
with λ = 1, then the process coincides with the minority dynamics process, described by
the following:

St+1(v) =


1 if nt(v; 1) < nt(v; 0);

0 if nt(v; 1) > nt(v; 0);

St(v) if nt(v; 1) = nt(v; 0).

(7)

Under these rules, nodes will update to the state shared by the minority of their neighbours.
It can be readily checked from (1) and (2), respectively, that the evolution of the above
systems are identical to an interacting node system with λ = 1.

We show that in the minority regime unanimity is also achieved within at most four
rounds too. However, (7) implies that vertex strategies will alternate synchronously with
period two. Our theorem concerning the evolution of minority dynamics is analogous to
Theorem 5.1.

Theorem 5.2. For all ε ∈ (0, 1] there exist Λ, n0 such that for all n > n0, if p ≥ Λn−
1
2 ,

then G(n, p) is such that with probability at least 1− ε, across the product space of G(n, p)
and S1/2, the vertices in Vn following the minority dynamics rule will unanimously have
the same state after four rounds.



BEST RESPONSE DYNAMICS ON RANDOM GRAPHS 25

Throughout this section we consider p = d/n where d ≥ Λ
√
n, for a suitably large

constant Λ. Thus, in comparison to the previous section, we will now work in a denser
regime. We will comment on sparser regimes in the discussion section of our paper. We
consider an initial configuration of S1/2, and apply the evolution rules from (6) in the
majority regime, or the evolution rules from (7) in the minority regime. We refer to the node

system using evolution rule (6) as the majority game which we denote as
(
G(n, p),S1/2

)>
;

while we refer to the system given by evolution rule (7) as the minority game, denoted(
G(n, p),S1/2

)<
. We show that in the minority game, unanimity is achieved after at most

four rounds with high probability. As noted above, the majority game will give rise to
stability, while the minority game produces a periodic system with period two.

The quantity ηt :=
∣∣∣|Pt| − |Nt|

∣∣∣ represents the size of the majority of the dominant

strategy at time t. Due to the distribution of the S1/2, we have with probability 1− ε that

the quantity η0 =
∣∣∣|P0| − |N0|

∣∣∣ will be sufficiently bounded away from zero.

Lemma 5.3 [16]. Given ε > 0, set c = c(ε) =
√

2πε/20. Then across the probability space
S1/2,

P
[
η0 ≥ 2c

√
n
]
≥ 1− ε/4,

for any n sufficiently large.

The proof of this lemma is a direct consequence of the Local Limit Theorem (see The-
orem 5.8 below). We define E+

c to be the event that |P0| − |N0| ≥ 2c
√
n, and E−c to be

the event that |N0| − |P0| ≥ 2c
√
n. The events E+

c and E−c occur with equal probability;
therefore by symmetry we may condition on either E+

c or E−c , without loss of generality.

5.2. Some results on the majority regime. We will consider a selection of results
from [16] (Lemmas 3.5, 3.6 therein), which will be useful in the minority regime analy-
sis. The first result concerns the expectation and variance of n1(v; 1), given that E+

c has
occurred.

For a vertex v ∈ Vn let N (v) = {|d(v)− d| < d2/3}.

Lemma 5.4. Consider the majority game M = (G(n, p),S1/2)> where p = d/n. Let
c = c(ε) be the constant given in Lemma 5.3. Then there exists a constant ζ, (independent
of ε) such that for any v ∈ Vn and any n sufficiently large the following holds: for any
configuration s0 ∈ E+

c and any k ∈ N such that |k − d| < d2/3:

E
[
n1(v; 1) | S1/2 = s0, d(v) = k

]
≥ k

2
+
ζc

7

(
d3

n

)1/2

.

Moreover, there exists a positive constant α, such that for any k ∈ N with |k − d| < d2/3

we have

Var
[
n1(v; 1) | S1/2 = s0, d(v) = k

]
≤ αd.

By applying Lemma 5.4, we now proceed to prove an adjustment to a result from [16].
In the modified result, we show that with high probability a vertex v will have a n1(v; 1)
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sufficiently bounded away from d(v)/2. In [16], the authors show that this quantity is at
least d(v)/2. However, in order for us to utilise this result for the minority game, we will

instead require n1(v; 1) ≥ d(v)/2+ 2γ
√
d, with high probability, for some positive constant

γ. We elaborate on the reasoning behind this assertion in Section 5.3.

Lemma 5.5. Let ε > 0, and c a positive constant as given in Lemma 5.3. Consider the
majority game M = (G(n, p),S1/2)> where p = d/n. For any positive constant γ there

exists a positive constant Λ = Λ(γ, ε), such that for all n sufficiently large if d ≥ Λn1/2

and v ∈ Vn, the followings holds:

P
[
n1(v; 1) <

d(v)

2
+ 2γ

√
d

∣∣∣∣ E+
c

]
< ε.

Proof. This argument is a direct application of Chebyshev’s inequality. Fix s0 ∈ E+
c and

k ∈ N such that |k− d| < d2/3. By applying Lemma 5.4 and subtracting 2γ
√
d, from both

sides we have that:∣∣∣∣E [n1(v; 1) | S1/2 = s0, d(v) = k
]
−
(
d(v)

2
+ 2γ

√
d

)∣∣∣∣ ≥ (d3

n

)1/2
ζc

7
− 2γ

√
d.

By Lemma 5.4 we have Var
[
n1(v; 1) | S1/2 = s0, d(v) = k

]
≤ αd. We now apply Cheby-

shev’s inequality to bound the probability that n1(v; 1) < d(v)/2 + 2γ
√
d. This gives

P
[
n1(v; 1) <

d(v)

2
+ 2γ

√
d | S1/2 = s0, d(v) = k

]
≤

49αd(
ζc (d3/n)1/2 − 14γ

√
d
)2 ≤

49α

ζc
(

d√
n

) [
ζc
(

d√
n

)
− 28γ

] .
We now recall that d > Λ

√
n. If we take Λ > (1 + 28γ)/(ζc), then ζc (d/

√
n) −

28γ ≥ 1. Applying this inequality to the denominator, and choosing Λ > 2 · max{(1 +
28γ)/ζc , 49α/εcζ} we have:

P
[
n1(v; 1) <

d(v)

2
+ 2γ

√
d | S1/2 = s0, d(v) = k

]
≤ 49α

Λcζ
≤ ε/2.

Integrating over all possible choices of s0 ∈ E+
c and k such that N (v) is realised, we obtain

P
[
n1(v; 1) <

d(v)

2
+ 2γ

√
d | E+

c ,N (v)

]
≤ ε/2.

But P [N (v)] = 1−o(1), (which follows by a standard application of the Chernoff bound (3)),
we deduce that for n sufficiently large we have

P
[
n1(v; 1) <

d(v)

2
+ 2γ

√
d | E+

c

]
≤ ε.

�
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5.3. Minority Regime. We now work within the minority regime, proving Theorem 5.2.
Recall that by (7), a vertex will update to the state shared across the minority of its
neighbours. In the event of a tie, the vertex will remain in its current state.

We observe similarities with Theorem 5.1, namely the fact that unanimity occurs, and
is achieved within at most four rounds. However the system is no longer stable, but will
become periodic with period two after unanimity is reached.

We wish to relate the proof of Theorem 5.2 to Theorem 5.1. We first start by showing that
the first round of the minority game m =

(
G(n, p),S1/2

)<
can be approximated by a specific

majority game which starts on the complementary configuration. For a configuration S
on Vn we define the complementary configuration S̄ as follows: for every v ∈ Vn we set
S̄(v) = 1 − S(v). Suppose we have an interacting node system I =

(
G,S1/2

)∗
, where

∗ ∈ {<,>}. For v ∈ Vn, we denote SIt (v) to be the strategy of a vertex v in the game I at
time t; similarly we define nIt (v; i) = |{u : SIt (u) = i}|. While these definitions are similar
to their counterparts, we would like to emphasise the role of I, as we will generally work
with two different systems: a minority game I = m (when ∗ is <) and a majority game
I = M (when ∗ is >). We now state the following lemma concerning the approximation
of a minority game m to a suitably designed majority game M .

Lemma 5.6. Let G = (V,E) be a graph and S : V → {0, 1} be a configuration. Let
m = (G,S)< be a minority game, and M = (G, S̄)> be a majority game with initial
configuration S̄. If for v ∈ V (G) we have that nm0 (v; 0) 6= nm0 (v; 1), then Sm1 (v) = SM1 (v).
If nm0 (v; 0) = nm0 (v; 1), then Sm1 (v) = 1− SM1 (v).

Lemma 5.6 allows us to deduce the behaviour of a significant number of vertices in the
first round of the minority process. The idea is to take a minority game, complement each of
the vertex strategies, and then allow one round of the evolution to occur using the majority
rules. As long as a vertex satisfies the condition nm0 (v; 0) 6= nm0 (v; 1), it will have the same
state as if it had just evolved using the minority rules on the original configuration. We
refer to the additional condition nm0 (v; 0) = nm0 (v; 1), as the equal neighbourhoods condition
(ENC).

Proof of Lemma 5.6. We first assume that nm0 (v; 0) 6= nm0 (v; 1). We split our analysis into
cases which depend on both the current state of the vertex, along with which of nm0 (v; 0)
and nm0 (v; 1) is larger. In all four cases the argument is identical; we simply must show
that Sm1 (v) = SM1 (v).

Suppose Sm0 (v) = 0, and nm0 (v; 0) > nm0 (v; 1). By applying the minority rules, we see that
Sm1 (v) = 1. We now consider the complementary state, S̄m0 (v) = SM0 (v) = 1. As we have
that nm0 (v; 0) > nm0 (v; 1), then by the definition of complementary initial configuration, it
must be the case that nM0 (v; 0) < nM0 (v; 1). By applying the majority rules to the vertex v
we have that SM1 (v) = 1; therefore, Sm1 (v) = SM1 (v).

For the case where nm0 (v; 0) = nm0 (v; 1), we observe that in both games v has an equal
of number of the vertices playing strategy one and zero in its neighbourhood. There-
fore, it follows that Sm0 (v) = Sm1 (v) and SM0 (v) = SM1 (v). However, by the definition of
complementary states we have that Sm0 (v) = 1−SM0 (v), and thus Sm1 (v) = 1−SM1 (v). �
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The main application of the above lemma is to connect the games m and M on G(n, d/n)
with initial configuration S1/2. It is at that point where we apply Lemma 5.5 to the game
m. However, we must consider which vertices satisfy the equal neighbourhoods condition.
For each vertex v ∈ Vn, we say that v ∈ ENC if nm0 (v; 0) = nm0 (v; 1), and we define
EQ(v) = |{w : w ∈ ENC} ∩ NG(n,d/n)(v)|. Let γ be a positive constant. We say that a

vertex v ∈ Vn has a γ-decisive neighbourhood in G(n, d/n) if EQ(v) < γ
√
d, and a vertex

has a γ-abundant neighbourhood in G(n, d/n) if nM1 (v; 1) ≥ 2γ
√
d+ d(v)/2. We say that a

vertex v ∈ Vn is γ-good if v has a γ-abundant and a γ-decisive neighnourhood in G(n, d/n).
The following corollary illustrates the role of γ-good vertices.

Corollary 5.7. Let γ > 0. If a vertex v ∈ Vn is γ-good in G(n, d/n) for a given initial
configuration, then Sm2 (v) = 0.

Proof. Let us abbreviate G(n, d/n) by G. Given an initial configuration on Vn, set up
the systems m and M as in Lemma 5.6, and assume that v ∈ Vn is γ-good vertex. We
show that nm1 (v; 1) > d(v)/2; we proceed by applying Lemma 5.6 to bound nm1 (v; 1) from
below. This lemma implies that if u /∈ ENC, then Sm1 (u) = SM1 (u). Hence, for all
u ∈ NG(v) \ ENC, if SM1 (u) = 1, then Sm1 (u) = 1. However for w ∈ ENC ∩ NG(v), we
have that Sm1 (w) = 1− SM1 (w). If we assume that for all w ∈ ENC ∩NG(v) we have that
SM1 (w) = 1, then we would minimise the size of nm1 (v; 1) as in that case Sm1 (w) = 0. As a
direct consequence, we have that nm1 (v; 1) ≥ nM1 (v; 1) − EQ(v). Therefore, by combining
this bound with the definitions of γ-abundance and γ-decisiveness, we have:

nm1 (v; 1) ≥ nM1 (v; 1)− EQ(v) > nM1 (v; 1)− γ
√
d ≥ d(v)

2
+ 2γ

√
d− γ

√
d

=
d(v)

2
+ γ
√
d. �

5.4. Bounding the size of EQ(v). In light of Corollary 5.7, our aim is to show that
there are a significant number of good vertices. We first show that with high probability,
there are a sufficient number of vertices with a γ-decisive neighbourhood. The proof of this
bound will require us to invoke the Local Limit Theorem for sums of Bernoulli-distributed
random variables, which follows from Theorem VII.6 p.197 in [35]. We state this result as
follows.

Theorem 5.8 [35]. Let X1, . . . Xn be independent identically distributed Bernoulli-distributed
random variables with E(X1) = µ and Var(X1) = µ−µ2 =: σ2 > 0. Let also X =

∑n
i=1Xi.

There exists ρ depending on µ for which:

sup
i∈N0

∣∣∣∣∣√Var[X] · P[X = i]− 1

2π
exp

(
−(i− E[X])2

2Var[X]

)∣∣∣∣∣ < ρ√
Var[X]

.

The following lemma provides an upper bound on the number of vertices in the neigh-
bourhood of v ∈ Vn in G(n, p) which satisfy the equal neighbourhoods condition.
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Lemma 5.9. Consider G(n, p) with np =: d = d(n)→∞ as n→∞ and let v ∈ Vn. For
every ε > 0, there exist positive constants γ and n0 such that for all n > n0 we have

P[EQ(v) ≥ γ
√
d] < ε.

Proof. For a vertex v ∈ Vn we bound the value of E[EQ(v)]. Without loss of generality we
may also assume that S0(v) = 1. For a vertex w ∈ Vn to belong to EQ(v), we must have
that w ∈ NG(n,p)(v) and w ∈ ENC. Therefore, we write

E[EQ(v) | S0(v) = 1] = E

[ ∑
w:w 6=v

1{w∼v}1{w∈ENC} | S0(v) = 1

]
=

∑
w:w 6=v

P [{w ∼ v} ∩ {w ∈ ENC} | S0(v) = 1] .

By conditioning on the event {w ∼ v}, we have the following:

E[EQ(v) | S0(v) = 1] =
∑
w:w 6=v

P[w ∼ v]P[w ∈ ENC | w ∼ v, S0(v) = 1]

=
d

n

∑
w:w 6=v

P[w ∈ ENC | w ∼ v, S0(v) = 1].

We now condition on the size of NG(n,p)(w)\{v}. The size of NG(n,p)(w)\{v} can vary from
zero to n−2. We set µ′ = E [EQ(v)] and let Nk(w) be the event that |NG(n,p)(w)\{v}| = k.
Note that for w ∈ ENC, we necessarily have k is odd. Applying the law of total probability
and bounding the upper and lower extremes of k, we have that:

P[w ∈ ENC | w ∼ v, S0(v) = 1] ≤ P
[∣∣∣∣∣NG(n,p)(w)\{v}

∣∣− µ′∣∣∣ ≥ d3/4

]
+∑

k : |k−µ′|≤d3/4,k odd

P
[
|NG(n,p)(w) \ {v}| = k

]
P
[
w ∈ ENC

∣∣∣{w ∼ v} ∩ Nk(w) ∩ {S0(v) = 1}
]
.

(8)

As we have conditioned on {v ∼ w}, we have that |NG(n,p)(w)\{v}| ∼ Bin(n − 2, d/n).
So, Var[|NG(n,p)(w)\{v}|] = (n−2)(d/n)(1−d/n) and therefore Var[|NG(n,p)(w)\{v}|] < d.
By Chebyshev’s inequality,

P
[∣∣∣ ∣∣NG(n,p)(w)\{v}

∣∣− µ′∣∣∣ ≥ d3/4

]
≤ d

d6/4
=

1√
d
. (9)

Recall that Nk(w) is the event that |NG(n,p)(w)\{v}| = k. It follows from (9) that:

E[EQ(v) | S0(v) = 1] ≤

d

n

∑
w:w 6=v

 1√
d

+
∑

k:|k−µ′|≤d3/4,k odd

P
[
Nk(w)

]
P
[
w ∈ ENC

∣∣∣{w ∼ v} ∩ Nk(w) ∩ {S0(v) = 1}
] .
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We now turn our attention to the range where µ−d3/4 ≤ k ≤ µ+d3/4. We wish to apply
Theorem 5.8 to bound P [w ∈ ENC | {w ∼ v} ∩ Nk(w) ∩ {S0(v) = 1}] . For a vertex w ∈
NG(n,p)(v), we define X+

w =
∣∣∣{u ∈ NG(n,p)(w)\{v} : S0(u) = 1}

∣∣∣. As we have conditioned

on v ∼ w and S0(v) = 1, for odd k the following holds:

P [w ∈ ENC | {w ∼ v} ∩ Nk(w) ∩ {S0(v) = 1}] =

P
[
X+
w = (k − 1)/2

∣∣∣ {w ∼ v} ∩ Nk(w) ∩ {S0(v) = 1}
]
. (10)

Now for a given k, suppose we condition on the event Nk(w). By conditioning on Nk(w),
we observe that X+

w ∼ Bin(k, 1/2); so Var[X+
w ] = k/4. We now apply Theorem 5.8, to

bound the probability of the event given by (10): there exits a constant ρ such that for all
k we have:

P
[
X+
w =

k − 1

2

∣∣∣∣ {w ∼ v} ∩ Nk(w) ∩ {S0(v) = 1}
]
≤

ρ

Var
[
X+
k

] +
1√

2πVar
[
X+
k

]e−1/(8Var[X+
k ]) ≤ 2ρ√

Var
[
X+
k

] =
4ρ√
k
. (11)

Using (10) and (11) in (8), we finally deduce that

E[EQ(v) | S0(v) = 1] ≤
d(n− 1)

n

(
1√
d

+ max
k : |k−µ′|≤d3/4,k odd

{
P
[
X+
k = (k − 1)/2

∣∣∣ {w ∼ v} ∩ Nk(w) ∩ {S0(v) = 1}
]})

.

Using the bound (11), the above expression becomes

E[EQ(v) | S0(v) = 1] ≤ d(n− 1)

n

(
1√
d

+
4ρ√

µ− d3/4

)
.

A similar argument gives the same upper bound on E[EQ(v) | S0(v) = 0].
Since µ′ = Θ(d), therefore there exists a constant κ, such that for sufficiently large d we

have that µ′−d3/4 ≥ κd. Letting Γ = 2(
√
κ+ 4ρ)/

√
κ, for sufficiently large d we have that:

E[EQ(v)] ≤ Γd√
d

= Γ
√
d.

Fix ε > 0 and define γ = Γ/ε. Then by Markov’s inequality

P
[
EQ(v) ≥ γ

√
d
]
<

E[EQ(v)]

γ
≤ ε. �

5.5. A bound on the number of good vertices. We now have a suitable bound on
EQ(v), which holds with high probability. Furthermore, we would like to show that there
are a significant number of good vertices. We denote the set of γ-good vertices in G(n, p)
as GDγ. We recall that a vertex v ∈ Vn of G(n, p) is γ-good if v has a γ-abundant and a
γ-decisive neighbourhood. The following corollary asserts that our node system will have
a significant number of good vertices. We also recall the definition of the definition of the
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event E−c : we say that the event E−c occurs if N0 − P0 ≥ 2c
√
n, where P0 =

∑
v∈Vn S0(v)

and N0 = n− P0.

Corollary 5.10. Let ε > 0 and m = (G(n, d/n),S1/2)<, where d > Λn1/2. Suppose that
E−c has occurred for some constant c > 0. Then there exist positive constants Λ and γ, such
that for all n large enough we have with probability at least 1− ε that |GDγ| ≥ n(1− ε).

Proof. We fix ε > 0 and again define the majority game M = (G(n, d/n), S̄1/2)> as above.
As we have conditioned on E−c in m, then M starts with an initial configuration which
satisfies E+

c . By Lemma 5.9, there exists a constant γ such that for all n sufficiently large

and all v ∈ Vn, we have that P
[
EQγ(v) ≥ γ

√
d
]
< ε2/2. Also, by Lemma 5.5, we may

select Λ large enough, such that for all n sufficiently large and v ∈ Vn, we have that

P
[
nM1 (v; 1) < d(v)/2 + 2γ

√
d | E+

c

]
< ε2/2.

Now, we denote the events that v has a γ-decisive neighbourhood by Dγ(v) and that v
has an γ-abundant neighbourhood by Aγ(v). Note that Dc

γ(v) and Acγ(v) are the events of
the previous paragraph for this particular γ. By the union bound, we have that:

P[v /∈ GDγ] = P[Acγ(v) ∪Dc
γ(v)] ≤ P[Acγ(v)] + P[Dc

γ(v)] < ε2.

By taking a sum across all vertices, and applying the above inequality we have that
E [|Vn \GDγ|] ≤ ε2n, where |Vn \ GDγ| is the number of vertices which are not good. By
Markov’s inequality, we have that P[|Vn \ GDγ| > εn] ≤ ε. Therefore, with probability at
least 1− ε, we have that |GDγ| ≥ n(1− ε). �

Now, if there are at least (1 − ε)n good vertices (which occurs with high probability),
then by Corollary 5.7 we have that |N2| ≥ (1− ε)n.

5.6. The final two rounds. In the remaining two rounds we claim that unanimity will
occur. We note that as a consequence of Corollary 5.10, at time t = 2 our node system
satisfies the hypothesis of Lemma 4.9. However, as we are working within a denser regime,
it turns out that unanimity can be reached in the entire G(n, p) much faster than β log n
rounds. We state a result from [16], which concerns the rapid formation of unanimity for
majority dynamics, wherein one of the initial strategies has a linear majority. We recall
the definitions Pt = {v ∈ Vn : St(v) = 1}, and Nt = {v ∈ Vn : St(v) = 0}. Suppose that
S is an initial configuration of vertex states on Vn, and δ ∈ (0, 1) is fixed. We say that

S ∈ Ŝδ, if we have that |N0| ≥ (1− δ)n in S. Thus Ŝδ is the collection of all initial vertex
configurations where there are at least (1− δ)n vertices in the zero state. We now consider
the following result considering the two round evolution of games utilising initial states
belonging to Ŝδ for sufficiently small δ.

Lemma 5.11. Let p ≥ Λn−
1
2 and δ < 1/10. On the probability space of G(n, p) we have

that a.a.s. for any S ∈ Sδ the majority game (G(n, p),S)> will reach unanimity after at
most two rounds.

Proof of Theorem 5.2. While the above lemma directly concerns the majority dynamics
game, with only some minimal adjustments to the argument, we may apply it to the
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minority game as well. We fix a minority game (G,S)<, where S ∈ Ŝδ. By following
the proof given in [16], after one round of applying the minority game rules we have with
probability 1 − o(1) that |N1| ≤ d/10. However a standard application of the Chernoff
bound can show that a.a.s. the minimum degree of G(n, p) is at least d/2. Therefore for
all v ∈ Vn we have that n1(v; 1) > n1(v; 0). In turn, we deduce that S2(v) = 0 for all
v ∈ Vn. As unanimity is achieved, it is clear that the system will also display periodic
behaviour of period two from the evolution rules of the minority dynamics (7). �

6. Discussion

In this paper we study the evolution of games on G(n, p) under the best response rule.
Our first result concerns the rapid formation of unanimous strategies on the node sys-
tem (G(n, p), Q,S1/2) for p ≥ Λn−1/2. As a byproduct of this analysis, we also prove an
analogous result of Fountoulakis et al. [16] regarding the rapid formation of unanimity
in the random graph minority game. Our second main result concerns the formation of
unanimous strategies in sparser regimes, namely beyond the connectivity threshold, and
on the presence of a strategic bias given by λ 6= 1. A natural question of the sparse regime
is to ask whether we can remove the condition that λ 6= 1. As previously seen, the case
λ = 1 reduces to the problem of majority and minority dynamics. However the study of
majority dynamics for p = o

(
n−1/2

)
imposes immense complications. Little is currently

known about how these systems evolve apart from becoming eventually periodic. However
the following was conjectured by Benjamini et al. [8].

Conjecture 6.1 [8]. With high probability over choice of random graph and choice of
initial state, if p ≥ d/n then the following holds:

(1) If d� 1 then, for any ε > 0 and n sufficiently large we have,

lim
t→∞

∣∣∣|P2t| − |N2t|
∣∣∣ ∈ [(1− ε)n, n] .

(2) If d is bounded then for any ε > 0 and for n sufficiently large,

lim
t→∞

∣∣∣|P2t| − |N2t|
∣∣∣ ∈ [(1− ε/2)n, (1 + ε/2)n].

These results suggest the idea of long term almost unanimity, when d � 1. Theorem
3.2 can be thought of as an approximate approach to studying these kinds of systems. By
introducing the strategic bias λ 6= 1, we are able to show a stronger form of (1) in the above
conjecture. In fact, we have been able to identify precisely the critical density of the random
graph around which its largest connected component (which contains the overwhelming
majority of its vertices) achieves unanimity. Furthermore, when non-unanimity occurs, we
identified those substructures which play different strategies to the majority of the vertices
in this component. However, it is still unclear how to approach these sparser interacting
node systems when λ = 1.

Another direction for consideration is to remove the synchronicity of the decision updat-
ing. For the asynchronous setting, in each round we randomly and uniformly select a node
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from the network and update its strategy. Such dynamics have been considered in [4, 32].
A natural question is whether unanimity can be achieved in G(n, p) under asynchronous
majority dynamics, or even best response, and determine bounds on how many steps this
requires. If unanimity is indeed achieved, then we can observe this must happen in at least
Ω(n log n) steps. In any initial configuration there are at least a linear number of vertices
in the “wrong state”, and they must be sampled at some time-step during the process. Due
to the way we sample the network, checking each one of these contrarian vertices follows a
coupon-collector-like scheme.

Another direction for further study is the setting where players possess more than 2
strategies. For example, this setting is considered by Oyama and Takashaki [34]. The
authors consider a modification of a game with two strategies A and B played on a network;
further to this, players can also play a bilingual strategy AB, whose payoff is a combination
of the payoffs of A and B respectively. In [34], conditions on contagion and impenetrability
are considered for underlying graphs which are infinite. For more general settings, it is not
clear whether one of the strategies prevails eventually or we have the co-existence of two
or more strategies. Furthermore, it is not clear how our conditions can be generalised for
higher-order pay-off matrices.

Appendix A. Derivation of evolution rules

In this section we briefly detail the derivation of equations (1) and (2). We recall that if
an agent chooses strategy i in round t, then the incentive for them to switch to strategy
1− i in round t+ 1, is given by the following condition:

nt(v; 0) (qi,0 − q1−i,0) < nt(v; 1) (q1−i,1 − qi,1) .

As we have assumed that Q is non-degenerate, we have two cases: Either q0,0 > q1,0 and
q1,1 > q0,1, or q0,0 < q1,0 and q1,1 < q0,1. Suppose that the former case occurs, then we must
check the incentive for i = 0 an i = 1. Suppose St(v) = 0, then the incentive for changing
strategy is given as follows:

nt(v; 0) (q0,0 − q1,0) < nt(v; 1) (q1,1 − q0,1) .

We now re-arrange the above, and recall that λ = (q1,1 − q0,1)/(q0,0 − q1,0), to form the
first evolution rule:

nt(v; 0) < nt(v; 1)
q1,1 − q0,1

q0,0 − q1,0

= nt(v; 1)λ. (A1)

Similarly if we instead have that St(v) = 1, then the incentive is expressed as:

nt(v; 0) (q1,0 − q0,0) < nt(v; 1) (q0,1 − q1,1) .

We recall that in this case we have q0,1 < q1,1, and therefore we re-arrange as follows:

nt(v; 1) < nt(v; 0)
q1,0 − q0,0

q0,1 − q1,1

= nt(v; 0)
q0,0 − q1,0

q1,1 − q0,1

= nt(v; 0)
1

λ
. (A2)
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Combing equations (A1) and (A2) provides the required evolution rules as described by
(1). For the second case, an identical argument will produce the rules given by (2).

Appendix B. The distribution of blocking stars

Lemma 4.5. Let ` ∈ N and p = d/n, where 1 � d = d(n) = O(log n). Then EX`,n ∼
nd

`+k

`!k!
e−d(`+1).

Furthermore, if d = 1
`+1

log n+ `+k
`+1

log log n+ ω(n), then the following hold.

i. If ω(n)→ −∞ as n→ +∞, then EX`,k,n → +∞ as n→ +∞ and moreover, a.a.s.
X`,k,n ≥ EX`,k,n/2.

ii. If ω(n)→ c ∈ R as n→ +∞, then EX`,k,n → e(`+1)c

`!k!
as n→∞ and

X`,k,n
d→ Po

(
e(`+1)c

`!k!

)
.

iii. If ω(n)→ +∞ as n→ +∞, then P(X`,k,n > 0) < 2e−(`+1)ω(n), for any n sufficiently
large. Thus, a.a.s. X`,k,n = 0.

Proof of Lemma 4.5. We start with the expected value of X`,k,n. Suppose S denotes a
set of size ` + k + 1 on which an (`, k)-blocking star will be formed. There are

(
n

`+k+1

)
ways to select these vertices and (` + k + 1)

(
`+k
k

)
ways to select the centre v and the

connector vertices u1, . . . , uk. Suppose that the remaining vertices are v1, . . . , v`. We have
P(d(v1) = 1|v1 ∼ v) = (1− p)n−1. For j = 2, . . . , `,

P(d(vj) = 1|vi ∼ v, d(vi) = 1, for i = 1, . . . , j − 1) = (1− p)n−(j−1) < e−d+d`/n.

But since j ≤ `, we have for n sufficiently large

e−d−(d/n)2 ≤ (1− p)n−(j−1) < e−d+d`/n.

Hence, using the assumption that d = O(log n)

P(d(v1) = · · · = d(v`) = 1|vi ∼ v, for i = 1, . . . , `) ∼ e−d`.

Also, P(dVn\S(v) = 0) = (1− p)n−(`+k+1) ∼ e−d Thus, we obtain

EX`,k,n ∼
n`+k+1

(`+ k + 1)!
· (`+ k + 1)

(
`+ k

k

)
·
(
d

n

)`+k
· e−d(`+1)

=
n`+k+1

(`+ k + 1)!
· (`+ k + 1)

(`+ k)!

`!k!
·
(
d

n

)`+k
· e−d(`+1)

= n
d`+k

`!k!
· e−d(`+1).

This concludes the first part of the lemma.
Now, the value of limn→∞ EX`,k,n is deduced as in parts i., ii. and iii. of the lemma

follows by taking d(`+1) = log n+(`+k) log log n+(`+1)ω(n), where either ω(n)→ +∞
or → c or → −∞, as n→∞, respectively.
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For Part iii., Markov’s inequality implies that

P(X`,k,n > 0) ≤ EX`,k,n

n large
< 2 · e−(`+1)ω(n) → 0, as n→ +∞.

For Parts i. and ii. we will show that for any fixed integer r ≥ 2, we have E(X`,k,n(X`,k,n−
1) · · · (X`,k,n − (r − 1))) ∼ ErX`,k,n.

So the second statement in Part i. will follow from Chebyshev’s inequality as for r = 2,
the above implies that Var(X`,k,n) = o(EX`,k,n). The second statement in Part ii. will
follow from Theorem 1.22 in [10] (Poisson convergence).

Consider r subsets S1, . . . , Sr ⊂ Vn of size `+ k+ 1. They may all induce (`, k)-blocking
stars only if any two of them share at most k vertices. For S ⊂ Vn let IS be the indicator
random variable that is equal to 1 if and only if S is an (`, k)-blocking star. If Si ∩Sj = ∅
for all i 6= j, then

P(IS1 = · · · = ISr = 1) ∼
(

(`+ k + 1)

(
`+ k

k

)
p(`+k)e−d(`+1)

)r
. (12)

There are
∏r

i=1

(
n−(i−1)(`+k+1)

`+k+1

)
to select the ordered r-tuple of pairwise disjoint sets (S1, . . . , Sr).

But
r∏
i=1

(
n− (i− 1)(`+ k + 1)

`+ k + 1

)
∼
(

n`+k+1

(`+ k + 1)!

)r
. (13)

Now, let us assume that Si∩Sj 6= ∅ for some i 6= j. Note first that if |Si∩Sj| > k, then
the two sets cannot induce (`, k)-blocking stars simultaneously. If Si ∩ Sj = {u1, . . . , us},
with s ≤ k and Si, Sj induce (`, k)-blocking stars, then u1, . . . , us must be connector
vertices in both of them. There are O(1) ways to select the vertices in ∪ri=1Si that will be
the connectors of the (`, k)-blocking stars. Let S ′ ⊂ ∪ri=1Si be such a choice; by the above
observation, this contains any vertex which belongs to at least two members of the r-tuple.
Set S1..r = ∪ri=1Si. Hence,

P(IS1 = · · · = ISr = 1) = O(1)·
[
(1− p)(

`+k+1
2 )−(`+k)p(`+k)

]r
·P(∀v ∈ S1..r\S ′, dVn\S1..r(v) = 0).

Note that |S1..r \ S ′| = r(`+ 1). So, the latter probability is

P(∀v ∈ S1..r \ S ′, dVn\S1..r(v) = 0) = (1− p)r(`+1)(n−|S1..r|) ∼ e−dr(`+1).

Therefore,

P(IS1 = · · · = ISr = 1) = O(1) · pr(`+k)e−dr(`+1). (14)

Now, such an ordered r-tuple can be selected into at most(
n

r(`+ k + 1)− 1

)
= o(nr(`+k+1)) (15)
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ways. Thus,

E(X`,k,n(X`,k,n − 1) · · · (X`,k,n − (r − 1))) =
∑

(S1,...,Sr):Si⊂Vn,|Si|=`+k+1

P(IS1 = · · · = ISr = 1)

= (1 + o(1))

(
n`+k+1

(`+ k + 1)!
·
(

(`+ k + 1)

(
`+ k

k

))
p`+ke−d(`+1)

)r
by (12),(13)

+o(nr(`+k+1))pr(`+k)e−dr(`+1) by (14),(15)

∼ ErX`,k,n.

�

Lemma 4.6. We have EX(2)
`,k,n = o(EX`,k,n).

Proof of Lemma 4.6. In this lemma, we will bound the expected number of (`, k)-blocking
stars which do not belong to L1(G(n, d/n)). Recall that the random variable which counts

these is X
(2)
`,k,n.

We will give an upper bound on the expected number of connected components of order
at most log n which contain an (`, k)-blocking star. This suffices due to the following result
about the structure of G(n, d/n).

Theorem B.1. Let p = d/n with d � 1. Then a.a.s. all connected components of
G(n, d/n) apart from L1(G(n, d/n)) have order at most log n.

This is a direct consequence of the proof of Theorem 6.10 (pp.143–146) in [10] and we
refer the interested reader directly to this.

For r ≥ `+ k + 1, let C`,k,r denote the number of connected components which contain
an (`, k)-blocking star and have order r. We will give an upper bound on the expected
value of C`,k,r. For two sets S ⊂ S ′ ⊂ Vn having |S| = ` + k + 1 and |S ′| = r, and
v, u1, . . . , uk ∈ S, we set I(S, S ′, v, u1, . . . , uk) to be the indicator random variable which is
equal to 1 if and only if S ′ is a connected component in G(n, d/n), where in particular, S
induces an (`, k)-blocking star with centre v and connectors u1, . . . , uk. Let S`,k,r denote
the set of pairs (S, S ′) such that S ⊂ S ′ ⊂ Vn with |S| = `+ k+ 1 and |S ′| = r. Moreover,

for a set S ⊂ Vn of size at least k + 1, let S
(k+1)
6= denote the set of all ordered k + 1-tuples

of distinct vertices in S. With this notation, we can write

E(C`,k) ≤
∑

(S,S′)∈S`,k,r

∑
(v,u1,...,uk)∈S(2)

6=

E(I(S ′, S, v, u1, . . . , uk)). (16)

For S ⊂ Vn having |S| = ` + k + 1 and (v, u) ∈ S(k+1)
6= , we let I1(S, v, u1, . . . , uk) be the

indicator random variable that is equal to 1 if and only if S forms an `-blocking star with
centre v and connectors u1, . . . , uk. Also, we take I2(S ′) to be the indicator random variable
that is equal to 1 if and only if S ′ is a connected component of G(n, d/n).

For a given (S, S ′) ∈ S`,k and (v, u1, . . . , uk) ∈ S(k+1)
6= , we write

P(I(S ′, S, v, u1, . . . , uk) = 1) =

P(I1(S, v, u1, . . . , uk) = 1) · P(I2(S ′) = 1 | I1(S, v, u1, . . . , uk) = 1). (17)
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We will provide an upper bound on P(I2(S ′) = 1 | I1(S, v, u1, . . . , uk) = 1). If S induces an
(`, k)-blocking star with centre v and connectors u1, . . . , uk, then any spanning tree TS′ on
S ′ contains the star on S \{u1, . . . , uk} centred at v as an induced subgraph and, moreover,
one of the edges uiv is a cutting edge between S ′ \ (S \ {u1, . . . , uk}) and S \ {u1, . . . , uk}.
Thus, TS′ \ (S \ {u1, . . . , uk}) is a spanning tree of the subgraph induced by the set S ′ \
(S \ {u1, . . . , uk}). Furthermore, if S ′ is a connected component in G(n, d/n), there are no
edges between S ′ \ (S \ {u1, . . . , uk}) and Vn \ S ′.

With the above observations and p = d/n we can give the following bound:

P(I2(S ′) = 1 | I1(S, v, u1, . . . , uk) = 1) ≤
(r − (`+ 1))r−(`+1)−2pr−(`+1)−1(1− p)(n−r)(r−(`+1)) (18)

We have that

(r − (`+ 1))r−(`+1)−2pr−(`+1)−1 ≤ (rp)r−(`+1)−1 = (rp)r−`−2,

and for r ≤ log n,

(1− p)(n−r)(r−(`+1)) ∼ e−dr ≤ 2e−d(r−`−1) = 2e−d(r−`−1)e−d.

Using these in (18) we get

P(I2(S ′) = 1 | I1(S, v, u1, . . . , uk) = 1) ≤ 2(rpe−d)r−`−2e−d.

Hence, the left-hand side in (17) is bounded as

P(I(S ′, S, v, u1, . . . , uk) = 1) ≤ P(I1(S, v, u1, . . . , uk) = 1) ·
(
2(rpe−d)r−`−2e−d

)
.

Thus, for n sufficiently large, (16) yields:

E(C`,k,r) ≤
∑

(S,S′)∈S`,k,r

∑
(v,u1,...,uk)∈S(k+1)

6=

P(I1(S, v, u1, . . . , uk) = 1) ·
(
2(rpe−d)r−`−2e−d

)
=

∑
S⊂Vn:|S|=`+k+1

∑
(v,u1,...,uk)∈S(k+1)

6=

P(I1(S, v, u1, . . . , uk) = 1)×

∑
S′:|S′|=r,S⊂S′

2(rpe−d)r−`−2e−d. (19)
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For a fixed choice of S, we will provide an upper bound on the inner sum. This is∑
S′:|S′|=r,S⊂S′

(rpe−d)r−`−2e−d = 2

logn∑
r=`+k+1

(
n− `− k − 1

r − `− k − 1

)
(rpe−d)r−`−k−1e−d

≤ e−d
logn∑

r=`+k+2

(
ne

r − `− k − 1

)r−`−k−1(
rde−d

n

)r−`−k−1

+ e−d((`+ k + 1)pe−d)

d�1
= e−d

logn∑
r=`+k+2

(
ne

r − `− k − 1

)r−`−k−1(
rde−d

n

)r−`−k−1

+ o(1)

r
r−`−k−1

≤`+k+2

≤ e−d
logn∑

r=`+k+2

(
(`+ k + 2)ede−d

)r−`−k−1
+ o(1)

= e−d
logn+`+k+1∑

j=1

(
(`+ k + 2)ede−d

)j
+ o(1)

(`+k+2)ede−d≤e−d/2, for n large

≤ e−d
logn+`+2∑

j=1

(
e−d/2

)j
+ o(1)

≤ e−d

1− e−d/2
+ o(1) = o(1).

Note that this upper bound holds for n sufficiently large uniformly over all choices of S.
Thus,

E(C`,k,r) = o(1) ·
∑

S⊂Vn:|S|=`+k+1

∑
(v,u1,...,uk)∈S(k+1)

6=

P(I1(S, v, u1, . . . , uk) = 1) = o(1) · EX`,k,n,

which concludes the proof of the lemma. �

Appendix C. Structural Results in G(n, p)

Claim C.1. Let S ⊂ Vn be such that |S| < k, for some fixed k ∈ N. Then

P(∀v ∈ S, d(v) ≤ C) ≤
(

2C (de)C · e−d
)|S|

.

Proof. If a vertex in S has degree at most C, then it has also degree at most C in Vn \ S.
So we can write:

P(∀v ∈ S, d(v) ≤ C) ≤ P(∀v ∈ S, dVn\S(v) ≤ C).

Observe that these degrees form an independent family as they are determined by mutually
disjoint sets of edges. Thereby,

P(∀v ∈ S, dVn\S(v) ≤ C) =
∏
v∈S

P(dVn\S(v) ≤ C).
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But dVn\S(v) is distributed as Bin(n−|S|, d/n) and, therefore, its expected value is d−o(1).
Hence, P(dVn\S(v) = k) is increasing as a function of k, if d/k → ∞, as n → ∞. Using(
n
k

)
≤
(
ne
k

)k
we can write the following bound:

P(dVn\S(v) ≤ C) ≤ C ·
(
n

C

)(
d

n

)C (
1− d

n

)n−|S|−C
|S|<k
≤ C

(ne
C

)C (d
n

)C
e−d+o(1)

≤ 2C

(
de

C

)C
· e−d, (20)

for n sufficiently large. Therefore,

P(∀v ∈ S, dVn\S(v) ≤ C) ≤
(

2C (de)C · e−d
)|S|

,

and the claim now follows. �

Lemma 4.11. Suppose that p = d/n with cλ log n ≤ d ≤ α(λ) log n. A.a.s. there are no
`λ + 2 vertices in Ln(C) that have a common neighbour.

Proof. We will use a first moment argument to bound the expected number of collections
of vertices in Ln of size `λ + 2 that have a common neighbour. Let S ⊂ Vn be a subset of
vertices. We denote the degree of v outside the set S by dVn\S(v). Let S ⊂ Vn be such that
S = {u1, . . . , u`λ+2} and z ∈ Vn \ S. The expected number of collections of `λ + 2 vertices
in Ln(C) which have a common neighbour is at most(

n

`λ + 2

)
· (n− (`λ + 2)) ·

(
`λ+2∏
i=1

P(ui ∼ z)

)
· P (∀i = 1, . . . , `λ+2 dVn(ui) ≤ C)

Claim C.1

≤ n`λ+3 ·
(
d

n

)`λ+2 (
2C (de)C · e−d

)`λ+2

= nd`λ+2 ·
(

2C (de)C · e−d
)`λ+2

= n · e−d(`λ+2)+O(log d). (21)

But d ≥ cλ log n = (`λ + 1)−1 log n. So d(`λ + 2) − log n = Ω(log n), whereby the above
expected value is o(1). �

Lemma 4.12. Let ` ∈ N and let p = d/n where 1
`+1

log n ≤ d = d(n) ≤ α(λ) log n. A.a.s.
all connected sets of vertices in Ln(C) have size at most `+ 1.

The FKG inequality. Before we lead with the proof of Lemma 4.12 we also require a
correlation inequality that is known as the FKG inequality. We state it in the context of
the model G(n, p). We say that a graph property P is non-decreasing if, for graphs G,H on
Vn, whenever G ∈ P and G ⊆ H, then H ∈ P . Similarly we say that P is non-increasing,
if whenever H 6∈ P and H ⊆ G, then G 6∈ P as well. We state the FKG inequality as
follows.
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Theorem C.2 The FKG inequality [1]. Let P1 be a non-decreasing graph property and P2

be a non-increasing graph property. Then for the binomial random graph, G(n, p), we have
the following:

P[G(n, p) ∈ P1 ∩G(n, p) ∈ P2] ≤ P[G(n, p) ∈ P1] · P[G(n, p) ∈ P2].

Proof of Lemma 4.12. We will show that a.a.s. there are no connected sets of vertices in
Ln(C) of size ` + 2 or more. If there is such a set, then in fact there must also be such a
set of size exactly `+ 2. So it suffices to show that a.a.s. no such subsets exist.

Let S ⊂ Vn have |S| = `+ 2. Then

P(S is connected and ∀v ∈ S, d(v) ≤ C) ≤ P(S is connected) · P(∀v ∈ S, d(v) ≤ C),

by the FKG inequality (Theorem C.2), since the graph property that {S is connected} is
non-decreasing whereas the property that {∀v ∈ S, d(v) ≤ C} is non-increasing. Now,

P(S is connected) ≤ |S||S|−2 ·
(
d

n

)|S|−1

,

since if S induces a connected subgraph, then this has to have a spanning tree (selected in
|S||S|−2 ways). By Claim C.1, we have

P(∀v ∈ S, d(v) ≤ C) ≤
(

2C (de)C · e−d
)|S|

.

Therefore,

P(S is connected and ∀v ∈ S, d(v) ≤ C) ≤ (`+ 2)` ·
(
d

n

)`+1

·
(

2C (de)C · e−d
)`+2

.

Hence, the expected number of such subsets is at most

O(1) ·
(

n

`+ 2

)
·
(
d

n

)`+1

·
(
dC · e−d

)`+2
= ne−(`+2)d+O(log logn).

But d ≥ 1
`+1

log n. Thereby, (`+2)d− log n = Ω(log n), and the right-hand side is o(1). �

Lemma 4.13. Let p = d/n where cλ log n ≤ d = d(n) ≤ α(λ) log n. A.a.s. all connected
sets of vertices in Ln(C) induce trees.

Proof. By the previous lemma it suffices only to consider sets of size at most `λ + 1.
Let S ⊂ Vn with |S| ≤ `λ + 1. Then

P(e(S) ≥ |S| and ∀v ∈ S, d(v) ≤ C) ≤ P(e(S) ≥ |S|) · P(∀v ∈ S, d(v) ≤ C),

by the FKG inequality (Theorem C.2), since the graph property that {e(S) ≥ |S|} is
non-decreasing and the property that {∀v ∈ S, d(v) ≤ C} is non-increasing. But

P(e(S) ≥ |S|) = O(1) ·
(
d

n

)|S|
.
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Combining this with Claim C.1 we get

P(e(S) ≥ |S| and ∀v ∈ S, d(v) ≤ C) = O(1)·
(
d

n

)|S| (
dCe−d

)|S|
= O(1)·n−|S|e−d|S|+O(log logn).

As there are
(
n
|S|

)
= O(1)n|S| choices for S, the expected number of such sets is

O(1)e−d|S|+O(log logn) = o(1).

The lemma follows from the union bound, taking the union over all possible values of
|S| ≤ `λ + 1. �

Appendix D. Proof that G(n, d/n) has the minority decline property

Lemma 4.9. Let d = d(n) be such that 1 � d ≤ α(λ) log n, and let Q be a 2 × 2 non-
degenerate payoff matrix. For any ε > 0 there exists Cε,λ ∈ N such that for any γ > 0 and
for any C ≥ Cε,λ a.a.s. G(n, d/n) satisfies the following: for any initial configuration S
with |m0 ∩ Hn(C)| < ne−γd, the interacting node system I = (G(n, d/n), Q,S) will have
|m1 ∩Hn(C)| ≤ ε|m0 ∩Hn(C)|.

Proof. Suppose that initially the majority strategy is i. Assume first that I is in the
majority regime. Then in the random graph G(n, d/n) typically a vertex is expected to
have many more neighbours among those playing strategy i than those playing strategy
1 − i. So one would expect that most vertices will adopt strategy i in the next round. If
we revisit (1), we will see that if this does not happen, then n0(v; i) ≤ λ1−2in0(v; 1 − i).
Indeed, if v initially was playing strategy i, it switches to 1−i, if n0(v; i) < λ1−2in0(v; 1−i).
If v was initially playing 1 − i, then it does not switch if n0(v; 1 − i) ≥ λ1−2(1−i)n0(v; i).
Rearranging the latter, we also get that n0(v; i) ≤ λ1−2in0(v; 1− i).

Suppose now that I is in the minority regime. In this case one would expect that most
vertices will adopt strategy 1− i. Suppose that a vertex v initially plays i. By (2), it keeps
on playing i after one round, if n0(v; i) ≤ λ1−2in0(v; i − 1). Similarly, if v initially plays
1 − i, then it switches to i, if n0(v; 1 − i) > λ1−2(1−i)n0(v; i). If we rearrange the latter,
we get n0(v; i) < λ1−2in0(v; 1 − i). Furthermore, to reduce notation we set Hn := Hn(C),
where C is to be determined later. Also, we set Ln := Ln(C).

Assuming that initially the most popular strategy in Hn is i, we say that a vertex

v ∈ Vn ∩ Hn is i-atypical, if n0(v; i) ≤ λ1−2in0(v; 1 − i). Let A
(i)
n denote this set. We

will show that a.a.s. provided that |m0| < ne−γd, we have |A(i)
n | ≤ ε|m0 ∩ Hn|, for all

partitions of Hn into two parts one of which has size less than ne−γd. If this happens,
then all but at most ε|m0 ∩ Hn| vertices in Hn will behave as expected and, therefore,
|m1 ∩Hn| ≤ ε|m0 ∩Hn|.

We proceed with showing the above (assuming that the majority strategy initially is i).
So a vertex is i-atypical if n0(v; i) ≤ λ1−2in0(v; 1−i). We set S1−i = {v ∈ Vn : S0(v) = 1−i}.
By assumption, we have that |S1−i| < ne−γd for some γ ∈ [0, 1).

We will condition on the event of Lemma 4.11, which we refer to as Dn. That is, Dn
denotes the event that no more than `λ + 1 vertices in Ln(C) have a common neighbour.
According to Lemma 4.11, we have P(Dn) = 1− o(1).



42 BEST RESPONSE DYNAMICS ON RANDOM GRAPHS

For a partition (Ui, U1−i) of Hn(C), we assume that the vertices in Uj are assigned
strategy j, for j ∈ {0, 1}. As we pointed out previously, the event Dn will allow us to
ignore the influence of the vertices in Ln(C) on the evolution of those in Hn(C), provided
that C is sufficiently large. To this end, we will say that a vertex is i-atypical with respect
to (Ui, U1−i) if n0(v; i) ≤ λ1−2in0(v; 1 − i) for any initial assignment of strategies to the
vertices of Ln(C). We will show that a.a.s. for all configurations (Ui, U1−i) of Hn with
|U1−i| < ne−γd there is no collection of ε|U1−i| vertices in Hn(C) which are i-atypical with
respect to (Ui, U1−i). This will imply that G(n, p) is such that for any initial configuration
(Ui, U1−i) on Hn(C), with |U1−i| < ne−γd, and an arbitrary configuration for the vertices
in Ln(C), there will be at most ε|U1−i| vertices in Hn(C) that will adopt strategy 1− i in
the subsequent round.

We wish to bound the number of vertices in Hn(C) which are i-atypical with respect to a

given configuration (Ui, U1−i); thus we define Ŝi = {v ∈ Ui : n0(v; 1−i) ≥ λ2i−1n0(v; i)} and

Ŝ1−i = {v ∈ U1−i : n0(v; 1− i) ≥ λ2i−1n0(v; i)}. If there are at least ε|S1−i| vertices which

are i-atypical with respect to (Ui, U1−i), then either |Ŝi| ≥ ε|U1−i|/2 or |Ŝ1−i| ≥ ε|U1−i|/2.
We will show that

P

 ⋃
1≤k<ne−γd

⋃
(Ui,U1−i):|U1−i|=k

{
|Ŝi| ≥ ε|U1−i|/2

}⋂
Dn

 = o(1), (22)

P

 ⋃
1≤k<ne−γd

⋃
(Ui,U1−i):|U1−i|=k

{
|Ŝ1−i| ≥ ε|U1−i|/2

}⋂
Dn

 = o(1). (23)

We will show that the union bound indeed suffices to show these. So, firstly, we will consider
a fixed partition (Ui, U1−i) as above. To bound P(|Ŝi| ≥ ε|Ui|/2) and P(|Ŝ1−i| ≥ ε|Ui|/2),

we translate the defining conditions of Ŝi and Ŝ1−i into a condition on the degree of these
vertices in U1−i. On the event Dn, there are at most `λ+1 neighbours of v in Ln. Consider
the degree of v inside U1−i, which we denote by dU1−i(v). Similarly, we denote by dS1−i∩Ln(v)
its degree inside S1−i ∩ Ln. Thus, dU1−i(v) + dS1−i∩Ln(v) = n0(v; 1 − i). But since Dn is
realised, we have dS1−i∩Ln(v) ≤ `λ + 1, whereby

dU1−i(v) + `λ + 1 ≥ n0(v; 1− i). (24)

Furthermore, n0(v; i) + n0(v; 1− i) = d(v) ≥ C. If λ2i−1n0(v; i) ≤ n0(v; 1− i), then

λ2i−1 + 1

λ2i−1
n0(v; 1− i) ≥ C.

We further bound n0(v; 1− i) using (24) and get

λ2i−1 + 1

λ2i−1

(
dU1−i(v) + `λ + 1

)
≥ C.

Rearranging this we deduce that

dU1−i(v) ≥ λ2i−1

λ2i−1 + 1
C − (`λ + 1) ≥ λ2i−1

2(λ2i−1 + 1)
C =: ψλC,
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provided that C is large enough. To summarise, we have proved that if λ2i−1n0(v; i) ≤
n0(v; 1− i) and Dn is realised, then

dU1−i(v) ≥ ψλC. (25)

We will start with (22). Using (25), we see that the event in (22) is included in the
following event: there are disjoint set sets S, U with 1 ≤ |U | < ne−γd and |S| = ε|U |/2
such that for any v ∈ S we have dU(s) ≥ ψλC.

Let us consider a set U with 1 ≤ |U | ≤ ne−γd and let S ⊂ Vn\U be such that |S| = ε|U |/2.

P(∀v ∈ S, dU(v) ≥ ψλC) =
∏
v∈S

P(dU(v) ≥ ψλC),

since these are events depending on pairwise disjoint sets of edges.
We now observe that for any v ∈ S the random variable dU(v) is stochastically dominated

by a random variable with distribution Bin(|U |, d/n). Using that
(
n
k

)
≤ (en/k)k, we can

bound the above probability in the following way:

P(dU(v) ≥ ψλC) ≤
(
|U |
ψλC

)(
d

n

)ψλC
≤
(
ed|U |
ψλn

)ψλC
.

Substituting this bound into the above inequality, we finally get

P(∀v ∈ S, dU(v) ≥ ψλC)
|S|=ε|U |
≤

(
ed|U |
ψλn

)ψλε|U |C
d≤α(λ) logn

= exp (−ψλε|U |C log(n/|U |)(1 + o(1))) .

Now we can bound

P
(
∃S : |S| = ε|U |/2, ∀v ∈ S, dU1−i(v) ≥ ψλC

)
≤(

n

ε|U |/2

)
· exp

(
−ψλ

ε

2
|U |C log

(
n

|U |

)
(1 + o(1))

)
≤

(
ne

ε|U |/2

)ε|U |/2
· exp

(
−ψλ

ε

2
|U |C log

(
n

|U |

)
(1 + o(1))

)
≤ exp

(
−(ψλC − 1)ψλ

ε

2
|U | log

(
n

|U |

)
(1 + o(1))

)
.
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We are now ready to show (22). We write

P
(
∃U, S : S ∩ U = ∅, 1 ≤ |U | < ne−γd, |S| = ε|U |/2, ∀v ∈ S, dU1−i(v) ≥ ψλC

)
≤∑

1≤k<ne−γd

(
n

k

)
exp

(
−(ψλC − 1)

ε

2
k log (n/k) (1 + o(1))

)
≤

∑
1≤k<ne−γd

(ne
k

)k
exp

(
−(ψλC − 1)

ε

2
k log (n/k) (1 + o(1))

)
=

∑
1≤k<ne−γd

exp (k log(n/k)(1− (ψλC − 1)ε/2)(1 + o(1)))

log(n/k)>γd

≤
∑

1≤k<ne−γd
exp (γdk(1− (ψλC − 1)ε/2)(1 + o(1))) = o(1),

(26)

provided that C is large enough, depending on ε, λ.
Now, we turn to (23). Consider a partition (Ui, U1−i) of Hn(C) with |U1−i| as specified

above. If |Ŝ1−i| > ε|U1−i|/2 and Dn is realised, then there exists a set of ε|U1−i|/2 vertices
in U1−i, whose degree inside U1−i is at least ψλC. Hence, the total degree of this set
inside U1−i must be at least εψλ

2
|U1−i|C. In turn, the number of edges in U1−i is at least

εψλ
4
|U1−i|C. Thus, if e(U1−i) denotes the number of edges inside S1−i we have

P(|Ŝ1−i| ≥ ε|U1−i|/2|,Dn) ≤ P
(
e(U1−i) ≥

εψλ
4
|U1−i|C

)
.

We will show that a.a.s. any subset U ⊂ Vn with 1 ≤ |U | < ne−γd has e(U) ≤ εψλ
4
|U |C.

Now, e(U) is stochastically dominated from above by a binomially distributed random
variable Y ∼ Bin(|U |2, d/n). So

P
(
e(U) ≥ εψλ

4
|U |C

)
≤ P

(
Y ≥ εψλ

4
|U |C

)
.

We now bound the last probability as follows:

P
(
Y ≥ εψλ

4
|U |C

)
≤

(
|U |2

εψλ
4
|U |C

)
·
(
d

n

) εψλ
4
|U |C

≤

(
|U |2e

εψλ
4
|U |C

· d
n

) εψλ
4
|U |C

≤
(

4e

εψλ
· d
C
· |U |
n

) εψλ
4
|U |C

.

Since d = O(log n), we conclude that

P
(
e(U) ≥ εψλ

4
|U |C

)
≤ exp

(
−(1 + o(1))

εψλ
4
|U |C log(n/|U |)

)
.
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Arguing as in the case of (22), we take the union bound over all choices of the subset U
which satisfy the assumed conditions and a similar calculation as in (26) (the only difference
being that ε/2 is replaced by ε/4) yields:

P

 ⋃
1≤k<ne−γd

⋃
(Ui,U1−i):|U1−i|=k

{
|Ŝ1−i| ≥ ε|U1−i|/2

}⋂
Dn

 ≤
P
(
∃U : 1 ≤ |U | < ne−γd, e(U) ≥ εψλ

4
|U |C

)
= o(1).

�
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