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A B S T R A C T   

Identification of ontology concepts in clinical narrative text enables the creation of phenotype profiles that can be 
associated with clinical entities, such as patients or drugs. Constructing patient phenotype profiles using formal 
ontologies enables their analysis via semantic similarity, in turn enabling the use of background knowledge in 
clustering or classification analyses. However, traditional semantic similarity approaches collapse complex re
lationships between patient phenotypes into a unitary similarity scores for each pair of patients. Moreover, single 
scores may be based only on matching terms with the greatest information content (IC), ignoring other di
mensions of patient similarity. This process necessarily leads to a loss of information in the resulting represen
tation of patient similarity, and is especially apparent when using very large text-derived and highly multi- 
morbid phenotype profiles. Moreover, it renders finding a biological explanation for similarity very difficult; 
the black box problem. In this article, we explore the generation of multiple semantic similarity scores for pa
tients based on different facets of their phenotypic manifestation, which we define through different sub-graphs 
in the Human Phenotype Ontology. We further present a new methodology for deriving sets of qualitative class 
descriptions for groups of entities described by ontology terms. Leveraging this strategy to obtain meaningful 
explanations for our semantic clusters alongside other evaluation techniques, we show that semantic clustering 
with ontology-derived facets enables the representation, and thus identification of, clinically relevant phenotype 
relationships not easily recoverable using overall clustering alone. In this way, we demonstrate the potential of 
faceted semantic clustering for gaining a deeper and more nuanced understanding of text-derived patient 
phenotypes.   
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1. Introduction 

In clinical settings, text narrative is the primary source of record, and 
thus the most detailed and complete source of phenotypic information 
concerning patients. As such, natural language processing provides an 
important set of tools for information extraction, which can lead to 
improved insight into biomedical and clinical entities [1]. 

Natural language processing challenges can be reduced to the 
problem of resolving ambiguity [2]. Ontologies aid the resolution of 
ambiguity through their provision of logical features, controlled domain 
vocabularies, and data linkage [3]. Thus, biomedical ontology and text 
mining are deeply interlinked. Ontologies are standard tools in text 
mining, frequently used to construct vocabularies for named entity 
recognition (NER) and subsequent entity linking in text, thereby also 
enabling secondary analyses of linked concepts that characterise 
biomedical text [4]. 

Semantic similarity has become an established method for the 
exploitation of clinical text to determine the interrelationships between 
patients, diseases and phenotypes [5]. Semantic similarity methods have 
long been used in semantic analysis of human language, to explore 
relatedness between words and similar constructs. Later, these concepts 
were explored in the context of biomedical ontology and have been used 
with success for predicting protein-protein interaction [6] and 
measuring functional similarity between genes [7]. 

Semantic similarity has been applied for use in differential diagnosis 
of rare diseases, particularly using the Human Phenotype Ontology 
(HPO) [8]. This has typically been performed through use of semantic 
similarity to compare expertly curated patient phenotype profiles with 
reference databases that define phenotypes typically associated with 
particular rare diseases [9], such as OMIM [10]. 

We have previously explored the use of text-derived phenotype 
profiles for differential diagnosis of common diseases, comparing 
patient-patient comparisons and patient-reference similarity, and 
demonstrating a superior method in a hybrid approach that extended 
literature-derived disease profiles with in-context information mined 
from clinical text [11]. Several other studies have investigated the use of 
text-derived data to build and extend phenotype profiles based on se
mantic similarity, such as Doc2HPO [12], which explored both uncu
rated and curated text-derived phenotypes for use in rare disease 
diagnosis and gene variant prioritisation, identifying a hybrid approach 
exhibiting the best performance. Other studies has focused on using text 
data to extend the background knowledge used in these methods [13, 
14]. Methods for differential diagnosis and patient stratification using 
free text that do not rely on semantic similarity, using a range of sta
tistical and machine learning methods, are also common [15]. 

Semantic similarity has also been applied to clustering tasks. Se
mantic similarity, in the context of performing a pairwise comparison 
between all entities, results in a similarity matrix, which can easily be 
transformed into a distance matrix used for clustering. Clustering based 
on semantic distance matrices has been used in biomedical literature 
curation [16–18] but has also formed the basis for associating genetic 
mutations to patient phenotype profiles [19]. Phenotype profiles have 
been used, with and without ontological annotation, to discover sub
types of autism, Alzheimer’s, and schizophenia [20–24]. In contrast to 
this work, underlying patient symptoms in these studies were derived 
largely from diagnostic tools. Semantic similarity has also been used in 
co-clustering tasks and in the evaluation of clusters generated from 
measured biological data. The Gene Ontology has served as a basis for 
explaining the functionality of clustered genes and protein arrays 

[25–27]. Recent work has derived symptom clusters from OMIM [10] 
and other databases, and validated those clusters by investigating 
genomic profiles associated with them [28]. These comparisons can be 
thought of as multi-view approaches, where one form (view) of data is 
used to assess the stability of clusters derived from another view. 
Outside of these situations, graphical, and statistical approaches have 
been suggested [29–31]. 

While semantic similarity is undoubtedly a powerful tool, it is limited 
by virtue of collapsing similarity between entities characterised by 
complex sets of ontology terms a single score. This both loses and ob
scures information by which entities can be compared, and makes it 
more difficult to extract meaningful relationships from the resulting 
similarity matrix. 

In this article, we first explore and explain limitations to the use of 
singular similarity scores for comparing patient phenotype profiles. 
Based on this understanding, we propose a solution to these problems by 
calculating multiple semantic similarity scores for each profile, based on 
different subsets of their annotations, derived from different subsets of 
the source ontology (facets). We demonstrate this approach by creating 
text-derived phenotypic annotations for patients from MIMIC-III, and 
splitting them into separate facets, revealing that annotations are widely 
spread across multiple different facets of HPO. The Human phenotype 
ontology is designed to capture aspects of patient phenotypes to reflect 
as complete a description as possible. Six upper classes represent qual
ifiers of characteristics: Frequency, Mode of inheritance and Clinical 
modifier, together with Blood group and Past medical history. The most 
important upper class for this study is that of Phenotypic abnormality 
which is sub-divided into 20 organ systems, processes or anatomical 
locations, constitutional symptoms, and additional categories for voice, 
growth and neoplasm, reflecting the importance of these phenotypes in 
clinical diagnosis [8]. We then calculate the semantic similarity between 
patient visits for each facet, and then generate clusters for each of the 
facets, as well as for all annotations. The upper class of each facet is 
listed below in Table 1. We also present a new method of identifying 
qualitative explanatory variables for semantic clusters, and use this 
method to evaluate and explore the different sets of clusters. We show 
that facet-based clustering provides the opportunity to identify different 
modes, features, and aspects of entity similarity. We then demonstrate 
that consideration of multiple faceted semantic similarity matrices can 
lead to greater insight into datasets characterised by text-derived 
phenotype profiles, opening up the potential for future development 
of a method that combines the additional information with less loss of 
information than a single semantic similarity score. 

1.1. Limitations of singular semantic similarity 

In this section, we will explore two popular combinations of simi
larity score, and show how they may lose information or obscure re
lationships between entities. In particular, we will explore Resnik 
pairwise similarity [32], max and Best Match Average (BMA) groupwise 
similarity [33], and Resnik corpus-based information content [32]. 
Fig. 1 shows the equations by which these measures can be calculated. 

The max groupwise method identifies the greatest similarity score 
between members in two sets of terms, and employs it to characterise the 
overall similarity between the two sets. Meanwhile, BMA recovers, for 
each term in each set, the pair with the greatest similarity score, and 
then averages them, to produce the final similarity score between the 
sets. BMA can alternatively be thought of as generating a pairwise 
similarity matrix between all single terms in both sets, then selecting the 
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maximal value for each row and column, and then averaging them. 
These groupwise measures are indirect, requiring a pairwise similarity 
measure to determine the individual term similarity, which is then used 
to calculate a final score. In this case, the Resnik measure of pairwise 
similarity is employed, which is defined by the information content of 
the most informative common ancestor of the two classes; that is the 
ontology superclass that subsumes both classes, and has the greatest 
information content. Information content is then represented by the 
negative log probability of that class appearing in a corpus (often the set 
of profiles being considered for comparison). 

Fig. 2 shows three patients whose phenotypes are described using 
classes from the Human Phenotype Ontology (HP), as sets of terms in the 
ontology. All patients share abnormal heart valve morphology 
(HP:0001654), while only P2 and P3 share increased inflammatory 
response (HP:0012649). In the calculation of Simmax(P2, P3), if abnormal 
heart valve morphology (HP:0001654) has a greater information con
tent than increased inflammatory response (HP:0012649), then (P2, P3) 
will have the same semantic similarity score as Simmax(P1, P2), and 
Simmax(P1, P3), despite them sharing an additional inflammatory 
phenotype that neither share with P1. This is mitigated somewhat by the 
corpus-derived information content: if these were our only three pa
tients, then Simmax(P2, P3) would likely instead find the maximal match 
in increased inflammatory response (HP:0012649), since this is the 
‘rarer’ phenotype. However, many semantic similarity configurations do 
not use annotation frequency-derived measures of information content. 
Nor do such configurations present a reliable solution, since the esti
mation of IC could easily be made in the context of a corpus that rarely 
discusses cardiac phenotypes, for example in a population of patients 
with behavioural disorders. Furthermore, even in the case that Sim
max(P2, P3) does select the inflammatory phenotype, the similarity of 
their cardiac phenotype is then only encoded in their similarity to P1. 
This kind of indirect relationship is difficult to recover when exploring 
or making secondary use of the similarity matrix. Furthermore, it re
quires that there be other patients whose maximal match with P2 and P3 
is found via that particular secondary phenotype. If P1 did not exist, did 
not have a cardiac phenotype, or had another non-cardiac phenotype 
that better matched P2 or P3 (such as, in a minimal example, an in
flammatory phenotype), there would be no record of the cardiac simi
larity between P2 and P3 in the resulting similarity matrix. 

BMA was designed to ameliorate these problems, by allowing the 
influence of every term in each set in the final similarity score. In the 
calculation of SimBMA(P2, P3), increased inflammatory response 
(HP:0012649) in P1 would be compared to both increased inflammatory 
response (HP:0012649) and abnormal heart valve morphology 
(HP:0001654) in P2, finding its ‘best match’ in increased inflammatory 
response (HP:0012649). The same would be repeated for abnormal 
heart valve morphology (HP:0001654) in P1, finding its best match in 
the correlated cardiac phenotype. The same calculation would be per
formed in reverse between P2 and P1. The final similarity score would be 
the average of the four resulting scores, thus encoding both the simi
larity of their inflammatory and their cardiac phenotypes. However, this 
can still easily lead to confounding results. If, for example, the pairwise 
value of the comparison between the inflammatory terms is lower than 
that between the cardiac terms, depending on the similarity between the 
cardiac and inflammatory terms, the result could be unexpected. For 
example, in Fig. 3, we define the values for SimResnik between the three 
HPO terms under consideration. Then, we evaluate SimBMA(P1, P2) and 
SimBMA(P2, P3), finding that the similarity between P1 and P2 would be 
greater than the one between P2 and P3, despite the latter sharing an 
additional phenotype, and despite the individual pairwise values 

correctly ‘ranking’ the similarities between them. In reality, it’s likely 
that IC values would be much less clear, especially with an annotation 
frequency derived from text rather than manually curated databases, 
enhancing this effect. Furthermore, when the correct best matches are 
found in BMA, similarity is nevertheless encoded into a singular value 
via averaging the best matches for each constituent term, thus indirectly 
encoding those individual dimensions with loss of information. In 
addition, the singular scores obscure multiple similarity and make it 
difficult to extrapolate relationships, in the same way as it does for max. 

These issues are compounded as the set of phenotype profiles be
comes larger and more complicated. They are also apparent across other 
semantic similarity and information content measures. Structural IC 
measures, such as the Zhou method (also shown in Fig. 1), instead 
employ measures of depth or distance in an ontology graph to determine 
information content [34]. In addition to losing additional information 
from secondary qualities, such approaches may also not match on the 
most ‘important’ feature for a particular context. Since ontologies reflect 
current trends in scientific interest, their development, complexity, and 
structure across different facets correspond to the domains reflecting 
these trends and are not necessarily aligned with the complexity, 
structure, or importance of the conceptual area itself [35]. This is a 
source of bias, and may be a particular limitation for data-led ap
proaches that intend to infer new knowledge or propose new 
hypotheses. 

Across real-world datasets, especially in relation to text-derived data, 
phenotype profiles are likely to contain many phenotypes that describe 
different and disparate features of a patient’s condition. Particularly in 
clinical environments, we hypothesise that multi-morbidity and com
plex diseases will lead to representation of phenotype annotations across 
organisational and systemic phenotype structures for single admissions. 
By focusing only on a maximal, or averaged ‘best match’ phenotype 
comparison, additional features that can form the basis on which pa
tients can be contrasted are unlikely to be identified. 

Moreover, a recent study, examining how annotation size affects 

Fig. 1. Equations for Resnik corpus-derived and Zhou structural information 
content measures, Resnik pairwise similarity, and Best Match Average and max 
indirect groupwise similarity. Groupwise similarity measures accept two sets of 
ontology terms, while pairwise similarity measures accept two ontology terms. 
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semantic similarity calculations, demonstrated that entities with many 
annotations exhibit increased similarity across them, even in the 
absence of any biological similarity [36]. This is especially relevant to 
text-derived complex phenotypes, which can potentially encompass 
many phenotype classes. In a previous study, 1,380,216 HPO annota
tions were associated with clinical narratives related to 1000 patient 
visits reported in MIMIC-III, with an average of 1380.2 annotations per 
patient visit [37]. In contrast, another study, examining clustering based 
on HPO phenotype profiles, manually curated by experts, reported an 
average of 7.5 annotations per case [58]. This effect is corroborated by 
work using Doc2HPO, which demonstrated a vast improvement in per
formance when using manually curated text-derived phenotype profiles 
to diagnose rare genetic diseases (however, this effect cannot easily be 
separated from the improvement in the quality of annotations, which 
was the primary objective of the curation process) [12]. Thus, unmiti
gated use of text-derived phenotypes for semantic similarity may incur 
unintended bias under analysis, on account of the large phenotype 
profiles they produce. This may be particularly pronounced for clus
tering approaches, which may not perform well in an environment in 
which all entities are very similar, since fewer differences between 
groups of entities can be discerned. 

2. Methods 

The software used to run these experiments is freely available, 
including documentation, from https://github.com/reality/facetsim. 
All implementation was performed with the R programming language 
version 3.6.3 [38], and Groovy version 2.4.16 [39]. 

2.1. Data preparation and information extraction 

We sampled 1000 patient admissions (clinical encounters) and their 
associated narrative text from MIMIC-III [40]. MIMIC-III is a freely 
available database describing nearly 60,000 admissions in a critical care 

setting at Beth Israel Deaconess Medical Center in Boston, Massachu
setts, and includes clinical text amongst a wealth of structured data 
concerning the patient admissions/clinical encounters [40]. Most en
counters or admissions to ICU are single events for a specific individual 
but a small number represent repeat admissions over an 11 year period 
(22.4%). Our sample of 1000 admissions described 982 unique patients, 
with each of the 1000 admissions being treated separately in our 
analysis. 

The data in MIMIC-III is largely concerned with acute onset or crit
ical disease, or immediate post-interventional support. Admissions are 
coded for diagnoses that were produced by professional clinical coders, 
using the ICD-9 terminology. Sampled admissions were limited to those 
with primary diagnoses, defined in the DIAGNOSES_ICD table, mapped 
to the Disease Ontology (DO), since we wished to retain the sampled 
admissions, annotations, and associated clusters for further secondary 
analysis using DO. 

We sampled a relatively small set of admissions from the total 
amount of 60,000 admissions represented in MIMIC-III. This is because 
semantic similarity is a computationally costly procedure: each admis
sion profile must be compared to every other profile. Using an indirect 
groupwise measure requires in turn a pairwise calculation for every pair 
of terms across the term groups. In the context of our experimental 
design, this process must be repeated for every facet, albeit with a 
smaller number of average annotations per profile. For the purposes of 
demonstrating limitations of semantic similarity, and proving the effi
cacy of our proposed approach, we believe this to be an adequate sample 
size. However, due to the subsampling, and limitation to mapped con
ditions in DO, we must note that our sample may not fully represent the 
overall MIMIC-III population. 

The clinical narrative for patient visits is stored in different note 
events, which occur at different points of time during the visit. We 
concatenated all note events for each patient visit into a single file. We 
further applied pre-processing measures to remove extra whitespaces, 
collapsing multiple line breaks into sentence breaks. We then used the 
Komenti semantic text mining framework [41] to extract HPO terms 
from the text. HPO is a biomedical ontology that describes abnormal 
observable properties of humans [8]. This produces a list of concepts 
associated with each patient admission, by virtue of a label associated 
with that concept appearing in the text associated with that patient visit. 
These annotations are then used to form a patient phenotype profile, 
which is a set of HPO phenotypes associated with that patient’s 
encounter. 

2.2. Facets 

To determine the HPO facets, we used Komenti to query HPO for 
direct subclasses of Phenotypic abnormality (HP:0000118), which gave 
us a list of 20 high-level phenotype categories in the ontology, including 
for example Abnormality of limbs and Abnormality of metabolism or 
homeostasis (see Table 1). We then performed transitive subclass 

Fig. 2. Three exemplary patient phenotype profiles. A phenotype profile for a patient can be characterised as a set of ontology terms associated with the patient. In 
this case, the patients are characterised by terms from the Human Phenotype Ontology. 

Fig. 3. Example values for pairwise similarity between the terms contained in 
the example corpus, and associated BMA calculations for two pairs of example 
patients (per Fig. 2). In the example, the two patients that share a cardiac and 
an inflammatory phenotype are judged as less similar than two patients who 
only share a cardiac phenotype, showing how BMA can easily lead to con
founding results. 
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queries on each of those classes, to identify the full list of classes that 
belong to each. These 20 high level classes, and their subclasses, form 
our facets. To facilitate facet-based analysis of our data, we created 
separate phenotype profiles for each patient, one for each facet, and 
containing only the annotations that belong to that facet. 

2.3. Semantic similarity 

In order to compare facet-derived patient-patient similarity with that 
using the whole ontology, we first calculated a similarity matrix 
describing pairwise similarity between all patient visit phenotype pro
files, using the full set of HPO annotations associated with each patient 
visit. We then created one additional similarity matrix for each facet, 
using the phenotype profile subsets containing only annotations 
belonging to the particular facet. 

We used Resnik pairwise [42] similarity with Best Match Average 
[33], with the Resnik method of information content. The equations for 
these measures are shown in Fig. 1. Finally, we calculated the values 
using the Semantic Measures Library (SML) [43]. 

2.4. Clustering 

So as to generate the similarity matrices for clustering, we first 
converted them into adjacency network matrices, using a soft thresh
olding setting of 2 (raising the distance function result to the power of 2) 
to minimise the effect of small differences between similarity scores 
[44]. We then converted the adjacency matrix into a topological overlap 
matrix [45], and subtracted it from 1 to provide the final distance matrix 
used for clustering. Matrix pre-processing steps were performed using 
the WGCNA R package [44]. 

Kmeans was used to cluster the resulting distance matrix. Optimi
sation of cluster centers was performed automatically, selecting k clus
ters with k ∈ {3, …, 20} with the maximum silhouette score. 2 clusters 
were excluded from consideration, because facet clusters would always 
select this number, on account of the split between patients with and 
without any annotations in that facet. We evaluated the resulting clus
ters using the silhouette score, as well as visual investigation. 

Visualisations were produced using the factoextra R package [46], 
which plots clustering partitions using principal components of the data. 

In addition, we developed an algorithm for determining qualitative 
explanations for semantic clusters, described in the results. The algo
rithm identifies ontology terms that more exclusively identify the pa
tient phenotype profiles in the given cluster. We applied this to our 
overall clusters to identify top-level groups of patient phenotypes. We 
then examined a particular example of neoplasm, applying the expla
nation algorithm to the neoplasm clusters, to find neoplasm phenotypes 
that particularly characterised those clusters. 

To further characterise the neoplasm clusters, we explored an 
alternative application of the explanation algorithm. We continued to 
explain the neoplasm clusters, but use candidate explanatory terms from 
a different facet. We hypothesised that by doing this we would be able to 
recover relationships between particular neoplasm phenotypes and non- 
neoplastic phenotypes. 

3. Results 

3.1. Text-derived phenotypes and facets 

We sampled 1000 patient admissions, describing 982 unique pa
tients. We annotated each admission with HPO terms using Komenti, as 
described in the methods. This yielded 43,953 annotations, which were 
then sorted into their facet groups (transitive subclasses of the direct 
subclasses of Phenotypic abnormality (HP:0000118) in HPO). Table 1 
shows the number of annotations and the number of admissions in the 
sample with at least one annotation for that facet. Annotations are 
distributed throughout the facets, with counts much smaller than the 
overall group. The largest facet group, abnormality of the cardiovascular 
system with 10,057 annotations, remains nearly four times smaller than 
the total number of annotations for all facets. This is consistent with the 
overall composition of the MIMIC-III population where ICD:414.01 
(‘Coronary atherosclerosis of native coronary artery’) and ICD: 410.71 
(‘Subendocardial infarction, initial episode of care’) are together the 
most common ICD-9 annotations in the complete MIMIC-III dataset, and 
make up 10.7% of admission annotations. 

Table 1 
Text-derived patient phenotype per-facet. Concept annotations were sorted into facets according to which subclass of Phenotypic abnormality (HP:0000118) they fall 
under, which in some cases may be several. Admissions refers to the number of admissions out of the sample of 1000 that had at least one annotation in that facet. Facet 
mean refers to the mean number of annotations per patient only for the patients that had at least one annotation in that facet, while overall mean is the mean number of 
annotations per patient overall (out of the total 1000 patient admissions sampled).  

Facet Admissions Facet mean Overall mean Annotations 

abnormality of the endocrine system (HP:0000818) 524 3.756 1.968 1968 
abnormality of the cardiovascular system (HP:0001626) 921 10.92 10.057 10,057 
abnormality of the immune system (HP:0002715) 985 6.228 6.135 6135 
abnormality of the musculoskeletal system (HP:0033127) 681 2.844 1.937 1937 
abnormality of the genitourinary system (HP:0000119) 513 2.928 1.502 1502 
abnormality of the voice (HP:0001608) 10 1.4 0.014 14 
abnormality of metabolism/homeostasis (HP:0001939) 962 6.05 5.82 5820 
abnormality of the nervous system (HP:0000707) 749 5.838 4.373 4373 
growth abnormality (HP:0001507) 204 1.657 0.338 338 
abnormal cellular phenotype (HP:0025354) 546 2.705 1.477 1477 
abnormality of blood and bloodforming tissues (HP:0001871) 874 5.781 5.053 5053 
abnormality of the integument (HP:0001574) 586 2.44 1.43 1430 
neoplasm (HP:0002664) 407 3.457 1.407 1407 
abnormality of limbs (HP:0040064) 184 1.136 0.209 209 
abnormality of the thoracic cavity (HP:0045027) 20 1.15 0.023 23 
abnormality of the digestive system (HP:0025031) 829 7.778 6.448 6448 
abnormality of prenatal development or birth (HP:0001197) 61 1.459 0.089 89 
constitutional symptom (HP:0025142) 894 5.233 4.678 4678 
abnormality of head or neck (HP:0000152) 436 2.041 0.89 890 
abnormality of the respiratory system (HP:0002086) 885 8.932 7.905 7905 
All 1000 43.953 43.953 43,953  
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The mean number of overall annotations for facets in our sample of 
1000 admissions is 3.09, in other words the average number of anno
tations involved in any semantic similarity comparison within a single 
facet is 3.09. This results in a reduction of more than a factor of ten 
compared with the average of 43.953 for all facets considered together. 

There is also a large range of 10,043 in the number of annotations 
belonging to the facets, as well as a range of 911 for the number of 
admissions described. In both cases, these figures represent ranges be
tween maximal and minimal possible values for these variables. As such, 
there are several facets with very few annotations, particularly abnor
mality of the voice, abnormality of the thoracic cavity, and abnormality 
of prenatal development or birth, which all have fewer then 100 anno
tations, and describe fewer than 100 patients. Meanwhile, abnormality 
of the cardiovascular system, abnormality of the immune system, and 
abnormality of metabolism/homeostasis describe more than 90% of 
patients. This reflects the overall composition of the MIMIC-III popula
tion as characterised by ICD-9 annotation. The cardiac care and coro
nary recovery units together account for 33.1% of admissions and the 
medical intensive care unit 39.5%. The HPO class abnormality of the 
thoracic cavity does not contain any phenotypes of the cardiovascular 
system or heart and therefore there are few annotations to this facet, 
despite the heart being contained within the thoracic cavity. Meanwhile, 
few admissions and annotations were associated with the abnormality of 
prenatal development or birth, despite MIMIC-III describing 7800 
neonatal admissions. This can be explained by our sampling method, 
which was limited to patients with primary diagnoses that were mapped 
to DO. The mapping contains only 13 neonatal codes (ICD-9 range 
630–679), which would limit the appearance of neonatal annotations 
due to the exclusion of neonatal admissions without mappings to DO. 

13 facets describe more than 50% of admissions, showing that there 
is coverage of the same admissions by several facets. This is confirmed 
by considering how many facets contain classes to which a patient is 
annotated. The mean number of facets involved in patient annotation is 
11.271. With a few exceptions noted above, most facets are well- 
represented across the patient phenotype, and thus splitting annota
tions into these groups provides phenotype profiles describing different 
features of the patient phenotype. 

3.2. Cluster scoring and explanation algorithm 

In finding explanatory terms, or ontological representations of the 

distinguishing characteristics, of clusters or groupings derived from sets 
of ontology classes, we want to optimise three conditions: 

Inclusivity Terms that more members of the cluster share. 
Exclusivity Terms that more exclusively identify the cluster; fewer 
members of other clusters share these terms. 
Specificity Terms that are more specific; more informative; less 
generic. 

Our approach uses the definitions of three scores that measure these 
properties of candidate explanatory classes. In addition, in order to 
optimise inclusivity, we can leverage the subsumptive hierarchy of the 
source ontology from which the semantic similarity measurements were 
derived. For example, assuming a class A, with subclasses B and C, then 
A may be used as an explanatory term that includes both B and C. To do 
so, we generate scores for all terms present in the cluster, as well as all of 
their superclasses. 

The inclusivity score is defined by the number of members of a 
cluster that contain a transitive subclass of the given class. The exclu
sivity score is defined by the number of patients in every other cluster 
that contain a transitive subclass of the given class, and is subtracted 
from one, so that greater values reflect greater exclusivity. The speci
ficity score is defined as the information content of the class. These can 
be formally defined as shown in Fig. 4, where O is the set of classes in the 
ontology, and C is the set of clusters. Each element represents each 
member of that cluster, which is in turn a set that contains the list of 

Fig. 4. Equations for inclusivity, exclusivity, and 
specificity scores, which are used to evaluate how well 
ontology terms characterise a cluster. O is the set of 
classes in the ontology, and C is the set of clusters. 
Each element of C represents a cluster, as a set of 
cluster members that contains the set of ontology 
terms associated with that member. The subclass 
function returns a set containing the transitive sub
classes of the class given in the parameter. These 
scores are calculated for all classes in the ontology, 
which are considered candidate explanatory terms 
passed into Algorithm 1.   

Table 2 
List of parameters used in Algorithm 1. The hyperparameter settings used in this 
article, except where otherwise stated, are given in Table 9.  

Variable Description 

MAX_IC Maximal acceptable value for information content. 
MIN_IC Minimal acceptable value for information content. 
MAX_INCLUSION Maximal acceptable value for inclusion score. 
MIN_INCLUSION Minimal acceptable value for inclusion score. 
MAX_EXCLUSION Maximal acceptable value for exclusion score. 
MIN_EXCLUSION Minimal acceptable value for exclusion score. 
MAX_TOTAL_INCLUSION Maximal acceptable value for total inclusion coverage. 
STEP The step by which to reduce heuristics each iteration. 
EXPLANATIONS Full unordered set of explanations for the cluster. 
FACET Explanatory terms will be limited to terms in the given 

facet.  
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ontology terms associated with that member. 
Together, these scores measure, for each combination of class and 

cluster, how much it explains the cluster, how little it explains the other 
clusters, and how specific the term is. In order to recover high quality 
explanatory variables, terms with optimal combinations of these values 
need to be identified. So as to identify sets of high quality explanatory 
variables for clusters, the set of explanatory variables needs to explain a 
large number of the members of the cluster. To measure this, the overall 
inclusivity score is introduced, defined by the percentage of the cluster 
membership covered by at least one explanatory variable in the set. 

To optimise these variables, we developed an algorithm that steps 
down through acceptable values of the above defined heuristics until a 
suitable set of explanatory variables is identified. Algorithm 1 represents 
the developed algorithm, while descriptions of the parameters and 
hyperparameters are described in Table 2. Maximal and minimal values 
are given as parameters for the information content, the exclusion score, 
and the inclusion score, while the total inclusivity score is only assigned 
a maximum value. Cutoffs for the relevant scores are derived from these 
parameters, which are stepped down until a satisfactory set of explan
atory terms are found, where both the satisfaction and the order of cutoff 
is defined by the algorithm’s order of variable importance:  

1. Total inclusion score  
2. Specificity/Information content  
3. Inclusion and exclusion 

This order of preference renders that inclusion and exclusion are first 
stepped down to their minimal values (simultaneously and symmetri
cally), before information content is stepped down, followed by the total 

inclusion score when information content minimum cutoff is reached. At 
each step-down, all cut-offs with a lower priority are reset to their 
maximal values defined by the relevant parameter. Values for the al
gorithm parameters used in this paper (except where otherwise noted) 
are given in the appendix (Table 9). 

Since the algorithm involves determining a satisfactory solution 
depending upon a number of thresholds and boundaries, the algorithm 
can be described in relation to a Multi-Objective Optimisation Problem 
(MOOP). In this task, our ‘optimal’ solution is a set of explanations that 
maximises the heuristics, such as inclusivity score and IC, which can in 
this expression be termed as objective functions. The solution given 
above can be expressed as a variation of the ϵ-constraints method, in 
which one objective function is retained, while the others are expressed 
as a series of constraints [47]. In this case, the total inclusion score can be 
considered the objective function, as it is the heuristic with the highest 
priority, while all others are constrained functions whose limits are 
defined by the user-provided parameters (described in Table 2). The 
variation from the ϵ-constraints method consists in the stepwise reduc
tion of maximal constraint values in the order of the parameter priority 
given above, until a solution is found that maximises the objective 
function (total inclusion score) within the boundaries of the max
imal/minimal settings of the constrained parameters and their priorities. 
Though this is expressed in the above description as ‘stepping down’ 
through values of total inclusion score until a solution is found, this is 
equivalent to its maximisation as an objective function. 

Algorithm 1. Algorithm for identifying characterising ontology terms 
for a cluster, by stepping down through exclusion and inclusion scores. 

Fig. 5. Visualisation for overall patient visit clustering on the basis of text-derived HPO phenotype profiles. Cluster 1 contained 63 patients, while cluster 2 contained 
653 patients, and cluster 3 contained 284 patients. Explanations derived for the clusters can be seen in Table 3. 

L.T. Slater et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 138 (2021) 104904

8

3.3. Overall clustering 

We first generated clusters based on the semantic similarity matrix 
for all annotations associated with our patient sample. The largest 
silhouette score was 0.215 with three clusters, which indicates a rela
tively poor representation of the underlying structure. Fig. 5 shows a 
visualisation of the clusters. 

We then ran our cluster explanation algorithm on the clusters, 
receiving qualitative HP explanations for each cluster, which can be seen 
in Table 3. Despite the low silhouette score, cluster explanations, with 
large overall inclusivity, were found for all clusters, with an average 
value of 89.6% coverage of cluster members. However, for individual 
explanatory terms, the average inclusion and exclusion scores were 42% 
and 55% respectively. This indicates that fewer terms with high indi
vidual explanatory power for clusters were found. The term with the 
greatest inclusion score was abnormal cellular phenotype (HP:0025354) 
in cluster 2. Given, however, that this term also appeared in explanatory 
sets for clusters 1 and 3, with similar inclusion ratios, indicates that this 

does not uniquely distinguish any of the clusters. There were a number 
of higher exclusion scores, such as abnormal heart valve morphology 
(HP:0001654) and abnormal aortic valve physiology (HP:0031652), 
which have exclusivity scores of 0.68 and 0.66, despite the cluster only 
accounting for 284 total patients. The contrast of high overall inclusivity 
scores with the lower inclusivity and exclusivity scores of individual 
terms reveals that these patient phenotypes are highly multi-morbid, 
rather than being characterised and groupable by individual condi
tions or phenotypes. 

To gain further insight in the differences between the clusters, we 
projected them onto our derived HPO facets, identifying what percent
age of explanatory terms belonged to each facet of HPO (listed in 
Table 1. These figures can be seen in Table 4. All clusters contain an 
explanatory term from abnormal cellular phenotype (HP:0025354), 
although more specific terms than that defining the facet could not be 
retrieved so as to characterise any of the clusters. In addition, several 
pairs of clusters also contain explanatory terms from the same facet, 
such as clusters 1 and 2 containing those from abnormality of the 
digestive system. However, taking into account the overall constitution 
of facet representations in explanatory sets allows us to see which facets 
more typify particular clusters. For example, 60% of explanatory terms 
in cluster 2 are in the abnormality of the digestive system facet, while 
they only account for 20% of those in cluster 1. Together with the high 
information content and the exclusivity scores for digestive system 
terms explaining cluster 2, it could be assumed that this cluster identifies 
admissions for which the primary phenotype is related to the digestive 
system, with involvement of cellular and respiratory phenotypes as co- 
morbidities, while cluster 1 is characterised by other phenotypes that 
may also have involvement of an abdominal symptom (HP:0011458). 
Most annotations to ICD-9 in the medical ICU in MIMIC-III are to pul
monary and digestive diseases (17.5 and 15.7% respectively). 

While this gives us some insight into the composition of our set of 
sampled patient encounters, we can also determine that these clusters do 
not clearly or uniquely identify individual or groups of phenotypes 

Table 3 
Explanations for overall clusters.  

Cluster 1 (63 patient visits, overall 
inclusivity: 77.78) 

Exclusion Inclusion IC 

abnormal cellular phenotype (HP:0025354) 0.44 0.33 0.5 
abnormality of higher mental function 

(HP:0011446) 
0.71 0.33 0.42 

behavioral abnormality (HP:0000708) 0.46 0.33 0.37 
abnormality of temperature regulation 

(HP:0004370) 
0.34 0.32 0.36 

abdominal symptom (HP:0011458) 0.33 0.49 0.35 
Cluster 2 (653 patient visits, overall 

inclusivity: 95.56) 
Exclusion Inclusion IC 

abnormal cellular phenotype (HP:0025354) 0.62 0.63 0.5 
abnormality of the pleura (HP:0002103) 0.81 0.49 0.42 
nausea and vomiting (HP:0002017) 0.75 0.49 0.41 
abnormality of digestive system morphology 

(HP:0025033) 
0.76 0.58 0.4 

functional abnormality of the gastrointestinal 
tract (HP:0012719) 

0.76 0.53 0.4 

Cluster 3 (284 patient visits, overall 
inclusivity: 95.42) 

Exclusion Inclusion IC 

abnormal heart valve morphology 
(HP:0001654) 

0.68 0.36 0.5 

abnormal cellular phenotype (HP:0025354) 0.39 0.39 0.5 
abnormal aortic valve physiology (HP:0031652) 0.66 0.37 0.43 
abnormal heart valve physiology (HP:0031653) 0.6 0.4 0.41 
arrhythmia (HP:0011675) 0.5 0.37 0.39 
abnormality of cardiovascular system 

electrophysiology (HP:0030956) 
0.46 0.4 0.37 

abnormality of the endocrine system 
(HP:0000818) 

0.43 0.4 0.37 

increased blood pressure (HP:0032263) 0.37 0.5 0.37 
behavioral abnormality (HP:0000708) 0.41 0.38 0.37 
abnormal heart morphology (HP:0001627) 0.5 0.46 0.37  
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specific to them. Furthermore, only three clusters were derived from a 
highly complex and co-morbid dataset. Pearson correlation between the 
facet representation and the number of annotations in that facet is 0.66, 
and 0.44 for the relationship between the facet representation and the 
number of patients the facet represents, both indicating a positive cor
relation. This indicates that facets with greater numbers of annotations 
are more likely to appear in explanatory sets. Terms from only 8 of the 
20 HPO facets were represented in the overall cluster explanations, 
although these accounted for 42.44% of all phenotype annotations. It is 
unclear, however, whether this is because the annotations described by 
those facets lack underlying structure, are simply uninformative, or 
whether annotation size bias and more easily recoverable structure is 
obscuring additional grouping factors. In the next section, we will 
explore this question by clustering individual facets. 

3.4. All facet clustering 

We calculated one semantic similarity matrix for each facet, by 
including only annotations from that facet in semantic similarity com
parisons of phenotype profiles. We then created clusters for each of these 
similarity matrices, automatically determining the best number of cen
ters by stepping through numbers of clusters between 3 and 20, selecting 
the one with the maximal silhouette score. Table 5 presents the results of 
this analysis, while Fig. 6 depicted the visualisations of the clusters with 
silhouette scores above 0.5. 

There was a wide range of highest silhouette scores found amongst 
faceted clusters, between 0.23 and 0.98.11 facet clusters had silhouette 
scores above 0.5, including 5 above 0.75. Pearson correlation between 
silhouette score and the number of patients was − 0.98, while correlation 
between silhouette score and number of annotations was − 0.9, both 
very strong negative relationships. This supports the notion that clus
tering using facets, reducing the size of phenotype profiles, may lead to 
higher quality clustering, with more easily recoverable structure. 

3.5. Neoplasm facet clustering 

We decided to further explore the neoplasm facet, since this had a 
relatively high silhouette score of 0.69, a smaller number of overall 
clusters, and was not represented in any of the explanations for the 
overall clustering. The visual representation of the neoplasm facet 

clusters are presented in Fig. 6, while Table 6 lists the explanations 
derived from these clusters. 

Extremely clear and distinct explanations were identified for all 
clusters except 4 and 8. Cluster 8 contains the 593 patients who did not 
have any neoplastic phenotypes, as shown in Table 1. The 57 patients 
that appear in cluster 4 did have neoplastic phenotypes, though no 
characterising groups of phenotypes could be found. It could be that 
these patients had multiple cancers, or rarer cancers that appeared too 
infrequently to form a coherent clustering group. Otherwise, all other 
clusters are strongly inclusively and exclusively characterised by 
particular groups of cancers. 

Nevertheless, patients with neoplasia phenotypes (patients in 
neoplasm clusters except cluster 8) had a similar distribution in overall 
clusters as those without neoplasia phenotypes (71.74% in cluster 2 and 
19.65% in cluster 3, versus 60.8% in cluster 2 and 34.4% in cluster 3). 
Assigned percentages in both cases roughly correspond to the distribu
tion of overall patient assignment to those clusters (6.3% in cluster 1, 
65.3% in cluster 2, 28.4% in cluster 3), indicating there is no strong 
association between neoplasia phenotypes and overall cluster assign
ment, which in turn indicates that neoplasia phenotypes were not widely 
considered as ‘best match’ terms for the overall semantic similarity 
comparisons. 

The explanation algorithm can be employed to further explore po
tential co-morbidities relating to neoplasia. In particular, the same de
scriptions of cluster membership can be used, but the algorithm can be 
limited to consider only patient phenotype labels in another facet. We 
demonstrated this by applying classes from the abnormality of the 
nervous system and abnormality of the immune system facets to the 
neoplasm cluster memberships. The results are presented in Table 7 and 
Table 8, respectively. These tables show particular associations between 
the clusters associated with particular cancer phenotypes and pheno
types from other facets. 

Cluster 3 is associated, with hematological neoplasms, including 
leukemias, lymphomas and non-malignant neoplastic disorders and, as 
expected, phenotypes characterising these neoplasms are associated 
with this cluster, namely abnormal leukocyte count, lymphatic system 
abnormalities and abnormal leukocyte morphology etc. Slightly more 
unexpected is the association with phenotypes linked to cognitive 

Table 4 
Overall facet representation in cluster explanations. Note that percentages may 
add up to more than one, since ontology terms may belong to several facets. In 
total, 8 of the 20 HPO facets are represented in the explanations.  

Cluster Facet Representation in 
explanations 

Cluster 
1    

abnormality of metabolism/ 
homeostasis 

0.2  

abnormality of the nervous system 0.4  
abnormal cellular phenotype 0.2  
abnormality of the digestive system 0.2 

Cluster 
2    

abnormal cellular phenotype 0.2  
abnormality of the digestive system 0.6  
abnormality of the respiratory system 0.2 

Cluster 
3    

abnormality of the endocrine system 0.1  
abnormality of the cardiovascular 
system 

0.7  

abnormality of the nervous system 0.1  
abnormal cellular phenotype 0.1  
abnormality of blood and 
bloodforming tissues 

0.1  

Table 5 
Optimal number of centers and associated silhouette score for each facet. These 
were obtained by automatically stepping through values of centers between 2 
and 20, selecting the one with the greatest silhouette score. Clustering was not 
performed on the abnormality of the voice facet, as there were too few anno
tations in these faceted profiles. Silhouette scores greater than or equal to 0.5 are 
marked with a single asterisk, while those greater than 0.75 are marked with two 
asterisks.  

Facet Centers Silhouette Score 

abnormality of the endocrine system 3 0.76** 
abnormality of the cardiovascular system 3 0.24 
abnormality of the immune system 4 0.23 
abnormality of the musculoskeletal system 20 0.5* 
abnormality of the genitourinary system 6 0.65* 
abnormality of the voice NA NA 
abnormality of metabolism or homeostasis 4 0.26 
abnormality of the nervous system 3 0.41 
growth abnormality 3 0.89** 
abnormal cellular phenotype 3 0.71* 
abnormality of blood and bloodforming tissues 8 0.44 
abnormality of the integument 6 0.64* 
neoplasm 8 0.69* 
abnormality of limbs 4 0.95** 
abnormality of the thoracic cavity 11 0.98** 
abnormality of the digestive system 3 0.41 
abnormality of prenatal development or birth 3 0.98** 
constitutional symptom 7 0.38 
abnormality of head or neck 17 0.71* 
abnormality of the respiratory system 3 0.29  
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Fig. 6. Plots for all facet clusters with a silhouette score above 0.5. In all cases, visualisations show collected relatively close different clusters of patients with 
relevant keywords, while another cluster contains all patients without relevant keywords. 

L.T. Slater et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 138 (2021) 104904

11

impairment and compromised higher mental functioning. The segment 
of this facet that includes these phenotypes is concerned with cognitive 
function, such as memory, executive function and coordination, rather 
than affective and personality traits, such as depression. While we know 
that we are looking at a largely elderly population in MIMIC-III, the 
population with this class of cancer would not be expected to show any 
more specific age-dependent bias in comparison to other common can
cers which are also age-associated, such as prostate cancer, and there
fore it is unlikely that a comorbid association with dementia and age- 
related neurodegenerative disease would be generated for this cancer 
class only. Recently the impact of some hematological neoplasms on 
higher order functioning has come under scrutiny and whilst there is a 
well-established impact on these traits. due to radio and chemotherapy 
[48], it is becoming apparent that cognitive function may also be 
directly affected as part of the pathology of the disease itself. A recently 
estimate of impacts on cognitive function in chronic lymphocytic leu
kemia (CLL) suggests that up to 30% of patients experience significant 
higher cognitive function impairment [49]. Our method flags a close 
association in this cluster between patients with hematological malig
nancies and patients with cognitive impairment, supporting the sug
gestion of Williams et al. of a more widespread direct interaction with 
hematological malignancies than previously appreciated. 

The association identified between lung malignancies and inflam
matory abnormality of the skin (HP:0011123) may again reflect 
therapy-related phenotypes. Drugs targeting the EGF receptor are 
known to produce skin reactions, erythroderma, eczma-like rashes, 
dermatitis and paronychia. Erlotinib and gefitinib are widely used to 
treat small cell (sc) and non-sc lung cancers [50] and these side effects 
are frequently reported [51]. 

Cluster 5 associations between gastrointestinal cancers and abnor
mality of the lymph nodes (HP:0002733) likely reflect the common sites 
of metastasis to abdominal lymph nodes, particularly the mesenteric 
lymph nodes which are often involved in colonic and rectal adenocar
cinomas [52]. 

Unsurprisingly in cluster 7, an association is found between neo
plasms of the nervous system (NS), and abnormalities of higher mental 
function as well as consciousness and confusion, all well known symp
toms of central nervous system tumors. It is however, interesting that 
while the neoplasia class neoplasm of the nervous system (HP:0004375) 
includes peripheral NS cancers, the dominant explanatory terms here 
seem to be associated with the central NS, suggesting that these form a 
more coherent grouping or are more common in the cohort. 

4. Discussion 

Our work describes the construction of text-derived patient pheno
type profiles from clinical narrative text. Using those profiles, we created 
separate subsets based on facets, which were derived from major subsets 
of HPO. Table 1 shows that patients are commonly annotated by phe
notypes from many different clusters, and that annotation size per- 
cluster is much smaller than the number of overall annotations per- 
patient. This indicates that the patient phenotype profiles are highly 
co- and multi-morbid, with phenotypes across many different biological 
and categorical systems. 

This was confirmed by the overall clustering, which identified only 
three groups with tendencies towards different kinds of phenotypes, but 
no clear distinctive groups. These explanations were further dominated 
by terms from facets with larger numbers of annotations, not including 
explanatory terms from more than half of the total HPO facets, which 
nevertheless represented nearly half of all patient phenotypes. 

By clustering per-facet, we were able to show that we can identify 
clusters for faceted subsets of patient phenotype profiles, that are not 
represented in the overall clusters. This also revealed a strong negative 
correlation between phenotypic profile size and silhouette score - a 
trend also exemplified in the poor silhouette score and explanatory 
terms discerned from the overall clustering experiment. In exploring the 

Table 6 
Explanatory sets for clusters in the neoplasm facet.  

Cluster 1 (35 patient visits, overall 
inclusivity: 100.0) 

Exclusion Inclusion IC 

neoplasm of the respiratory system 
(HP:0100606) 

0.98 1.0 0.6 

Cluster 2 (85 patient visits, overall 
inclusivity: 100.0) 

Exclusion Inclusion IC 

urinary tract neoplasm (HP:0010786) 1.0 0.4 0.64 
genital neoplasm (HP:0010787) 1.0 0.64 0.57 
Cluster 3 (58 patient visits, overall 

inclusivity: 94.83) 
Exclusion Inclusion IC 

hematological neoplasm (HP:0004377) 0.99 0.95 0.57 
Cluster 4 (57 patient visits, overall 

inclusivity: 0.0) 
Exclusion Inclusion IC 

Cluster 5 (45 patient visits, overall 
inclusivity: 100.0) 

Exclusion Inclusion IC 

neoplasm of the gastrointestinal tract 
(HP:0007378) 

0.97 1.0 0.54 

Cluster 6 (31 patient visits, overall 
inclusivity: 100.0) 

Exclusion Inclusion IC 

neoplasm of the breast (HP:0100013) 0.97 1.0 0.62 
Cluster 7 (96 patient visits, overall 

inclusivity: 61.46) 
Exclusion Inclusion IC 

neoplasm of the nervous system (HP:0004375) 0.99 0.3 0.57 
neoplasm by histology (HP:0011792) 0.95 0.42 0.5 
Cluster 8 (593 patient visits, overall 

inclusivity: 0.0) 
Exclusion Inclusion IC  

Table 7 
Explanatory terms from abnormality of the immune system applied to neoplasm 
facet clusters. Empty explanations not shown (though exclusion scores still 
include them).  

Cluster 1 (35 patient visits, overall 
inclusivity: 31.43) 

Exclusion Inclusion IC 

inflammatory abnormality of the skin 
(HP:0011123) 

0.81 0.31 0.47 

Cluster 3 (58 patient visits, overall 
inclusivity: 70.69) 

Exclusion Inclusion IC 

abnormal leukocyte count (HP:0011893) 0.85 0.43 0.48 
abnormality of the lymphatic system 

(HP:0100763) 
0.81 0.43 0.46 

abnormal leukocyte morphology (HP:0001881) 0.85 0.52 0.45 
abnormal cellular immune system morphology 

(HP:0010987) 
0.85 0.52 0.45 

Cluster 5 (45 patient visits, overall 
inclusivity: 31.11) 

Exclusion Inclusion IC 

abnormality of the lymph nodes (HP:0002733) 0.85 0.31 0.51  

Table 8 
Explanatory terms from abnormality of the nervous system applied to neoplasm 
facet clusters. Only non-empty explanations shown (though exclusion scores still 
include clusters not shown). Used a minimum information content value of 0.4. 
neoplasm of the nervous system (HP:0004375) appears here because it is a 
member of both the neoplasm and the abnormality of the nervous system facets.  

Cluster 3 (58 patient visits, overall 
inclusivity: 67.24) 

Exclusion Inclusion IC 

impairment in personality functioning 
(HP:0031466) 

0.7 0.34 0.44 

abnormality of higher mental function 
(HP:0011446) 

0.71 0.31 0.42 

Cluster 7 (96 patient visits, overall 
inclusivity: 66.67) 

Exclusion Inclusion IC 

neoplasm of the nervous system (HP:0004375) 0.99 0.3 0.57 
reduced consciousness/confusion (HP:0004372) 0.8 0.36 0.48 
abnormality of higher mental function 

(HP:0011446) 
0.72 0.43 0.42  
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neoplasm facet, we found coherent clusters that described different 
kinds of cancer. We also used explored associations between the 
neoplasm clusters and other phenotypes, recovering clinically signifi
cant relationships, and showing that these were represented in the 
faceted similarity-based representation of the phenotype profiles. We 
consider that these results are a proof-of-concept for faceted clustering 
on a subset of MIMIC-III data, showing that consideration of the se
mantic similarity of different phenotype facets caters the recovery of 
groupings and relationships that are not easily recoverable with overall 
clustering. 

In addition, our cluster explanation algorithm allowed us to suc
cessfully extract explanatory variables from our clusters. The method 
also presents a generic approach that could be applied to any dataset 
that describes entities in terms of both ontology terms, and entity 
groupings. This is supported by the configurability of the hyper
parameters. It may be possible to develop a more intelligent method of 
determining the optimal trade-off between hyper-parameters. One 
simple extension could be the automatic suggestion of a default mini
mum inclusion and exclusion scores on the basis of how many clusters 
are being explained. There is also the potential that other ways of 
measuring inclusivity, exclusivity, and specificity could be used - for 
example, measuring the total number of matching terms across the 
cluster, instead of the number of members with at least one matching 
term, or using different information content measures. Exploration of 
different approaches to MOOPs could also lead to superior solutions. 

With respect to clustering, what remains to be done, is to determine a 
method that enables the re-integration of these scores, clusters, and 
groupings, into a single representation that minimises loss of informa
tion. Such an approach could lead to powerful insights into multi- and 
co-morbidity, as well as to improve semantic similarity based classifi
cation using text-derived phenotypes, such as that described by our 
previous work [11]. One method of approaching this specific to clus
tering problems could be the consideration of Multi-View Clustering, 
which could consider each measure of facet-wise similarity as a different 
view of the same patient admission [53], which could then be further 
analysed to determine an optimal set of clusters. 

In our work, we chose direct subclasses of Phenotypic abnormality 
(HP:0000118) for our facets, because these split the phenotypes 
appropriately by recognisable means (i.e. biological system). These 
should be a suitable starting point for any similar experiment. The 
approach, however, could easily be applied to many ontologies, by 
selecting a reasonable high-level class with which to generate facet 
categories. For example, the Disease Ontology (DO) [54] defines eight 
direct subclasses of disease (DOID:4), including disease by infectious 
agent (DOID:0050117) and disease of mental health (DOID:150). The 
choice of a facet superclass does not necessarily have to be a high-level 
class. For domain or context-specific investigations, facets can be drawn 
from more specific classes, such as abnormal heart morphology 
(HP:0001627), whose direct subclasses describe many different kinds of 
abnormal heart morphology, which are further explicated by transitive 
subclasses. In addition, using Komenti enables for facets to be drawn 
from the subclasses of complex class descriptions, even across multiple 
ontologies, such as ‘part of’ some apoptosis. 

However, while manually chosen facets provide different sets of 
features by which to explore entities through semantic similarity, the 
potential remains for information to be lost within a facet in the same 
way as through calculating similarity as an entire ontology. For 
example, there may be several potential grouping factors within the 
cardiac facet. To minimise this effect, an approach could be developed to 
automatically select facets based on different hotspots of high corpus- 
based information content in an ontology. This would ensure that 
different areas of importance in the ontology are captured by the chosen 
set of facets. We also noted, in accordance with our hypotheses, that 
silhouette score has a strong negative correlation with annotation size, 
and it could be that optimising facet groups, based on a maximum 
profile size to limit performance issues, could be employed. 

One of the limitations of this approach is that it involved generating 
many different clusters, from many different facets, without individual 
attention given to configuring parameters that may have led to an 
improved representation. Optimisation of silhouette score was auto
mated, by stepping through number of centers. However, we did not 
consider different values for creation of the optimisation, kmeans al
gorithm, or semantic similarity measure. Depending on any underlying 
structure of facet similarity matrices, these choices could make the dif
ference between successful or unsuccessful clustering. It’s possible that 
different facets contain different underlying structure, which require 
different settings and algorithms to evaluate. We expect that a further 
study, exploring further different hyper-parameters, measures, and op
tions for text-derived semantic similarity clustering, may lead to 
reasonable defaults. For example, different measures of cluster evalua
tion could lead to better identification of optimal parameters, such as the 
gap statistic. 

In terms of the application of the explanation algorithm to find ex
planations for facet clusters from another cluster, results were skewed by 
the polyhierarchy of HPO. Facets do not necessarily uniquely belong to a 
single cluster. This is evidenced by the abnormality of the nervous sys
tem explanations for the neoplasm clusters, which included neoplasm of 
the nervous system (HP:0004375) as an explanation for the neoplasm 
cluster already associated with neoplasm of the nervous system 
(HP:0004375). This is not an error since the phenotype is a subclass of 
both facets, however it strongly skews the explanations towards any 
classes that are members of the facet by which the admissions were 
clustered, possibly to the exclusion of other classes. It may be possible to 
explore the exclusion of candidate explanatory classes from the ‘native’ 
facet through provision to the algorithm of another parameter identi
fying it. 

Another limitation of the study was the constraint of admission se
lection to those with primary diagnoses mapped to DO. In our results, we 
showed that in one facet with poor annotation representation abnor
mality of prenatal development or birth, that few relevant ICD-9 codes 
were mapped to DO. As such, we can expect that facet representation 
was skewed against patients with fewer DO mappings. Data may also 
have been skewed on account of the smaller sample size (as discussed in 
the methods section). However, for other facets, representation was in 
line with expected proportions of admission diagnoses in MIMIC-III. The 
goal of this investigation, however, is not so much to produce the most 
realistic representation of MIMIC-III admissions overall, but to produce 
a better representation of the patients we did select. To gain a truer 
representation of phenotype representation across MIMIC-III, the 
experiment could be performed again without constraining by mapped 
diagnosis, although this would limit secondary analysis for diagnosis 
classification. 

Another cause for concern with text-derived phenotypes is their 
noisiness. In our case, the phenotype profile is simply the set of anno
tations made for that admission, or the set of ontology terms recognised 
in their clinical narrative. However, the appearance of a phenotype in 
text does not necessarily imply that the patient has that phenotype. To 
some extent, this is mitigated by corpus-based measures of information 
content, however previous work has shown that curated text phenotypes 
performed better for the task of predicting rare diseases [12]. This im
plies that in addition to splitting semantic similarity calculations into 
different facets with smaller annotation size, methods for automated, 
semi-automated, or manual curation of text-derived phentoypes could 
also lead to improved performance. One method of doing this could be to 
create a modified measure of information content, that measures entity 
coverage instead of total annotation frequency in corpus. By doing this, 
phenotypes that appear only a small number of times per patient, but are 
represented in most patients, would be more correctly scaled. 

Nevertheless, we were able to use our proposed methods to improve 
modelling of our sample of MIMIC-III, revealing insights that were not 
easily recoverable using overall semantic similarity approaches. In terms 
of practical uses, these methods could be used to gain insight into 
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diseases, for example by using the group characterisation methods to 
distinguish between pathognomonic phenotype fingerprints of 
frequently confounded diseases, such as pneumonia and pulmonary 
embolism [55]. These could also contribute to construction of disease 
phenotype profiles in a way that may provide greater discrimination 
between diseases, fitting in with work to encode the genome using text 
data [13,56,57]. Such work could contribute to our overall knowledge of 
diseases and their relationships with phenotypes, or form the basis of 
feature selection in secondary statistical analyses, and in turn potentially 
contribute to tools that improve clinical care by providing better ways to 
discriminate patients, diseases, and outcomes. 

5. Conclusions 

Our work describes the successful categorisation of text-derived pa
tient phenotype profiles into facets derived from major areas of the 
Human Phenotype Ontology (HPO). In doing this, we showed that in our 
setting, phenotypic expression falls widely across different areas of HPO. 
Using these faceted phenotype profiles, we successfully developed and 
implemented a semantic clustering approach, comparing overall clus
tering with faceted clustering. To evaluate these clusters, we developed 
and presented a novel algorithm for characterising ontology-based 
groupings. Using this method, we showed that, in our setting, faceted 
semantic clustering provides clinically meaningful insights into text- 
derived patient phenotype profiles. 
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Appendix  

Table 9 
Parameters used for explanation algorithm. Param
eters are defined in Algorithm 1  

Name Value 

MAX_IC 0.8 
MIN_IC 0.4 
MAX_INCLUSION 0.95 
MIN_INCLUSION 0.3 
MAX_EXCLUSION 0.95 
MIN_EXCLUSION 0.3 
MAX_TOTAL_INCLUSION 0.95 
STEP 0.05  
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