UNIVERSITY^{OF} BIRMINGHAM

University of Birmingham Research at Birmingham

Precise measurement of the fs /fd ratio of fragmentation fractions and of Bs0 decay branching fractions

LHCb Collaboration

DOI:

10.1103/PhysRevD.104.032005

License:

Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

LHCb Collaboration 2021, 'Precise measurement of the fs /fd ratio of fragmentation fractions and of Bs0 decay branching fractions', *Physical Review D*, vol. 104, no. 3, 032005. https://doi.org/10.1103/PhysRevD.104.032005

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- •Users may freely distribute the URL that is used to identify this publication.
- •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- •User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 24. Apr. 2024

Supplemental material for LHCb-PAPER-2020-046

Full results on the parameters for the default fit and the fit without external theory constraints are presented in Tables 1 and 2, respectively. The correlation matrices of the results for these fits also shown in Tables 3 and 4, respectively. This is important when considering the results at different energies, since they are correlated among each other.

The listed parameters are:

- a and b are the intercept and slope of the transverse-momentum-dependent functions at the three center-of-mass energies;
- $r_{\rm AF}$ and $r_{\rm E}$ are the scaling parameters with respect to the theoretical inputs;
- S_1 is the parameter propagating the correlated systematic uncertainty due to external parameters;
- S_2 , S_3 , and S_4 are the parameters propagating experimental systematic uncertainties.
- \mathcal{F}_R is the ratio of the $B_s^0 \to J/\psi \phi$ to $B^+ \to J/\psi K^+$ branching fractions, as detailed in the text.

Table 1: Output parameters of the default fit to the data.

a(7 TeV)	0.244 ± 0.008
$b(7\mathrm{TeV})$	$(-10.3 \pm 2.7) \times 10^{-4}$
S_1	1.009 ± 0.026
S_2	1.030 ± 0.028
$r_{ m AF}$	1.082 ± 0.032
\mathcal{F}_R	0.505 ± 0.016
a(8 TeV)	0.240 ± 0.008
b(8 TeV)	$(-3.5 \pm 2.3) \times 10^{-4}$
a(13 TeV)	0.263 ± 0.008
b(13 TeV)	$(-17.6 \pm 2.1) \times 10^{-4}$
S_3	0.997 ± 0.008
S_4	0.977 ± 0.021
$r_{ m E}$	1.071 ± 0.030

Table 2: Output parameters of the fit to the data without external theory constraints.

a(7 TeV)	0.238 ± 0.008
$b(7\mathrm{TeV})$	$(-10.3 \pm 2.7) \times 10^{-4}$
S_1	1.000 ± 0.026
S_2	1.00 ± 0.04
$r_{ m AF}$	1.16 ± 0.06
\mathcal{F}_R	0.517 ± 0.017
a(8 TeV)	0.234 ± 0.008
$b(8\mathrm{TeV})$	$(-3.3 \pm 2.3) \times 10^{-4}$
a(13 TeV)	0.256 ± 0.009
b(13TeV)	$(-16.9 \pm 2.0) \times 10^{-4}$
S_3	1.000 ± 0.009
S_4	0.998 ± 0.023
$r_{ m E}$	1.04 ± 0.04

Table 3: Output correlation matrix of the default fit versus $p_{\rm T}$.

	$a(7\mathrm{TeV})$	$b(7\mathrm{TeV})$	S_1	S_2	$r_{ m AF}$	\mathcal{F}_R	$a(8\mathrm{TeV})$	$b(8\mathrm{TeV})$	a(13TeV)	$b(13\mathrm{TeV})$	S_3	S_4	$r_{ m E}$
a(7 TeV)	1.000	-0.360	-0.589	-0.185	-0.318	-0.955	0.925	-0.046	0.933	-0.314	-0.223	-0.645	-0.198
b(7 TeV)		1.000	0.067	-0.045	-0.003	0.131	-0.129	0.010	-0.130	0.048	0.034	0.097	0.109
S_1			1.000	-0.075	-0.128	0.615	-0.596	0.029	-0.601	0.170	0.022	0.064	-0.079
S_2				1.000	-0.542	0.193	-0.184	0.004	-0.186	0.068	0.083	0.239	0.841
$r_{ m AF}$					1.000	0.328	-0.320	0.019	-0.322	0.129	0.142	0.410	-0.569
\mathcal{F}_R						1.000	-0.967	0.044	-0.976	0.326	0.233	0.676	0.198
a(8 TeV)							1.000	-0.257	0.945	-0.318	-0.226	-0.654	-0.202
b(8 TeV)								1.000	-0.046	0.021	0.010	0.030	0.030
a(13 TeV)									1.000	-0.492	-0.228	-0.660	-0.202
b(13 TeV)										1.000	0.056	0.161	0.098
S_3											1.000	-0.059	0.087
S_4												1.000	0.251
$r_{ m E}$													1.000

Table 4: Output correlation matrix of the fit versus p_{T} without theory constraints.

	a(7 TeV)	b(7 TeV)	S_1	S_2	$r_{\rm AF}$	\mathcal{F}_R	a(8 TeV)	b(8 TeV)	a(13 TeV)	b(13 TeV)	S_3	S_4	$r_{\rm E}$
a(7 TeV)	1.000	-0.343	-0.525	0.001	-0.367	-0.958	0.931	-0.049	0.938	-0.333	-0.257	-0.672	-0.002
b(7 TeV)	1.000	1.000	0.069	0.000	-0.032	0.125	-0.123	0.013	-0.124	0.048	0.034	0.088	0.111
S_1			1.000	0.000	-0.166	0.548	-0.531	0.027	-0.536	0.150	0.003	0.007	0.000
S_2				1.000	-0.768	-0.001	0.001	-0.000	0.001	-0.000	-0.000	-0.001	0.920
$r_{ m AF}$					1.000	0.378	-0.367	0.019	-0.370	0.152	0.178	0.467	-0.787
\mathcal{F}_R						1.000	-0.970	0.048	-0.978	0.343	0.267	0.701	-0.004
a(8 TeV)							1.000	-0.252	0.949	-0.336	-0.260	-0.680	-0.005
b(8 TeV)								1.000	-0.049	0.023	0.013	0.034	0.018
a(13 TeV)									1.000	-0.502	-0.262	-0.686	-0.004
b(13 TeV)										1.000	0.073	0.191	0.018
S_3											1.000	0.004	-0.000
S_4												1.000	-0.001
$r_{ m E}$													1.000