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Abstract. We study well-posedness of the complex-valued modified KdV

equation (mKdV) on the real line. In particular, we prove local well-posedness

of mKdV in modulation spaces M2,p
s (R) for s ≥ 1

4
and 2 ≤ p <∞. For s < 1

4
,

we show that the solution map for mKdV is not locally uniformly continuous

in M2,p
s (R). By combining this local well-posedness with our previous work

(2018) on an a priori global-in-time bound for mKdV in modulation spaces,

we also establish global well-posedness of mKdV in M2,p
s (R) for s ≥ 1

4
and

2 ≤ p <∞.

1. Introduction.

1.1. Modified KdV equation. We consider the Cauchy problem for the complex-
valued modified KdV equation on the real line:{

∂tu+ ∂3xu± 6|u|2∂xu = 0

u|t=0 = u0,
(x, t) ∈ R× R. (1.1)

The equation (1.1) is known to be completely integrable and is closely related to
the cubic nonlinear Schrödinger equation (NLS):

i∂tu− ∂2xu∓ 2|u|2u = 0. (1.2)

See [14, 26, 20, 24]. When the initial data u0 is real-valued, the corresponding
solution u to (1.1) remains real-valued, thus solving the following real-valued mKdV:

∂tu+ ∂3xu± 6u2∂xu = 0. (1.3)
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The mKdV enjoys the following scaling symmetry:

u(x, t) 7−→ uλ(x, t) = λ−1u(λ−1x, λ−3t), (1.4)

which induces the scaling-critical Sobolev regularity scrit = − 1
2 in the sense that

homogeneous Ḣ−
1
2 -norm is invariant under the scaling symmetry (1.4).

The Cauchy problem (1.1) has been studied extensively. In [15], Kato studied
(1.1) from a viewpoint of quasilinear hyperbolic equations (in particular, not making
use of dispersion) and proved its local well-posedness in Hs(R), s > 3

2 . In [17, 18],
Kenig-Ponce-Vega exploited the dispersive nature of the equation and proved local
well-posedness of (1.1) in Hs(R), s ≥ 1

4 . In [27], Tao gave an alternative proof of

the local well-posedness in H
1
4 (R) by using the Fourier restriction norm method.

We also mention recent papers [23, 22] on unconditional uniqueness of solutions to
(1.1) in Hs(R), s > 1

4 . Let us now turn our attention to global well-posedness of
(1.1). In the real-valued setting, Colliander-Keel-Staffilani-Takaoka-Tao [5] applied
the I-method and proved global well-posedness of (1.3) in Hs(R) for s > 1

4 . See

Kishimoto [21] for the endpoint global well-posedness in H
1
4 (R). In a recent paper,

Killip-Vişan-Zhang [20] exploited the completely integrable structure of the equation
and proved a global-in-time a priori bound on the Hs-norm of solutions to the
complex-valued mKdV (1.1) for − 1

2 < s < 0. While it is not written in an explicitly

manner,1 their result is readily extendable to − 1
2 < s < 1 and thus proves global

well-posedness of the complex-valued mKdV (1.1) in H
1
4 (R).2

On the other hand, it is known that the solution map to (1.1) is not locally
uniformly continuous in Hs(R) for s < 1

4 ; see [19, 3]. This in particular implies that
one can not use a contraction argument to construct solutions to (1.1) in this regime.

One possible approach to study rough solutions outside H
1
4 (R) is to use a more

robust energy method. In [4], Christ-Holmer-Tataru employed an energy method
in the form of the short-time Fourier restriction norm method and proved global
existence of solutions to the real-valued mKdV (1.3) in Hs(R) for − 1

8 < s < 1
4 .

Uniqueness of these solutions, however, is unknown at this point.
Another approach is to study the Cauchy problem (1.1) in some other scales of

function spaces than the Sobolev spaces Hs(R). In [9], Grünrock studied (1.1) in
the Fourier-Lebesgue spaces FLs,p(R) defined by the norm:

‖f‖FLs,p = ‖〈ξ〉sf̂(ξ)‖Lp ,

where 〈 · 〉 = (1 + | · |2)
1
2 , and proved its local well-posedness in FLs,p(R) for s ≥ 1

2p

and 2 ≤ p < 4. In [10], Grünrock-Vega extended this result to 2 ≤ p <∞ with the
same range of s ≥ 1

2p . Note that the space FL0,∞(R) of pseudo-measures is critical

in terms of the scaling symmetry (1.4), i.e. the FL0,∞-norm remains invariant under
(1.4). Hence, by taking p→∞, we see that the local well-posedness result in [10] is
almost critical. There are two remarks in order; (i) the range of s ≥ 1

2p in [9, 10] is

sharp in the sense that the solution map to (1.1) is not locally uniformly continuous
in FLs,p(R) for s < 1

2p and 2 ≤ p <∞. See Section 5 in [9]. (ii) there seems to be

no known global well-posedness of (1.1) in the context of Fourier-Lebesgue spaces,
extending local solutions constructed in [9, 10] globally in time.

1See also Appendix B of [24] for details of a global-in-time a priori bound on the Hs-norm of

solutions to the complex-valued mKdV (1.1) for 0 < s < 1
2

.
2In a recent preprint [13], by exploiting the completely integrable structure of the equation,

Harrop-Griffiths, Killip, and Vişan proved global well-posedness of mKdV (1.1) in Hs(R), s > − 1
2

.
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1.2. Main results. Our main goal in this paper is to study the Cauchy problem
(1.1) in modulation spaces M2,p

s (R). We first recall the definition of modulation
spaces Mr,p

s (R) introduced in [6, 7]. Let ψ ∈ S(R) such that

suppψ ⊂ [−1, 1] and
∑
k∈Z

ψ(ξ − k) ≡ 1.

Then, given s ∈ R, 1 ≤ r, p ≤ ∞, the modulation space Mr,p
s (R) is defined as the

collection of all tempered distributions f ∈ S ′(R) such that ‖f‖Mr,p
s

< ∞, where
the Mr,p

s -norm is defined by

‖f‖Mr,p
s

=
∥∥〈n〉s‖ψn(D)f‖Lrx(R)

∥∥
`pn(Z)

.

Here, ψn(D) is the Fourier multiplier operator with the multiplier

ψn(ξ) := ψ(ξ − n).

In the following, we only consider r = 2. In the case of r = 2, we have the following
embedding

M2,p
s (R) ⊃ FLs,p(R) (1.5)

for p ≥ 2. The embedding (1.5) is immediate from

‖f‖FLs,p ∼
∥∥〈n〉s‖ψn(ξ)f̂(ξ)‖Lpξ(R)

∥∥
`pn(Z)

and the support condition on ψ.
In [24], we extended the work [20] by Killip-Vişan-Zhang on the global-in-time a

priori bound for solutions to (1.1) to the modulation space setting and proved the
following result.

Proposition 1. Let 2 ≤ p < ∞ and 0 ≤ s < 1 − 1
p .3 Then, there exists C =

C(p) > 0 such that

‖u(t)‖M2,p
s
≤ C

(
‖u(0)‖M2,p

s

)
(1.6)

for any Schwartz class solution u to the complex-valued mKdV (1.1) and any t ∈ R.

In [24], we also established the same global-in-time a priori bound for solutions
to the cubic NLS (1.2). Combining this with the local well-posedness of (1.2) in
M2,p
s (R) for s ≥ 0 and 2 ≤ p <∞ by S. Guo [11], we proved global well-posedness

of the cubic NLS (1.2) in almost critical modulation spaces4 M2,p
s (R) for s ≥ 0

On the other hand, there is no known local well-posedness for the modified KdV
equation (1.1) in the modulation space M2,p

s (R), which motivated us to prove the
following local well-posedness result.

Theorem 1.1. Let s ≥ 1
4 and 2 ≤ p <∞. Then, the complex-valued mKdV (1.1)

is locally well-posed in M2,p
s (R).

In [11], S. Guo proved local well-posedness of the cubic NLS (1.2) in the mod-
ulation spaces M2,p

s (R) for s ≥ 0 and 2 ≤ p < ∞. The proof was based on the
Fourier restriction norm method adapted to the modulation spaces, where an end-
point version of two-dimensional Fourier restriction estimate played a crucial role.

3The upper bound 1− 1
p

is not essential and we expect that this restriction can be relaxed by

a consideration similar to that in Section 3 of [20].
4The modulation spaces are based on the unit cube decomposition of the frequency space and

thus there is no scaling for the modulation spaces. We, however, say that M2,∞
0 (R) is a critical

space in view of the embedding (1.5) with s = 0 and p =∞.
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See also [12] for a work on the derivative NLS which employs a similar strategy. In
proving Theorem 1.1, we also use the Fourier restriction norm method adapted to
the modulation space setting. See (2.3) below. We, however, provide a different
approach than [11, 12]. Our argument is based on bilinear estimates; see Lemmas
2.2 and Corollary 1. It is worthwhile to mention that our approach works equally
well for the cubic NLS and the derivative NLS, providing an alternative approach
to the results in [11, 12].

As a corollary to Proposition 1 and Theorem 1.1, we obtain the following global
well-posedness.

Theorem 1.2. Let s ≥ 1
4 and 2 ≤ p < ∞. Then, there exists a function C :

R+ × R+ → R+, which is increasing in each argument, such that

sup
t∈[−T,T ]

‖u(t)‖M2,p
s
≤ C

(
‖u0‖M2,p

s
, T
)

(1.7)

for any T > 0 and any Schwartz solution u to (1.1) with u|t=0 = u0. In particular,
this implies that the complex-valued mKdV (1.1) is globally well-posed in M2,p

s (R).

For 1
4 ≤ s < 1 − 1

p , Proposition 1 allows us to choose the right-hand side of

(1.7) to be independent of T > 0. For s ≥ 1 − 1
p , we combine a persistence-of

regularity argument with the global-in-time bound on the M2,p
1
4

-norms of solutions.

See Subsection 3.6.

Remark 1. One can easily adapt the proof of Theorem 1.1 to extend the local well-
posedness of (1.1) to 1 ≤ p < 2 (and s ≥ 1

4 ). Similarly, by establishing persistence

of regularity as in [25], we can also prove global well-posedness of (1.1) in M2,p
s (R)

for s ≥ 1
4 and 1 ≤ p < 2. See Remark 3.

On the one hand, ḞL
1
4 ,∞(R) scales like Ḣ−

1
4 (R) and thus we may say that

M2,∞
1
4

(R) “scales like” Ḣ−
1
4 (R) in view of the embedding (1.5). On the other hand,

the M2,p
s (R)-norm is weaker than the FLs,p-norm for p > 2 and the solution map

to the mKdV (1.1) fails to be locally uniformly continuous in M2,p
s (R) as soon as

s < 1
4 .

Proposition 2. Suppose that (s, p) satisfies one of the following conditions: (i)
2 ≤ p ≤ ∞ and 0 ≤ s < 1

4 or (ii) 2 ≤ p < ∞ and − 1
p < s < 0. Then, the

data-to-solution map for (1.1) in the focusing case (with the + sign in (1.1)) :
u0 ∈ M2,p

s 7→ u ∈ C([−T, T ];M2,p
s (R)) is not locally uniformly continuous for any

T > 0.

Proposition 2 shows a sharp contrast with the Fourier-Lebesgue case, where local
well-posedness was proved via a contraction argument even for some s < 1

4 .
In [19], Kenig-Ponce-Vega proved the failure of local uniform continuity of the

solution map for the complex-valued focusing mKdV (1.1) in Hs(R), − 1
2 < s < 1

4 ,
by building counterexamples from explicit soliton solutions. See (4.2) below. By
making use of breather solutions to the real-valued focusing mKdV (1.1), they
also extended this result for the real-valued case. In [3], Christ-Colliander-Tao [3]

extended this failure of local uniform continuity below H
1
4 (R) (for − 1

4 < s < 1
4 )

to the defocusing case by approximating the mKdV dynamics by the cubic NLS
dynamics (which was in turn approximated by a dispersionless equation). These
(approximate) solutions in [19, 3] depend on a parameter N tending to ∞ and,
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as N → ∞, they start to concentrate at a single point on the frequency side (for
s > 0). Namely, they are essentially supported on a single unit cube for N � 1.
In this regime, their M2,p

s -norms basically reduce to the Hs-norms, giving rise to
the threshold regularity s = 1

4 even in the modulation space setting. The main
difficulty is that calculation required for the modulation space setting is much more
involved than that for the Sobolev space setting. Therefore, we only demonstrate
the proof for the focusing cases in Section 4. We expect the same result hold for
the defocusing case. For the conciseness of the paper, however, we choose not to
discuss details for the defocusing case.

Remark 2. In a recent preprint [2], the authors independently proved local well-
posedness of (1.1) analogous to Theorem 1.1 for s ≥ 1

4 and 2 ≤ p ≤ ∞. While the
result in [2] only refers to local well-posedness, it contains the p =∞ case. In view

of the embedding M2,∞
s (R) ⊂M2,p

1
4

(R) for

(s− 1
4 )p > 1, (1.8)

a combination of the a priori bound (1.7) in Theorem 1.2 (with s > 1
4 and p < ∞

satisfying (1.8)) and a persistence-of-regularity argument as in Subsection 3.6 seems
to yield global well-posedness of (1.1) for s > 1

4 and p =∞. On the other hand, the

global well-posedness issue at the endpoint case: s = 1
4 and p =∞ remains open.

2. Preliminaries. We write A . B to denote an estimate of the form A ≤ CB.
Similarly, we write A ∼ B to denote A . B and B . A and use A � B when we
have A ≤ cB for small c > 0.

Given dyadic N ≥ 1, we denote by PN the Littlewood-Paley projector onto the
(spatial) frequencies {|ξ| ∼ N}. We use the following convention; any summation
over capitalized variables such as N1, N2, . . . , are presumed to be over dyadic
numbers of the form 2k, k ∈ N ∪ {0}.

For n ∈ Z, let

Π̂nf(ξ) = ψn(ξ)f̂(ξ) = ψ(ξ − n)f̂(ξ). (2.1)

By Bernstein’s inequality, we have

‖PNf‖Lpx . N
1
q−

1
p ‖f‖Lqx ,

‖Πnf‖Lpx . ‖f‖Lqx
(2.2)

for any 1 ≤ q ≤ p ≤ ∞.
In the seminal work [1], Bourgain introduced the Xs,b-space defined by the norm:

‖u‖Xs,b := ‖〈ξ〉s〈τ − ξ3〉bû(ξ, τ)‖L2
τ,ξ
.

In this paper, we use the following version of the Xs,b-space adapted to the modu-
lation spaces M2,p

s (R):

‖u‖Xs,bp :=

(∑
n∈Z
〈n〉sp‖〈τ − ξ3〉bû(ξ, τ)‖p

L2
τ,ξ(R×[n,n+1])

) 1
p

∼
∥∥‖Πnu‖Xs,b

∥∥
`pn
. (2.3)

When p = 2, the space Xs,b
p reduces to the usual Xs,b-space. When b > 1

2 , the
following embedding holds:

Xs,b
p ⊂ C(R;M2,p

s (R)). (2.4)
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Let p ≥ q ≥ 1. Since `qn(Z) ⊂ `pn(Z), we have

‖u‖Xs,bp ≤ ‖u‖Xs,bq . (2.5)

On the other hand, from Hölder’s inequality, we have

‖PNu‖Xs,bq . N
1
q−

1
p ‖PNu‖Xs,bp . (2.6)

Given a time interval I ⊂ R, we also define the local-in-time version Xs,b
p (I) of

the Xs,b
p -space as the collection of functions u such that

‖u‖Xs,bp (I) := inf
{
‖v‖Xs,bp : v|I = u

}
is finite.

The following linear estimates follow from the characterization (2.3) and the
corresponding linear estimates for the standard Xs,b-spaces. See [8] for the proof.

Lemma 2.1. (i) (Homogeneous linear estimate). Given 1 ≤ p < ∞ and s, b ∈ R,
we have

‖e−t∂
3
xf‖Xs,bp ([0,T ]) . ‖f‖M2,p

s

for any 0 < T ≤ 1.

(ii) (Nonhomogeneous linear estimate). Let s ∈ R, 1 ≤ p <∞, and − 1
2 < b′ ≤ 0 ≤

b ≤ 1 + b′. Then, we have∥∥∥∥ ˆ t

0

e−(t−t
′)∂3

xF (t′)dt′
∥∥∥∥
Xs,bp ([0,T ])

. T 1+b′−b‖F‖
Xs,b

′
p ([0,T ])

for any 0 < T ≤ 1.

In the following, we list various estimates in proving the crucial trilinear estimate
(Proposition 3). The following inequality will be convenient in dealing with the
resonant case in Section 3. From Hölder’s and Young’s inequalities, we have∑

m,n∈Z
m 6=n

ambn
|m− n|〈n〉ε

≤ Cε‖an‖`p(Z)‖bn‖`p′ (Z) (2.7)

for any ε > 0, where p′ denotes the Hölder conjugate of p.

Next, we recall a bilinear estimate from [9]. Given θ > 0, let Iθ = (−∂2x)
θ
2 denote

the Riesz potential of order −θ. We also define Iθ− by

Fx(Iθ−(f, g))(ξ) :=

ˆ
ξ=ξ1+ξ2

|ξ1 − ξ2|θf̂(ξ1)ĝ(ξ2)dξ1.

Then, we have the following bilinear estimate. See Lemma 3.1 and Corollary 3.2 in
[10].

Lemma 2.2. Let I
1
2 and I

1
2
− be as above (with θ = 1

2 ). Then, we have5∥∥I 1
2 I

1
2
−(u, v)

∥∥
L2
x,t(R2)

. ‖u‖
X0, 1

2
+‖v‖X0, 1

2
+ .

The following two estimates are immediate corollary of Lemma 2.2.

5We use a+ (and a−) to denote a + ε (and a − ε, respectively) for arbitrarily small ε � 1,
where an implicit constant is allowed to depend on ε > 0 (and it usually diverges as ε→ 0).
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Corollary 1. (i) Let N1, N2 ≥ 1 be dyadic such that N1 � N2. Then, we have

‖PN1
uPN2

v‖L2
x,t(R2) .

1

N1
‖PN1u‖X0, 1

2
+‖PN2v‖X0, 1

2
+ .

(ii) Let m,n ∈ Z such that |m+ n|, |m− n| ≥ 2. Then, we have

‖ΠmuΠnv‖L2
x,t(R2) .

1√
|m+ n||m− n|

‖Πmu‖
X0, 1

2
+‖Πnv‖

X0, 1
2
+ .

In [27], Tao presented a proof of local well-posedness of mKdV (1.1) in H
1
4 (R)

based on the Fourier restriction norm method by establishing the following trilinear
estimate.

Lemma 2.3 (Corollary 6.3 in [27]). Given small ε > 0, there exists Cε > 0 such
that

‖∂x(u1u2u3)‖
X

1
4
,− 1

2
+2ε ≤ Cε

3∏
j=1

‖uj‖
X

1
4
, 1
2
+ε . (2.8)

In [27], the estimate (2.8) was stated with − 1
2 + ε for the temporal regularity b

on the left-hand side. It is, however, easy to see that the result also holds true with
− 1

2 + 2ε.

3. Proof of Theorems 1.1 and 1.2.

3.1. Trilinear estimate. In view of the linear estimates in Lemma 2.1, local well-
posedness of (1.1) (Theorem 1.1) follows from a standard contraction argument
once we prove the following trilinear estimate.

Proposition 3. Let s ≥ 1
4 and 2 ≤ p < ∞. Then, given small ε > 0, there exists

Cε > 0 such that∥∥u1u2∂xu3∥∥
X
s,− 1

2
+2ε

p ([0,T ])
≤ Cε

3∏
j=1

‖uj‖
X
s, 1

2
+ε

p ([0,T ])
(3.1)

for any T > 0.

We present the proof of Proposition 3 in the remaining part of this section. By
a standard reduction, it suffices to prove (3.1) without the time restriction. Noting
that the resonance relation τ = ξ3 is invariant under (τ, ξ) 7→ (−τ,−ξ), it suffices
to prove ∥∥u1u2∂xu3∥∥

X
s,− 1

2
+2ε

p

.
3∏
j=1

‖uj‖
X
s, 1

2
+ε

p

. (3.2)

Furthermore, by the triangle inequality: 〈ξ〉 . 〈ξ1〉〈ξ2〉〈ξ3〉 under ξ1+ξ2+ξ3+ξ = 0,
it suffices to prove (3.2) for s = 1

4 . Then, by duality, (3.1) follows once we prove∣∣∣∣¨
R×R

u1u2∂xu3〈∂x〉
1
4 vdxdt

∣∣∣∣ =

∣∣∣∣ ˆ

ξ1+ξ2+ξ3+ξ=0
τ1+τ2+τ3+τ=0

〈ξ〉 14 ξ3
3∏
j=1

ûj(ξj , τj) v̂(ξ, τ)

∣∣∣∣
.

3∏
j=1

‖uj‖
X

1
4
, 1
2
+ε

p

‖v‖
X

0, 1
2
−2ε

p′
. (3.3)
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In the following, we use ξmax, ξmed, ξmin to denote the rearrangement of ξ1, ξ2, ξ3
such that |ξmax| ≥ |ξmed| ≥ |ξmin|. Under ξ1 + ξ2 + ξ3 + ξ = 0, we have |ξ| . |ξmax|.
In the following, we apply dyadic decompositions |ξj | ∼ Nj and |ξ| ∼ N for dyadic
Nj , N ≥ 1. In this case, we also use the notation: Nmax ∼ |ξmax|, Nmed ∼ |ξmed|,
and Nmin ∼ |ξmin|.

We prove Proposition 3 by separately considering the following four cases:

(i) Trivial cases,

(ii) Non-resonant case: Nmax � Nmed,

(iii) Semi-resonant case: Nmax ∼ Nmed � Nmin,

(iv) Resonant case: Nmax ∼ Nmin.

As we see below, the main difficulty appears in the resonant case (iv). Before going
into the details of the proof, we introduce a few more notations. We use σ and σj
to denote modulations given by

σ = τ − ξ3 and σj = τj − ξ3j
for j = 1, 2, 3. We also set

σmax = max
(
|σ|, |σ1|, |σ2|, |σ3|

)
.

For conciseness of the presentation, we use the following (slightly abusive) short-
hand notations:

uN = PNu and un = Πnu,

where PN is the Littlewood-Paley projector and Πn is as in (2.1). We only use the
capitalized variables to denote dyadic numbers and hence there is no confusion.

Remark 3. By slightly modifying the proof, we can easily extend (3.1) to 1 ≤
p < 2. Note that the proof in this case is easier than that of Proposition 3 since
`p(Z) ⊂ `2(Z). Furthermore, we can also establish∥∥u1u2∂xu3∥∥

X
s,− 1

2
+2ε

p ([0,T ])

≤ Cε min
j=1,2,3

(
‖uj‖

X
s, 1

2
+ε

p ([0,T ])

3∏
k=1
k 6=j

‖uk‖
Xs,

1
2
+ε([0,T ])

)
(3.4)

for s ≥ 1
4 and 1 ≤ p < 2. The tame estimate (3.4) allows us to prove local well-

posedness of (1.1) in M2,p
s (R) for s ≥ 1

4 and 1 ≤ p < 2, where the local existence
time depends only on the Hs-norm of initial data. In particular, this allows us
to prove global well-posedness of (1.1) in M2,p

s (R) for s ≥ 1
4 and 1 ≤ p < 2.

See Appendix of [25] for such an argument. Since the required modification is
straightforward, we omit details.

3.2. Trivial cases. We first consider two trivial cases:

(i) |ξmax| . 1 and (ii) 〈σmax〉 � 〈ξmax〉10. (3.5)

(i) Suppose |ξmax| . 1. In this case, we have |ξ| . 1. Then, by Hölder’s inequality,
Bernstein’s inequality (2.2), (2.3), (2.4) followed by (2.5) and (2.6), we have∑

Nmax,N.1

N
1
4

∣∣∣∣ˆ
R×R

uN1
uN2

∂xuN3
vNdxdt

∣∣∣∣
.

∑
Nmax,N.1

‖uN1‖L2
t,x
‖uN2‖L∞x,t‖uN3‖L∞x,t‖vN‖L2

x,t
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.
∑

Nmax,N.1

‖uN1‖L2
x,t
‖uN2‖L∞t L2

x
‖uN3‖L∞t L2

x
‖vN‖L2

x,t

.
∑

Nmax,N.1

( 3∏
j=1

‖uNj‖X0, 1
2
+

)
‖vN‖

X0, 1
2
−

.
∑

Nmax,N.1

( 3∏
j=1

‖uNj‖
X

0, 1
2
+

p

)
‖vN‖

X
0, 1

2
−

p′
.

By summing over dyadic blocks N1, N2, N3, N . 1, we obtain (3.3).

(ii) Next, we suppose 〈σmax〉 � 〈ξmax〉10. In the following, we consider the case
〈σ1〉 = 〈σmax〉, The other cases follow from a similar argument. By Hölder’s and
Bernstein’s inequalities, the definition (2.3), and (2.4), we have∑

N1,N2,N3N≥1
dyadic

N
1
4

∣∣∣∣ˆ
R×R

uN1
uN2

∂xuN3
vNdxdt

∣∣∣∣
.

∑
N1,N2,N3,N≥1

N
5
4
max‖uN1‖L2

x,t
‖uN2‖L∞x,t‖uN3‖L∞x,t‖vN‖L2

x,t

.
∑

N1,N2,N3,N≥1

N
9
4
max‖uN1‖L2

x,t
‖uN2‖L∞t L2

x
‖uN3‖L∞t L2

x
‖vN‖L2

x,t

.
∑

N1,N2,N3,N≥1

N
9
4
max‖〈σ1〉−

1
2−uN1

‖
X0, 1

2
+

( 3∏
j=2

‖uNj‖X0, 1
2
+

)
‖vN‖

X0, 1
2
−

By applying the lower bound (3.5) together with (2.5) and (2.6),

.
∑

N1,N2,N3,N≥1

N
9
4
maxN

− 7
2−

3
p−

max

( 3∏
j=1

‖uNj‖
X

0, 1
2
+

p

)
‖vN‖

X
0, 1

2
−

p′

.
∑

N1,N2,N3,N≥1

( 3∏
j=1

N0−
j ‖uNj‖

X
0, 1

2
+

p

)
N0−‖vN‖

X
0, 1

2
−

p′
.

By summing over dyadic blocks N1, N2, N3, N ≥ 1, we obtain (3.3).
Therefore, we assume that

|ξmax| � 1 and 〈σmax〉 . 〈ξmax〉10 (3.6)

in the following.

Remark 4. In the arguments above, we first established bounds in terms of the
standard Xs,b-norms and then applied (2.5) and (2.6) to replaced it by the Xs,b

p -
norms. More precisely, we used

‖uN‖Xs,b . max
(
N

1
2−

1
p , 1
)
‖uN‖Xs,bp (3.7)

and ∑
N≥1
dyadic

N−ε‖uN‖Xs,bp . ‖u‖Xs,bp (3.8)

for any ε > 0. We use the same strategy in the following.
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3.3. Non-resonant case: Nmax � Nmed ≥ Nmin. Without loss of generality,6

suppose that N1 � N2 ≥ N3. The other cases can be treated by a similar con-
sideration. In this case, we have N ∼ N1. Then, by Corollary 1 and (3.6), we
have ∑

N1∼N�N2≥N3

N
1
4

∣∣∣∣ˆ
R×R

uN1uN2∂xuN3vNdxdt

∣∣∣∣
.

∑
N1∼N�N2≥N3

N
5
4 ‖uN1

uN2
‖L2

x,t
‖uN3

vN‖L2
x,t

.
∑

N1∼N�N2≥N3

N−
3
4

( 3∏
j=1

‖uNj‖X0, 1
2
+

)
‖vN‖

X0, 1
2
+

.
∑

N1∼N�N2≥N3

N−
3
4+

( 3∏
j=1

‖uNj‖X0, 1
2
+

)
‖vN‖

X0, 1
2
−

By applying (3.7) and (3.8),

.
∑

N1∼N�N2≥N3

N−
1
2−

1
p+(N2N3)

1
4−

1
p

( 3∏
j=1

‖uNj‖
X

1
4
, 1
2
+

p

)
‖vN‖

X
0, 1

2
−

p′

.
∑

N1∼N�N2≥N3

N−
1
p+

( 3∏
j=1

‖uNj‖
X

1
4
, 1
2
+

p

)
‖vN‖

X
0, 1

2
−

p′

.
3∏
j=1

‖uj‖
X

1
4
, 1
2
+

p

‖v‖
X

0, 1
2
−

p′
, (3.9)

provided p <∞.

3.4. Semi-resonant case: Nmax ∼ Nmed � Nmin. We proceed as in the non-
resonant case. The frequency separation allows us to use the bilinear estimate
(Corollary 1) twice, gaining two derivatives. Without loss of generality, suppose
that N1 ∼ N2 � N3. The other cases can be treated by a similar consideration.
We distinguish two cases according to the relation between N and Nmax.

First, suppose that N � Nmax. Then, by Corollary 1, we have∑
N1∼N2�N3,N

N
1
4

∣∣∣∣ˆ
R×R

uN1uN2∂xuN3vNdxdt

∣∣∣∣
.

∑
N1∼N2�N3,N

N
5
4
max‖uN1

uN3
‖L2

x,t
‖uN2

vN‖L2
x,t

.
∑

N1∼N2�N3,N

N
− 3

4
max

( 3∏
j=1

‖uNj‖X0, 1
2
+

)
‖vN‖

X0, 1
2
+ .

The rest follows as in (3.9).
Next, consider the case N ∼ Nmax. In this case, we have |ξ1 + ξ2 + ξ| = |ξ3| �

N ∼ Nmax. Hence, we must have ξ1ξ2 < 0, ξ1ξ < 0, or ξ2ξ < 0. Without loss of

6Since the derivative falls on the third factor on the left-hand side of (3.3), there is no sym-
metry among frequencies ξ1, ξ2, and ξ3. However, we simply bound this derivative by the largest

frequency in the following and thus we may pretend that there is symmetry among frequencies.
The same comment applies in the following.
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generality, suppose that ξ1ξ2 < 0. (The proofs for the other cases are similar.) We
then have |ξ − ξ3||ξ + ξ3| ∼ N2

max and

|ξ1 − ξ2||ξ1 + ξ2| = |ξ1 − ξ2||ξ + ξ3| ∼ N2
max.

Hence, by Lemma 2.2, we have∑
N1∼N2∼N�N3

N
1
4

∣∣∣∣ˆ
R×R

uN1
uN2

∂xuN3
vNdxdt

∣∣∣∣
.

∑
N1∼N2∼N�N3

N
5
4
max‖uN1uN2‖L2‖uN3vN‖L2

.
∑

N1∼N2∼N�N3

N
− 3

4
max

( 3∏
j=1

‖uNj‖X0, 1
2
+

)
‖vN‖

X0, 1
2
+ .

(3.10)

The rest follows as in (3.9).

3.5. Resonant case. In this case, we have N1 ∼ N2 ∼ N3. Without loss of
generality, we may further assume that N1 ∼ N , since, otherwise, i.e. N1 � N , the
proof can be reduced to (3.10) with the roles of N and N3 switched.

Hence, we assume that

N1 ∼ N2 ∼ N3 ∼ N (3.11)

in the following. This case requires more careful analysis and we need to use the
unit-cube decomposition:

u =
∑
n∈Z

un =
∑
n∈Z

Πnu.

Given n ∈ Z, we set In = [n, n+ 1).

• Case 1: We first consider the case |ξi − ξj | ≥ |ξi + ξj | for some pair (i, j).
Without loss of generality, we assume (i, j) = (1, 2). In the next two subcases,

we treat the case |ξ1 + ξ2| . 1.

Subcase 1.1: |ξ1 + ξ2| . 1 and min(|ξ1 − ξ3|, |ξ1 + ξ3|) . 1.
We only consider the case where |ξ1 − ξ3| . 1, since the proof for the case

|ξ1 + ξ3| . 1 is similar. Suppose that ξ1 ∈ In = [n, n+ 1). Then, we have

ξ2 = −n+O(1), ξ3 = n+O(1), and ξ = −n+O(1).

Hence, we need to estimate the following expression:∑
n∈Z

∑
j,k,`=O(1)

〈n〉 14
∣∣∣∣ˆ

R×R
unu−n+j∂xun+kv−n+`dxdt

∣∣∣∣.
For simplicity of the presentation, we only consider the “diagonal” case, i.e. j =
k = ` = 0 in the following. By Lemma 2.3 and Hölder’s inequality in n, we have∑
n∈Z
〈n〉 14

∣∣∣∣ˆ
R×R

unu−n∂xunv−ndxdt

∣∣∣∣ .∑
n∈Z
〈n〉 14 ‖unu−n∂xun‖

X0,− 1
2
+2ε‖v−n‖X0, 1

2
−2ε

.
∑
n∈Z
‖un‖3

X
1
4
, 1
2
+ε
‖vn‖

X0, 1
2
−2ε

. ‖u‖3
X

1
4
, 1
2
+ε

3p

‖v‖
X

0, 1
2
−2ε

p′

. ‖u‖3
X

1
4
, 1
2
+ε

p

‖v‖
X

0, 1
2
−2ε

p′
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for sufficiently small ε > 0. This is the only case where we need to be precise about
the temporal regularities.

Subcase 1.2: |ξ1 + ξ2| . 1 and |ξ1 ± ξ3| � 1.
Suppose that ξ1 ∈ In and ξ3 ∈ Im. In view of (3.11), we have |n| ∼ |m|.

Moreover, we have ξ2 ∈ I−n+j and ξ ∈ I−m+k for j, k = O(1). As in Subcase 1.1,
we only estimate the contribution from j = k = 0. Without loss of generality, we
assume that |m + n| ≥ |m − n|. By Corollary 1 with |m ± n| � 1, |m| ∼ |n| � 1,
and (3.6), we have∑

m,n∈Z
m 6=n

|m| 14
∣∣∣∣ ˆ

R×R
unu−n∂xumv−mdxdt

∣∣∣∣ ≤ ∑
m,n∈Z
m 6=n

|m| 54 ‖umun‖L2‖u−nv−m‖L2

.
∑
m,n∈Z
m 6=n

|m| 54
|m− n||m+ n|

‖un‖
X0, 1

2
+‖um‖X0, 1

2
+‖u−n‖X0, 1

2
+‖v−m‖X0, 1

2
+

.
∑
m,n∈Z
m 6=n

|n| 12+

|m− n||n+m|
‖un‖

X
1
4
, 1
2
+‖um‖X 1

4
, 1
2
+‖u−n‖X 1

4
, 1
2
+‖vm‖X0, 1

2
−

.
∑
m,n∈Z
m 6=n

1

|m− n|〈n〉 12−
‖un‖

X
1
4
, 1
2
+‖um‖X 1

4
, 1
2
+‖u−n‖X 1

4
, 1
2
+‖vm‖X0, 1

2
−

By applying (2.7) and (2.3),

.
∥∥∥‖un‖

X
1
4
, 1
2
+‖u−n‖X 1

4
, 1
2
+

∥∥∥
`
p
2
n

∥∥∥‖um‖
X

1
4
, 1
2
+‖vm‖X0, 1

2
−

∥∥∥
`
p
p−2
m

. ‖u‖3
X

1
4
, 1
2
+

p

‖v‖
X

0, 1
2
−

p′
.

In the next three subcases, we treat the case |ξ1 + ξ2| � 1.

Subase 1.3: |ξ1 + ξ2| � 1 and |ξi − ξj | . 1 for some (i, j) 6= (1, 2).
Without loss of generality, we may assume (i, j) = (1, 3). Suppose that |ξ−ξ3| .

1. Then, we need to show∑
n∈Z
〈n〉 14

∣∣∣∣ ˆ
R×R

unu−3n∂xunvndxdt

∣∣∣∣ . ‖u‖3
X

1
4
, 1
2
+

p

‖v‖
X

0, 1
2
−

p′
,

which can be easily obtained by repeating the argument in Subcase 1.1. Hence, we
assume that |ξ − ξ3| � 1 in the following.

Suppose that ξ1 ∈ In and ξ ∈ Im. In view of (3.11), we have |n| ∼ |m|. Moreover,
we have ξ3 ∈ In+j and ξ2 ∈ I−m−2n−k for j, k = O(1). As above, we only estimate
the contribution from j = k = 0. By the triangle inequality, we have max(|ξ −
ξ3|, |ξ + ξ3|) & |m| ∼ |n| � 1. In the following, we only consider the case |ξ − ξ3| ∼
|m| since the other case follows in a similar manner. Moreover, since |ξ1 − ξ2| ≥
|ξ1 + ξ2|, we conclude that |m+ 3n| ∼ |m|. Hence, by Corollary 1, (3.6), and (2.7),
we have∑
m,n∈Z
m6=n

|m| 14
∣∣∣∣ˆ

R×R
unu−m−2n∂xunvmdxdt

∣∣∣∣
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.
∑
m,n∈Z
m6=n

|m| 54 ‖unu−m−2n‖L2‖unvm‖L2

.
∑
m,n∈Z
m6=n

|m| 12+

|m+ n|
√
|m− n||m+ 3n|

‖un‖2
X

1
4
, 1
2
+
‖u−m−2n‖

X
1
4
, 1
2
+‖vm‖X0, 1

2
−

. ‖u‖2
X

1
4
, 1
2
+

∞

∑
m,n∈Z
m6=n

1

|m+ (m− 2n)|〈m〉 12−
‖um‖

X
1
4
, 1
2
+‖vm−2n‖X0, 1

2
−

. ‖u‖3
X

1
4
, 1
2
+

p

‖v‖
X

0, 1
2
−

p′
.

Subcase 1.4: |ξ1 + ξ2| � 1 and |ξi + ξj | . 1 for some (i, j) 6= (1, 2).
We can proceed as in Subcase 1.3 above and thus we omit details.

Subcase 1.5: |ξ1 + ξ2| � 1 and |ξi ± ξj | � 1 for all (i, j) 6= (1, 2).
By assumption, we have |ξ1 − ξ2| ≥ |ξ1 + ξ2| and hence we have |ξi ± ξj | � 1 for

all i 6= j. Recalling that

σ + σ1 + σ2 + σ3 = 3(ξ1 + ξ2)(ξ2 + ξ3)(ξ1 + ξ3)

under ξ1 + ξ2 + ξ3 + ξ = 0 and τ1 + τ2 + τ3 + τ = 0, we have

〈σmax〉 & |ξ1 + ξ2||ξ2 + ξ3||ξ1 + ξ3|. (3.12)

Without loss of generality, we assume that 〈σ1〉 = 〈σmax〉. By Bernstein’s inequali-
ties, (3.12), and Corollary 1 with (3.6), we have∑

n1+n2+n3+n=O(1)

|n| 14
∣∣∣∣ˆ

R×R
un1

un2
∂xun3

vndxdt

∣∣∣∣
.

∑
n1+n2+n3+n=O(1)

|n| 54 ‖un1
‖L2

x,t
‖un2

‖L∞t L2
x
‖un3

vn‖L2
x,t

.
∑

n1+n2+n3+n=O(1)

|n| 54+√
|n1 + n2||n1 + n3||n2 + n3|

√
|n3 − n||n3 + n|

×
( 3∏
j=1

‖unj‖X0, 1
2
+

)
‖vn‖

X0, 1
2
− .

(3.13)

By the triangle inequality, we have max(|n3 − n|, |n3 + n|) ≥ |n| and

max(|n1 + n3|, |n2 + n3|) ≥ |n1 − n2| & |n|.

In the following, we only consider the case |n1 + n3| ∼ |n3 − n| & |n|. Then, we
have

LHS of (3.13) .
∑

n1+n2+n3+n=O(1)

|n|− 1
2+√

|n1 + n2||n2 + n3||n3 + n|

×
( 3∏
j=1

‖unj‖X0, 1
2
+

)
‖vn‖

X0, 1
2
−

. sup
n3,n

(∑
n2

|n2|−
1
2+√

|n2 + n3|
‖u−n2−n3−n‖X 1

4
, 1
2
+‖un2

‖
X

1
4
, 1
2
+

)
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×
∑
n3,n

1

|n3 + n|〈n〉0+
‖un3

‖
X

1
4
, 1
2
+‖vn‖X0, 1

2
−

By applying Hölder’s inequality in n2 and (2.7),

. ‖u‖3
X

1
4
, 1
2
+

p

‖v‖
X

0, 1
2
−

p′
,

provided that p <∞.

• Case 2: |ξi − ξj | ≤ |ξi + ξj | for all i, j.
In this case, all ξj ’s for j = 1, 2, 3 have the same sign. Thus, we have |ξ ± ξj | &

|ξmax| for j = 1, 2, 3. Indeed, from ξ1 + ξ2 + ξ3 + ξ = 0 and (3.11), we have

|ξ + ξj | =
∣∣∣∣ ∑
k∈{1,2,3}\{j}

ξk

∣∣∣∣ ∼ |ξmax|.

and see that ξ has the opposite sign from ξj , j = 1, 2, 3, thus yielding |ξ − ξj | &
|ξj | ∼ |ξmax|. Moreover, from (3.12), (3.11), and the fact that ξj ’s for j = 1, 2, 3
have the same sign, we have

〈σmax〉 & |ξmax|3. (3.14)

We first consider the case σj = σmax for some j = 1, 2, 3. Without loss of
generality, we assume that σ2 = σmax. By Hölder’s and Bernstein’s inequalities,
(2.3), (3.14), and Lemma 2.2 with |ξ ± ξ3| & |ξmax|, we have∑

Nmax∼Nmin∼N
N

5
4

∣∣∣∣ˆ
R×R

uN1
uN2

uN3
vNdxdt

∣∣∣∣
.

∑
Nmax∼Nmin∼N

N
7
4 ‖uN1

‖L∞t L2
x
‖uN2

‖L2
x,t
‖uN3

vN‖L2
x,t

.
∑

Nmax∼Nmin∼N
N

1
4−‖uN1‖X0, 1

2
+‖uN2‖X0, 1

2
+‖uN3vN‖L2

x,t

.
∑

Nmax∼Nmin∼N
N−

3
4+

( 3∏
j=1

‖uNj‖X0, 1
2
+

)
‖vN‖

X0, 1
2
− .

Then, the rest follows as in (3.9).
In the following, we assume that σ = σmax. The proof for this case is more

involved and thus we split it into several subcases.

Subcase 2.1: σ = σmax and |ξi − ξj | . 1 for some i 6= j.
Without loss of generality, we may assume |ξ1 − ξ2| . 1. Suppose that ξ1 ∈ In

and ξ3 ∈ Im. Then, we have ξ2 ∈ In+j and ξ3 ∈ I−m−2n−k for j, k = O(1). In the
following, we only estimate the contribution from j = k = 0:∑

m,n∈Z
|n|∼|m|

|n| 54
∣∣∣∣ ˆ

R×R
ununumv−m−2ndxdt

∣∣∣∣. (3.15)

We first consider the case |ξ1− ξ3| . 1. In this case, we can further reduce (3.15)
to the following diagonal case:∑

n∈Z
|n| 54

∣∣∣∣ˆ
R×R

unununv−3ndxdt

∣∣∣∣. (3.16)
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By Hölder’s inequality, Bernstein’s inequality (2.2) and (3.14), we have

(3.16) .
∑
n∈Z
|n| 54 ‖un‖2L∞t L2

x
‖un‖L2

x,t
‖v−3n‖L2

x,t

.
∑
n∈Z
|n|− 1

4+‖un‖3
X0, 1

2
+
‖v3n‖

X0, 1
2
− .

Then, the rest follows from Hölder’s inequality in n.
Next, we consider the case |ξ1−ξ3| � 1. In this case, we have |m+n| ≥ |m−n| �

1. By Hölder’s and Bernstein’s inequalities, (3.14), Corollary 1, we have

(3.15) .
∑
m,n∈Z

|n| 54 ‖umun‖L2
x,t
‖un‖L∞t L2

x
‖v−m−2n‖L2

x,t

.
∑
m,n∈Z

|n|− 1
4+√

|m− n||m+ n|
‖un‖2

X0, 1
2
+
‖um‖

X0, 1
2
+‖v−m−2n‖X0, 1

2
−

. ‖u‖2
X

1
4
, 1
2
+

∞

∑
m,n∈Z

1

|n+ (−m− 2n)| 12 〈n〉1−
‖un‖

X
1
4
, 1
2
+‖v−m−2n‖X0, 1

2
−

∼ ‖u‖2
X

1
4
, 1
2
+

∞

∑
m,n∈Z

1

|n+ (−m− 2n)|〈n〉 12−
‖un‖

X
1
4
, 1
2
+‖v−m−2n‖X0, 1

2
− .

Then, the rest follows from (2.7).

Subcase 2.2: σ = σmax and |ξi − ξj | � 1 for all i 6= j.
Since all ξj ’s have the same sign, we have |ξi + ξj | ∼ |ξi| ∼ |ξmax|. Then, by

Hölder’s and Bernstein’s inequalities, (3.14), and Corollary 1 with |n1 ± n2| � 1,
we have ∑
n1+n2+n3+n=O(1)

|n| 54
∣∣∣∣ˆ

R×R
un1

un2
un3

vndxdt

∣∣∣∣
.

∑
n1+n2+n3+n=O(1)

〈n〉 54 ‖un1
un2
‖L2

x,t
‖un3

‖L∞t L2
x
‖vn‖L2

x,t

.
∑

n1+n2+n3+n=O(1)

〈n〉− 1
4+‖un1

un2
‖L2

x,t
‖un3

‖
X0, 1

2
+‖vn‖X0, 1

2
−

.
∑

n1+n2+n3+n=O(1)

〈n〉−1+√
|n1 − n2||n1 + n2|

( 3∏
j=1

‖unj‖X 1
4
, 1
2
+

)
‖vn‖

X0, 1
2
− .

(3.17)

By noting |n1 + n2| ∼ |n3 + n| ∼ |n| ∼ |n1| and applying Hölder’s inequality in n1
and (2.7), we have

LHS of (3.17)

.
∑

n1+n2+n3+n=O(1)

〈n1〉−
1
2+〈n〉0−√

|n1 − n2||n3 + n|

( 3∏
j=1

‖unj‖X 1
4
, 1
2
+

)
‖vn‖

X
0, 1

2
−

2,2

. sup
n3,n

(∑
n1

〈n1〉−
1
2+√

〈2n1 + n+ n3〉
‖un1

‖
X

1
4
, 1
2
+‖u−n1−n2−n‖X 1

4
, 1
2
+

)

×

(∑
n3,n

〈n〉0−

|n3 + n|
‖un3

‖
X

1
4
, 1
2
+‖vn‖X0, 1

2
−

)
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. ‖u‖3
X

1
4
, 1
2
+

p

‖v‖
X

0, 1
2
−

p′
,

provided that p <∞.
This completes the proof of Proposition 3 and hence the proof of Theorem 1.1.

3.6. Persistence of regularity. We conclude this section by presenting the proof
of global well-posedness (Theorem 1.2). When 1

4 ≤ s < 1− 1
p , global well-posedness

immediately follows from the local well-posedness in Theorem 1.1 together with the
global-in-time a priori bound (1.6) in Proposition 1. In the following, we briefly
discuss the situation for s ≥ 1− 1

p . In this case, the proof is based on combining the

global-in-time a priori bound (1.6) in Proposition 1 on the M2,p
1
4

-norms of solutions

and a persistence-of-regularity argument.
With the notations from the previous subsections, we have |ξ| . |ξmax|. Hence,

by slightly modifying the proof of Proposition 3, we obtain∥∥|u|2∂xu∥∥
X
s,− 1

2
+2ε

p ([0,T ])
≤ Cε‖u‖2

X
1
4
, 1
2
+ε

p ([0,T ])
‖u‖

X
s, 1

2
+ε

p ([0,T ])
(3.18)

for any s ≥ 1
4 , any T > 0, and for small ε > 0.

Let u0 ∈ M2,p
s (R) for some s ≥ 1

4 and 2 ≤ p < ∞. Since u0 ∈ M2,p
1
4

(R), there

exists a unique global solution u ∈ C(R;M2,p
1
4

(R)) to (1.1) with u|t=0 = u0. We

need to check that u indeed lies in the correct space C(R;M2,p
s (R)). In view of the

global-in-time a priori bound (1.6), there exists small local existence time

δ ∼ (1 + ‖u0‖M2,p
1
4

)−θ > 0 (3.19)

for some θ > 0 such that a standard contraction argument in X
1
4 ,

1
2+ε

p (I) can be
applied on any interval Iof length δ. Moreover, with I = [t0, t0 + δ], we have

‖u‖
X

1
4
, 1
2
+ε

p (I)
≤ C0‖u(t0)‖M2,p

1
4

(3.20)

for some absolute constant C0 > 0. Then, from the Duhamel formula, Lemma 2.1
(with b = 1

2 + ε and b′ = − 1
2 + 2ε), (3.18), and (3.20), we obtain

‖u‖
X
s, 1

2
+ε

p (I)
. ‖u(t0)‖M2,p

s
+ δε‖u‖2

X
1
4
, 1
2
+ε

p (I)
‖u‖

X
s, 1

2
+ε

p (I)

. ‖u(t0)‖M2,p
s

+ δε‖u(t0)‖2
M2,p

1
4

‖u‖
X
s, 1

2
+ε

p (I)
.

(3.21)

In particular, from (2.4) and (3.21), we conclude that there exists an absolute
constant C1 > 0 such that

sup
t∈[t0,t0+δ]

‖u(t)‖M2,p
s
≤ C1‖u(t0)‖M2,p

s
(3.22)

for any t0 ∈ R. Then, by iterating the local argument with (3.19), we conclude from
(3.22) that

sup
t∈[0,T ]

‖u(t)‖M2,p
s
≤ C

(1+‖u0‖
M

2,p
1
4

)θT

‖u0‖M2,p
s

for any T > 0. This proves global well-posedness of (1.1) in M2,p
s (R) for s ≥ 1− 1

p .
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4. On the failure of local uniform continuity below H
1
4 (R). In this section,

we present the proof of Proposition 2. In particular, by adapting the argument in
[19] to the modulation space setting, we prove the following statement.

Lemma 4.1. Suppose that (s, p) satisfies one of the following conditions: (i) 2 ≤
p ≤ ∞ and 0 ≤ s < 1

4 or (ii) 2 ≤ p < ∞ and − 1
p < s < 0. There exist two

sequences {u0,n}n∈N and {ũ0,n}n∈N in S(R) such that

(a) u0,n and ũ0,n are uniformly bounded in M2,p
s (R),

(b) lim
n→∞

‖u0,n − ũ0,n‖M2,p
s

= 0,

(c) Let un and ũn be the solutions to the focusing mKdV (1.1) (with the + sign)
with initial data un|t=0 = u0,n and ũn|t=0 = ũ0,n, respectively. Then, there
exists c > 0 such that

lim inf
n→∞

‖un(T )− ũn(T )‖M2,p
s
≥ c > 0

for any T > 0.

In [19], Kenig-Ponce-Vega proved Lemma 4.1 for p = 2 by using explicit soliton
solutions with parameters (see (4.2) below). In the following, we use exactly the
same explicit soliton solutions to show an analogous instability in the modulation
space setting.

Let

Q(x) = sech(x). (4.1)

Then, Q solves the ODE: −Q+Q′′ + 2Q3 = 0 and hence

−Q′ +Q′′′ + 6Q2Q′ = 0.

With Qλ(x) = λQ(λx), define uN,λ by

uN,λ(x, t) =
1√
6
eit(N

3−3Nλ2)+iNxQλ(x+ 3N2t− λ2t) (4.2)

forN,λ > 0. Then, it is easy to check that uN,λ is a solution to (1.1) with uN,λ|t=0 =
1√
6
eiNxQλ for any N,λ > 0. Recalling that

Q̂λ(ξ) = Q̂
(
ξ
λ

)
= πsech

(
πξ

2λ

)
,

we have

Q̂λ(ξ) ∼ e−
π|ξ|
2λ . (4.3)

In particular, when λ� 1, it follows from (4.2) that ûN,λ(ξ, t) is highly concentrated
around |ξ| ∼ N . See (4.7) below.

In the following, we first present the argument for 0 ≤ s < 1
4 . We then discuss

the case for − 1
p < s < 0 in Subsection 4.3.

4.1. On the size of the soliton solutions. Fix 2 ≤ p ≤ ∞ and 0 ≤ s < 1
4 . Given

N ≥ 1, we consider two solutions uN1,λ and uN2,λ of the form (4.2), where

λ = N−2s and N1, N2 = N +O(1). (4.4)

As we see below, we also impose that |N1−N2| � 1. Furthermore, fix θ = θ(s) > 0
such that

4s− 1 + 2θ < 0. (4.5)



2988 TADAHIRO OH AND YUZHAO WANG

In the following, we estimate the M2,p
s -norms of uNj ,λ, j = 1, 2. Noting that

|ûNj ,λ(ξ, t)| = |ûNj ,λ(ξ, 0)|, the following computation holds uniformly in t ∈ R. We

separately consider the contributions from (i) |ξ −N | � Nθ and (ii) |ξ −N | & Nθ.
Set

u
(1)
Nj ,λ

= F−1x
(
1|ξ−N |�Nθ · ûNj ,λ

)
and u

(2)
Nj ,λ

= uNj ,λ − u
(1)
Nj ,λ

. (4.6)

We first consider (ii). Note that when |ξ − N | & Nθ and |ξ| & N , we have
|ξ − N | & |ξ|θ for small θ > 0. Then, by separately considering the contribution
from |ξ| � N and |ξ| & N , it follows from (4.2), (4.3), (4.4), and (4.5) that

‖u(2)Nj ,λ(t)‖M2,p
s
∼
( ∑
|n−N |&Nθ

〈n〉spe−
pπ
2 N

2s|n−Nj |
) 1
p

.

( ∑
|n|�N

〈n〉spe−
pπ
2 N

θ+2s

) 1
p

+

( ∑
|n|&N

〈n〉spe−
pπ
2 N

2s|n|θ
) 1
p

. e−cN
θ+2s

(4.7)

since θ + 2s > 0. On the other hand, by a change of variables with (4.4) and (4.3),
we have

‖u(1)Nj ,λ(t)‖M2,p
s
≤ ‖u(1)Nj ,λ(t)‖Hs

. Ns

(ˆ
|ξ−N |�Nθ

|Q̂λ(ξ −Nj)|2dξ
) 1

2

=

(ˆ
|ξ|�Nθ+2s

e−π|ξ|dξ

) 1
2

∼ 1.

(4.8)

By considering the contribution from |ξ −N | . 1, we also see that

‖u(1)Nj ,λ(t)‖M2,p
s

& 1. (4.9)

Hence, from (4.6), (4.7), (4.8), and (4.9), we conclude that

‖uNj ,λ(t)‖M2,p
s
∼ 1 (4.10)

for any t ∈ R, independent of N,N1, N2 ≥ 1.

4.2. On the difference of the soliton solutions. When t = 0, we have the
following upper bound from [19, (3.5)]:

‖uN1,λ(0)− uN2,λ(0)‖M2,p
s
≤ ‖uN1,λ(0)− uN2,λ(0)‖Hs

. N2s|N1 −N2|.
(4.11)

Fix T > 0. We establish a lower bound on the M2,p
s -norm of the difference of

uNj ,λ(T ). In view of (4.6) and (4.7), it suffices to consider u
(1)
N1,λ

(T ) − u(1)N2,λ
(T ).

As in [19], the main ingredient is separation of the physical supports of the soliton
solutions uNj ,λ, j = 1, 2. From (4.2) with (4.1), we see that uNj ,λ(T ) is concentrated

on an interval of length ∼ λ−1 centered at 3N2
j T − λ2T . Note that these essential

supports of uNj ,λ(T ), j = 1, 2 are disjoint, provided that

N |N1 −N2|T � λ−1 = N2s.
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In our modulation space setting, however, we need to establish separation of the
physical supports of the frequency localized soliton solutions ΠnuNj ,λ, j = 1, 2.
From (2.1), there exists η ∈ S(R) such that

|Π2
nu(x)| ≤ (|η| ∗ |u|)(x)

for any x ∈ R and n ∈ Z. Then, from (4.2) and (4.1), we have∣∣〈ΠnuN1,λ(T ),ΠnuN2,λ(T )〉L2
x

∣∣ =
∣∣〈Π2

nuN1,λ(t), uN2,λ(T )〉L2
x

∣∣
.
ˆ
R

(ˆ
R
|η(y)|Qλ(x− y + 3N2

1T − Tλ2)dy

)
Qλ(x+ 3N2

2T − Tλ2)dx

=

ˆ
R

(ˆ
R
|η(y)|Qλ(x− y)dy

)
Qλ(x+ 3(N2

2 −N2
1 )T )dx

=

¨
R
|η(λ−1y)|Q(x− y)Q(x+ 3λ(N2

2 −N2
1 )T )dydx

.
¨

R

1

〈λ−1y〉K
e−|x−y|e−|x+3λ(N2

2−N
2
1 )T |dydx

.
1

N |N1 −N2|T

(4.12)

uniformly in n ∈ Z.
Given N � 1, choose N1, N2 ∼ N such that

|N1 −N2| ∼
N2s−1+2θ

T
, (4.13)

where θ > 0 is as in (4.5). Thus, from the triangle inequality, (4.12), Minkowski’s
inequality, and (4.9) we have

‖u(1)N1,λ
(T )− u(1)N2,λ

(T )‖2
M2,p
s

∼ N2s

( ∑
|n−N |�Nθ

‖ΠnuN1,λ(T )−ΠnuN2,λ(T )‖pL2
x

) 2
p

= N2s

( ∑
|n−N |�Nθ

(
‖ΠnuN1,λ(T )‖2L2

x
+ ‖ΠnuN2,λ(T )‖2L2

x

− 2 Re〈ΠnuN1,λ(t),ΠnuN2,λ(t)〉L2
x

) p
2

) 2
p

& ‖u(1)N1,λ
(T )‖2

M2,p
s
−N

2
p θ+2sN−2θ−2s

& 1−N−2θ(1−
1
p ) ∼ 1

(4.14)

for any sufficiently large N � 1. Hence, from (4.7), (4.10), and (4.14), we conclude
that

‖uN1,λ(T )− uN2,λ(T )‖M2,p
s
∼ 1. (4.15)

On the other hand, from (4.11) and (4.13) with (4.5), we have

‖uN1,λ(0)− uN2,λ(0)‖M2,p
s
∼ T−1N4s−1+2θ

−→ 0 (4.16)
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by taking N → ∞. Finally, given n ∈ N, let N = 2n and set un = uN1(n),λ(n) and
ũn = uN2(n),λ(n), Lemma 4.1 and hence Proposition 2 follow from (4.10), (4.15),

and (4.16), provided 2 ≤ p ≤ ∞ and 0 ≤ s < 1
4 .

4.3. Failure of uniform continuity in negative regularities. In this subsec-
tion, we briefly consider the case s < 0. With λ = N−2s as in (4.4), the estimate
(4.10) is no longer true and hence (4.15) fails in this case.

Fix 2 ≤ p < ∞ and − 1
p < s < 0. In the following, we use a new choice for the

parameter λ:

λ = N−ps (4.17)

and let uNj ,λ, j = 1, 2, be the solutions of the form (4.2) with this choice of λ (and
N1, N2 ∼ N). We also choose new θ = θ(s, p) > 0 such that

−ps < θ < 1. (4.18)

This imposes the lower bound: s > − 1
p . Note that |n−N | � Nθ implies |n| ∼ N

since θ < 1.
By repeating the computation in (4.7), we have

‖u(2)Nj ,λ(t)‖M2,p
s

. e−cN
θ+ps

(4.19)

thanks to (4.18). On the other hand, from (4.2) and Qλ(x) = λQ(λx), we have

‖u(1)Nj ,λ(t)‖M2,p
s
∼ Ns

( ∑
|n−N |�Nθ

( ˆ n+1

n

|Q̂λ(ξ −Nj)|2dξ
) p

2

) 1
p

= Nsλ
1
2

( ∑
|n|�Nθ

(ˆ n+1
λ

n
λ

|Q̂(ξ)|2dξ
) p

2

) 1
p

∼ Nsλ
1
p

( ∑
|n|�Nθ

∣∣Q̂(nλ)∣∣pλ−1) 1
p

By the Riemann sum approximation with (4.17) and (4.18),

∼ ‖Q‖FL0,p ∼ 1, (4.20)

uniformly in large N � 1. Hence, from (4.6), (4.19), and (4.20), we conclude that

‖uNj ,λ(t)‖M2,p
s
∼ ‖u(1)Nj ,λ(t)‖M2,p

s
∼ 1 (4.21)

for any t ∈ R, independent of N,N1, N2 ≥ 1.
Next, we estimate the difference of the soliton solutions as in Subsection 4.2. A

direct computation as in [19, (2.10)] shows that

‖uN1,λ(0)− uN2,λ(0)‖M2,p
s

. Nsλ−
1
2 |N1 −N2|. (4.22)

In estimating the difference at time T > 0, we once again use the almost orthogo-
nality of the two soliton solutions, provided that

N |N1 −N2|T � λ−1 = Nps.

Given N � 1, choose N1, N2 ∼ N such that

|N1 −N2| ∼
Nps−1+ 3

2 θ

T
. (4.23)
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Then, by proceeding as in (4.14) with (4.21) and (4.12) and choosing θ > −ps
sufficiently close to −ps, we obtain

‖u(1)N1,λ
(T )− u(1)N2,λ

(T )‖2
M2,p
s

& ‖u(1)N1,λ
(T )‖2

M2,p
s
−N

2
p θ+2sN−ps−

3
2 θ

& 1 (4.24)

for all sufficiently large N � 1. Hence, from (4.19), (4.21), and (4.24), we conclude
that

‖uN1,λ(T )− uN2,λ(T )‖2
M2,p
s
∼ 1.

On the other hand, from (4.22) with (4.17) and (4.23), we have

‖uN1,λ(0)− uN2,λ(0)‖2
M2,p
s
∼ T−1Ns+ 3

2 (θ+ps)−1

−→ 0

by taking N →∞ since we chose θ > −ps sufficiently close to −ps. This completes
the proof of Lemma 4.1 and hence Proposition 2 when 2 ≤ p <∞ and − 1

p < s < 0.

Remark 5. Note that our parameter choices (4.4) for s ≥ 0 and (4.17) for s < 0
agree with those in [19] and [9], respectively. In the following, we provide an intuitive
explanation of our choices. Given f ∈ S(R), let fN,λ(x) = λeiNxf(λx). When

s > 0, λ = N−2s in (4.4) tends to 0 as N → ∞. This implies that f̂N,λ is highly

localized around |ξ −N | . λ. Namely, f̂N,λ is essentially supported in one interval

[N − 1
2 , N + 1

2 ), in which case the M2,p
s -norm of f̂N,λ reduces to its Hs-norm (which

in turn can be reduced to the L2-norm of f). Therefore, the choice λ = N−2s from
the Hs-theory in [19] is appropriate in this case.

On the other hand, when s < 0, λ = N−ps tends to ∞ as N →∞. Namely, the

essential support of f̂N,λ spreads out as N → ∞. Then, arguing as in (4.20), we

see that the M2,p
s -norm of f̂N,λ essentially reduces to the FL0,p-norm of f , which

shows that the choice λ = N−ps from the FLs,p-theory in [9] is appropriate in this
case.
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