

University of Birmingham

Steps and traces
Rot, Jurriaan; Jacobs, Bart; Levy, Paul

DOI:
10.1093/logcom/exab050

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Rot, J, Jacobs, B & Levy, P 2021, 'Steps and traces', Journal of Logic and Computation, vol. 31, no. 6, pp.
1482–1525. https://doi.org/10.1093/logcom/exab050

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 24. Apr. 2024

https://doi.org/10.1093/logcom/exab050
https://doi.org/10.1093/logcom/exab050
https://birmingham.elsevierpure.com/en/publications/b2f06d1b-2091-4fc4-8fc1-77da33f27c4c

Steps and traces∗
JURRIAAN ROT, Institute for Computing and Information Sciences, Radboud
Universiteit, Nijmegen 6525 EC, The Netherlands.
E-mail: jrot@cs.ru.nl

BART JACOBS, Institute for Computing and Information Sciences, Radboud
Universiteit, Nijmegen 6525 EC, The Netherlands.

PAUL BLAIN LEVY, School of Computer Science, University of Birmingham,
Birmingham B15 2TT, UK.

Abstract
In the theory of coalgebras, trace semantics can be defined in various distinct ways, including through algebraic logics,
the Kleisli category of a monad or its Eilenberg–Moore category. This paper elaborates two new unifying ideas: (i)
coalgebraic,draftrules trace semantics is naturally presented in terms of corecursive algebras, and (ii) all three approaches
arise as instances of the same abstract setting. Our perspective puts the different approaches under a common roof and allows
to derive conditions under which some of them coincide.

Keywords: Coalgebra, trace semantics, corecursive algebras

1 Introduction

Traces are used in the semantics of state-based systems as a way of recording the consecutive
behaviour of a state in terms of sequences of observable (input and/or output) actions. Trace
semantics leads to, for instance, the notion of trace equivalence, which expresses that two states
cannot be distinguished by only looking at their iterated in/output behaviour.

Trace semantics is a central topic of interest in the coalgebra community—and not only there, of
course. One of the key features of the area of coalgebra is that states and their coalgebras can be
considered in different universes, formalized as categories. The break-through insight is that trace
semantics for a system in universe A can often be obtained by switching to a different universe B.
More explicitly, where the (ordinary) behaviour of the system can be described via a final coalgebra
in universe A, the trace behaviour arises by finality in the different universe B. Typically, the
alternative universe B is a category of algebraic logics, the Kleisli category or the category of
Eilenberg–Moore algebras, of a monad on universe A.

This paper elaborates two new unifying ideas.
1. We observe that the trace map from the state space of a coalgebra to a carrier of traces is in all

three situations the unique ‘coalgebra-to-algebra’ map to a corecursive algebra [7] of traces.

∗ This is a revised and extended version of a paper which appeared in the proceedings of CMCS 2018 [21].

Vol. 31, No. 6, © The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
Advance Access Publication on 23 August 2021 https://doi.org/10.1093/logcom/exab050

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/logcom/exab050

Steps and traces 1483

This differs from earlier work which tries to describe traces as final coalgebras. For us, it is
quite natural to view languages as algebras, certainly when they consist of finite words/traces.

2. Next, these corecursive algebras, used as spaces of traces, all arise via a uniform construction,
in a setting given by an adjunction together with a special natural transformation that we call
a ‘step’. We heavily rely on a basic result saying that in this situation, the (lifting of the) right
adjoint preserves corecursive algebras, sending them from one universe to another. This is a
known result [6], but its fundamental role in trace semantics has not been recognized before.
For an arbitrary coalgebra, there is then a unique map to the transferred corecursive algebra;
this is the trace map that we are after.

The main contribution of this paper is the unifying step-based approach to coalgebraic trace
semantics: it is shown that three existing f lavours of trace semantics—logical, Eilenberg–Moore
and Kleisli—are all instances of our approach. Moreover, comparison results are given relating
theses. We focus only on finite trace semantics and also exclude at this stage the ‘iteration’ based
approaches, e.g. in [9, 10, 31, 38].

Outline. The paper is organized as follows. It starts in Section 1 with the abstract step-and-
adjunction setting and the relevant definitions and results for corecursive algebras. In the next
three sections, it is explained how this setting gives rise to trace semantics, by presenting the
above-mentioned three approaches to coalgebraic trace semantics in terms of steps and adjunctions:
Eilenberg–Moore (Section 3), logical (Section 4) and Kleisli (Section 5). In each case, the relevant
corecursive algebra is described. These sections are illustrated with several examples. In Section 6,
we study partial traces for coalgebras with input and output [5], as another instance of the step-and-
adjunction setting, but it is helpful to express that setting in the language of bimodules, which we do
in Appendix B.

The next section establishes a connection between the Eilenberg–Moore and the logical approach,
between the Kleisli and logical approach and between the Kleisli and Eilenberg–Moore approach
(Section 7). In Section 8, we show that our construction yields algebras that are not merely
corecursive but completely iterative, a stronger property that provides more general trace semantics.
Finally, in Section 9, we provide some directions for future work.

Notation. In the context of an adjunction F � G, we shall use overline notation (−) for adjoint
transposition. The unit and counit of an adjunction are, as usual, written as η and ε.

For an endofunctor H , we write Alg(H) for its algebra category and CoAlg(H) for its coalgebra
category. For a monad (T , η, μ) on C, we write EM(T) for the Eilenberg–Moore category and K�(T)

for the Kleisli category.
We recall that any functor S : Sets → Sets has a unique strength st. We write st : S(X A) → S(X)A

for st(t)(a) = S(eva)(t), where eva = λf .f (a) : X A → X .

2 Coalgebraic semantics from a step

This section is about the construction of corecursive algebras and their use for semantics. The notion
of corecursive algebra, studied in [7, 11] as the dual of Taylor’s notion of recursive coalgebra [12],
is defined as follows.

DEFINITION 2.1
Let H be an endofunctor on a category C.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1484 Steps and traces

1. A coalgebra-to-algebra morphism from a coalgebra c : X → H(X) to an algebra a : H(Θ) →
Θ is a map f : X → Θ such that the diagram

commutes. Equivalently: such a morphism is a fixpoint for the endofunction on the homset
C(X , Θ) sending f to the composite

2. An algebra a : H(A) → A is corecursive when for every coalgebra c : X → H(X) there is a
unique coalgebra-to-algebra morphism (X , c) → (Θ , a).

Here is some intuition.

– As explained in [18], the specification of a coalgebra-to-algebra morphism f is a ‘divide-and-
conquer’ algorithm. It says: to operate on an argument, first decompose it via the coalgebra c,
then operate on each component via H(f), then combine the results via the algebra a.

– For each final H-coalgebra , the inverse ζ−1 : H(Θ) → Θ is a corecursive
algebra. For most functors of interest, this final coalgebra gives semantics up to bisimilarity,
which is finer than trace equivalence. So trace semantics requires a different corecursive
algebra.

In all our examples, we use the same procedure for obtaining a corecursive algebra. It makes
frequent use of the following so-called mate correspondence [26, 34]; also see, e.g. [23, 28, 29, 35]
for special cases.

THEOREM 2.2
Given adjunctions and functors

there are bijective correspondences between natural transformations:

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1485

Here ρ1 and ρ3 correspond by adjoint transposition, and similarly for ρ2 and ρ4. Further, ρ1 and ρ2
are obtained from each other by

It is common to refer to ρ1 and ρ2 as mates; the other two maps are their adjoint transposes, as
we have seen. In diagrams, we omit the subscript i in ρi and let the type determine which version of
ρ is meant. Further, in the remainder of this paper, we usually drop the subscript of components of
natural transformations.

Our basic setting consists of an adjunction, two endofunctors and a natural transformation:

(1)

The natural transformation ρ : HG ⇒ GL will be called a step. Here H is the behaviour functor:
we study H-coalgebras and give semantics for them in a corecursive H-algebra. This arrangement
is well known in the area of coalgebraic modal logic [3, 8, 28, 35, 40], but we shall see that its
application is wider. The following result shows different equivalent presentations of a step; for the
proof, see Appendix A.

THEOREM 2.3
In the situation (1), there are bijective correspondences between natural transformations ρ1 : HG ⇒
GL, ρ2 : FH ⇒ LF, ρ3 : FHG ⇒ L and ρ4 : H ⇒ GLF, as in Theorem 2.2.

Moreover, if H and L happen to be monads, then ρ1 is an EM-law (map HG ⇒ GL compatible
with the monad structures) iff ρ2 is a K�-law (map FH ⇒ LF compatible with the monad structures)
iff ρ4 is a monad map; and two further equivalent characterizations are respectively a lifting of G or
an extension of F:

Steps give rise to liftings to categories of algebras and coalgebras, as follows.

DEFINITION 2.4
In the setting (1), the step natural transformation ρ gives rise to both:

– a lifting Gρ of the right adjoint G, called the step-induced algebra lifting:

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1486 Steps and traces

– dually, a lifting Fρ of the left adjoint F, called the step-induced coalgebra lifting:

Our approach relies on the following basic result.

PROPOSITION 2.5
([6]).
In the setting (1), for a corecursive L-algebra a : L(Θ) → Θ , the transferred H-algebra
Gρ(Θ , a) : HG(Θ) → G(Θ) is also corecursive.

PROOF. Let c : X → H(X) be an H-coalgebra. Then Fρ(X , c) is an L-coalgebra, which gives
rise to a unique coalgebra-to-algebra map f : F(X) → Θ with a ◦ L(f) ◦ ρ ◦ F(c) = f . The
adjoint-transpose g : X → G(Θ) of f is then the unique coalgebra-to-algebra map from (X , c) to
Gρ(Θ , a). �

Thus, by analogy with the familiar statement that ‘right adjoints preserves limits’, we have ‘step-
induced algebra liftings of right adjoints preserve corecursiveness’. Now we give the complete
construction for semantics of a coalgebra.

THEOREM 2.6
Suppose that L has a final coalgebra . Then for every H-coalgebra (X , c) there is a
unique coalgebra-to-algebra map c† as on the left below:

The map c† on the left can alternatively be characterized via its adjoint transpose c† on the right,
which is the unique coalgebra-to-algebra morphism. The latter can also be seen as the unique map

to the final coalgebra .

Note that Theorem 2.6 generalizes final coalgebra semantics: taking in (1) F = G = IdC and
H = L, the map c† in the above theorem is the unique homomorphism to the final coalgebra. In the
remainder of this paper, we focus on instances where c† captures traces, and we therefore refer to c†

as the trace semantics map.
Given steps ρ : HG ⇒ GL and θ : KG ⇒ GM , we can form a new step by composition, written

as θ � ρ in:

(2)

We conclude with a lemma that relates the mate construction to composition of steps. See
Appendix A for a proof.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1487

LEMMA 2.7
Let ρ : HG ⇒ GL, θ : KG ⇒ GM be steps. Then

(
θ � ρ

)
2 = Mρ2 ◦ θ2H .

3 Traces via Eilenberg–Moore

We recall the approach to trace semantics developed in [4, 22, 43], putting it in the framework of
the previous section. The approach deals with coalgebras for the composite functor BT , where T is
a monad that captures the ‘branching’ aspect. The following assumptions are required.

ASSUMPTION 3.1
(Traces via Eilenberg–Moore).
In this section, we assume the following:

1. An endofunctor B : C → C with a final coalgebra .
2. A monad (T , η, μ), with the standard adjunction F � U between categories C ←−−−−−−→ EM(T),

where U is ‘forget’ and F is for ‘free algebras’.
3. A lifting B of B, as in

(3)

or, equivalently, an EM-law κ : TB ⇒ BT .

EXAMPLE 3.2
To brief ly illustrate these ingredients, we consider non-deterministic automata. These are BT-
coalgebras with B : Sets → Sets, B(X) = 2 × X A where 2 = {⊥, 	} and T the finite powerset
monad. The functor B has a final coalgebra carried by the set 2A∗

of languages. Further, EM(T) is
the category of join semilattices (JSLs). The lifting is defined by products in EM(T), using the JSL
on 2 given by the usual ordering ⊥ ≤ 	. By the end of this section, we revisit this example and
obtain the usual language semantics.

The above three assumptions give rise to the following instance of our general setting (1):

(4)

Actually—and equivalently, by Theorem 2.3—the step ρ is most easily given in terms of ρ4 : BT ⇒
UBF : since B lifts B, we have UBF = BUF = BT , so that ρ4 is then defined simply as the identity.

The following result is well known and is (in a small variation) due to [45].

LEMMA 3.3
There is a unique algebra structure a : T(Θ) → Θ making ((Θ , a), ζ) a B-coalgebra. Moreover, this
coalgebra is final in CoAlg(B).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1488 Steps and traces

PROOF. We recall that the map a : T(Θ) → Θ is obtained by finality in

(5)

This gives an Eilenberg–Moore algebra (Θ , a), with a B-coalgebra ζ : (Θ , a) → B(Θ , a) which is
final. �

We apply the step-induced algebra lifting Gρ : Alg(B) → Alg(BT) to the inverse of this final
B-coalgebra, obtaining a BT-algebra:(

BT(Θ)
�em−−→ Θ

)
:= Gρ((Θ , a), ζ−1) = (

BT(Θ)
B(a)−−→ B(Θ)

ζ−1

−−→ Θ
)
. (6)

By Theorem 2.6, this BT-algebra �em is corecursive, giving us trace semantics of BT-coalgebras.
More explicitly, given a coalgebra c : X → BT(X), the trace semantics is the unique map, written as
emc, making the following square commute.

(7)

The unique map emc in (7) appears in the literature as a ‘coiteration up-to’ or ‘unique solution’
theorem [1]. Examples follow later in this section (Theorem 3.4, Example 3.5).

In [22, 43], the above trace semantics of BT-coalgebras arises through ‘determinization’, which
we explain next. Given a coalgebra c : X → BT(X), one takes its adjoint transpose:

c : X −→ BT(X) = BUF(X) = UBF(X)

c : F(X) −→ BF(X)

It follows from Theorem 2.3 and our definition of ρ that this transpose coincides with the
application of the step-induced coalgebra lifting Fρ : CoAlg(BT) → CoAlg(B) from the previous
section, i.e. Fρ(X , c) = (F(X), c). The functor Fρ thus plays the role of determinization, see [22].
By Theorem 2.6, the trace semantics emc can equivalently be characterized in terms of Fρ , as the
unique map emc making the diagram below commute.

(8)

This is how the trace semantics via Eilenberg–Moore is presented in [22, 43]: as the transpose emc =
emc ◦ ηX : X → Θ .

We conclude this section by recalling a canonical construction of a distributive law [19] for a class
of ‘automata-like’ examples that we will spell out in Example 3.5.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1489

THEOREM 3.4
Let Ω be a set, T a monad on Sets and t : T(Ω) → Ω an EM-algebra. Let B : Sets → Sets,
B(X) = Ω × X A, and κ : TB ⇒ BT given by

Then κ is an EM-law. Moreover, the algebra structure on the carrier of the final coalgebra (ΩA∗
, ζ)

mentioned in the statement of Lemma 3.3 is given by T(�A∗) st−→T(�)A∗ tA∗−→�A∗. Hence, this algebra
is the carrier of a final B-coalgebra.

EXAMPLE 3.5
By Theorem 3.4, we obtain an explicit description of the trace semantics arising from the corecursive
algebra (7): for any 〈o, f 〉 : X → Ω × T(X)A, the trace semantics is the unique map em in

We instantiate the trace semantics em for various choices of Ω , T and t. Given a coalgebra
〈o, f 〉 : X → Ω × T(X)A, we have em(x)(ε) = o(x) independently of these choices. The table
below lists the inductive case em(x)(aw), respectively, for non-deterministic automata (NDA) where
branching is interpreted as usual (NDA-∃), NDA where branching is interpreted conjunctively
(NDA-∀) and (reactive) probabilistic automata (PA). Here Pf is the finite powerset monad, and Dfin
the finitely supported distribution (or subdistribution) monad.

T Ω t : T(Ω) → Ω em(x)(aw)

NDA-∃ Pf 2 = {⊥, 	} S �→ ∨
S

∨
y∈f (x)(a) em(y)(w)

NDA-∀ Pf 2 = {⊥, 	} S �→ ∧
S

∧
y∈f (x)(a) em(y)(w)

PA Dfin [0, 1] ϕ �→ ∑
p∈[0,1] p · ϕ(p)

∑
y∈X em(y)(w) · f (x)(a)(y)

For other examples, and a concrete presentation of the associated determinization constructions, see
[22, 43].

3.1 Eilenberg–Moore trace semantics for TA-coalgebras

We now extend the above treatment of trace semantics of BT-coalgebras via Eilenberg–Moore
categories, to cover coalgebras for a composite functor TA as well, where A is another endofunctor
on the base category C. This integrates the extension semantics of [22] in the present setting; the
latter covers examples such as non-deterministic automata (as in Example 3.9) and probabilistic
systems in generative form. The approach to trace semantics of TA-coalgebras in this section extends
Assumption 3.1, making use of a lifting B of a functor B to obtain traces as a suitable final coalgebra.
Note that A itself is not lifted but is connected to B via a step ρ as stipulated in the global assumptions
of this subsection, described next.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1490 Steps and traces

ASSUMPTION 3.6
In addition to Assumption 3.1, we assume a functor A : C → C, and a step ρ in

The counit ε : FU → U is given by ε(X ,a) = a; notice that FU(X , a) = (T(X), μX). Applying the
forgetful functor to ε gives another step Uε : TU ⇒ U , where the ‘L’ (from (1)) in the codomain is
the identity functor. We can compose the steps Uε and ρ in two ways. First, we get a step for AT by
composing as follows:

If A = B, then taking ρ to be the identity is precisely the step defined in (4).
We turn to the other composition of Uε and ρ, which gives a step for TA:

As we will see in Proposition 3.7, steps ρ as in Assumption 3.6 correspond to natural transforma-
tions of the form e : TA ⇒ BT making the following diagram commute:

(9)

In [22], a natural transformation e making this diagram commute is called an extension law if it
additionally satisfies a coherence axiom with a K�-law. We will only see this later, in our comparison
between different approaches for assigning trace semantics, see Section 7.3. The last line of the
correspondence below involves natural transformations of the form A ⇒ BT , which are called
generic observers in [13].

PROPOSITION 3.7
There is a one-to-one correspondence between

steps ρ : AU �⇒ UB====================
e : TA ⇒ BT satisfying (9)====================

A �⇒ BT

PROOF. By Theorem 2.3, the natural transformation ρ = ρ1 : AU ⇒ UB corresponds to e = ρ2 :
FA ⇒ BF ; the latter is a natural transformation TA ⇒ BT whose components are maps of algebras
μX → B(μx), as expressed by Diagram (9). This covers the first correspondence in the proposition.

By Theorem 2.3, a natural transformation e : TA ⇒ BT further corresponds to a natural
transformation A ⇒ UBF = BUF = BT . The latter is simply a natural transformation on the
base category C, which means no further coherence axioms like (9) need to be checked. �

The composed step Uε�ρ : TAU ⇒ UB gives a corecursive algebra, by applying the step-induced
algebra lifting GUε�ρ : Alg(B) → Alg(TA) to the final B-coalgebra ((Θ , a), ζ), from Lemma 3.3.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1491

We call this corecursive algebra �A
em : TA(Θ) → Θ to distinguish it from �em : BT(Θ) → Θ . It is

given by

This corecursive algebra gives semantics to TA-coalgebras. It can be expressed in terms of the
corecursive BT-algebra �em, making use of ρ2 : FA ⇒ BF , as follows.

LEMMA 3.8
We have �A

em = �em ◦ U(ρ2) : TA(Θ) → Θ . Explicitly,

(
TA(Θ)

�A
em−−→ Θ

) = (
TA(Θ)

U(ρ2)−−−→ UBF(Θ) = BT(Θ)
B(a)−−→ B(Θ)

ζ−1

−−→ Θ
)
.

PROOF. We describe �em ◦ U(ρ2) as south-east and �A
em as east-south in

The upper left square commutes by Lemma A.1. �

EXAMPLE 3.9
We illustrate the situation with a simple example: non-deterministic automata, viewed as coalgebras
of the form c : X → Pf(Σ × X + 1). To this end, we instantiate the setting with C = Sets, T = Pf
the finite powerset monad and A(X) = Σ × X + 1. Moreover, we let B(X) = 2 × X Σ . Note that
there is a difference between PfA-coalgebras and BPf-coalgebras, if Σ is infinite: the former are
finitely branching non-deterministic automata (that is, finitely many successors) whereas the latter
are image-finite non-deterministic automata (that is, finitely many successors for every alphabet
letter).

The lifting B : EM(Pf) → EM(Pf) of B is given as in Example 3.2 and Theorem 3.4. In particular,
the corecursive algebra

�em : 2 × (Pf(2Σ∗
))Σ → 2Σ∗

is given by �em(o, ϕ)(ε) = o and �em(o, ϕ)(aw) = ∨
ψ∈ϕ(a) ψ(w).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1492 Steps and traces

The relevant step ρ : AU ⇒ UB is most easily given by ρ4 : A ⇒ UBF = BPf. On a component
X , we define (ρ4)X : Σ × X + 1 → 2 × (PfX)Σ by

(ρ4)X (a, x) =
(

⊥, λb.

{
{x} if a = b

∅ otherwise

)
, (ρ4)X (∗) = (, λb.∅) .

Then (ρ2)X : Pf(Σ × X + 1) → 2 × (PfX)Σ is the adjoint transpose, given by

ρ2(S) =
(∨

∗∈S

	, λa.{x | (a, x) ∈ S}
)

.

This coincides with the extension law given in [22].
By Lemma 3.8, the corecursive PfA-algebra obtained from the final B-coalgebra is given by �A

em =
�em ◦ U(ρ2) : Pf(Σ × 2Σ∗ + 1) → 2Σ∗

, which is

�A
em(S)(ε) =

∨
∗∈S

	 , �A
em(S)(aw) =

∨
(a,ψ)∈S

ψ(w) .

Given a coalgebra c : X → Pf(Σ × X + 1), the unique coalgebra-to-algebra morphism
emA : X → 2Σ∗

from c to �A
em is thus given by emA(x)(ε) = ∨

∗∈c(x) 	 and emA(x)(aw) =∨
(a,y)∈c(x) emA(y)(w).

For examples of extension laws for weighted and probabilistic automata, see [22].

4 Traces via logic

This section illustrates how the ‘logical’ approach to trace semantics of [29], ultimately based on
the testing framework introduced in [40], fits in our general framework. In this approach, traces are
viewed as logical formulas, also called tests, which are evaluated for states. These tests are obtained
via an initial algebra of a functor L. The approach works both for TB and BT-coalgebras (and could,
in principle, be extended to more general combinations). We start by listing our assumptions in this
section and continue by showing how these assumptions lead to a corecursive algebra giving trace
semantics in the general framework of Section 2.

ASSUMPTION 4.1
(Traces via logic).
In this section, we assume

1. An adjunction F � G between categories C ←−−−−−−→ Dop.
2. A functor T on C with a step τ : TG ⇒ G.
3. A functor B : C → C and a functor L : D → D with a step δ : BG ⇒ GL.

4. An initial algebra .

We deviate from the convention of writing ρ for ‘step’, since the above map τ gives rise to multiple
steps τ � δ and δ � τ in (11) below, in the sense of Definition 2.3; here we use ‘delta’ instead of
‘rho’ notation since it is common in modal logic.

EXAMPLE 4.2
We take C = D = Sets, and F, G both the contravariant powerset functor 2−. Non-deterministic
automata are obtained either as BT-coalgebras with B(X) = 2 × X A and T the finite powerset
functor, or as TB-coalgebras, with B(X) = A×X +1 and T again the finite powerset functor. In both

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1493

cases, L is given by L(X) = A × X + 1, which has the set of words A∗ as carrier of an initial algebra.
The map τ : T2− ⇒ 2− is defined by τX (S)(x) = ∨

ϕ∈S ϕ(x) and intuitively models the existential
choice in the semantics of non-deterministic automata. The step δ and the language semantics are
defined later in this section.

The assumptions are close to the general step-and-adjunction setting (1). Here, we have an
opposite category on the right and instantiate H to TB or BT :

(10)

Notice that our assumptions already include a step δ (involving B, L) and a step τ , which we can
compose to obtain steps for the TB respectively BT case:

(11)

Both τ � δ and δ � τ are steps and hence give rise to step-induced algebra liftings Gτ�δ and Gδ�τ

of G (Section 2). By Theorem 2.6, we obtain two corecursive algebras by applying these liftings to
the inverse of the initial algebra, i.e. the (inverse of the) final coalgebra in Dop:

(12)

These corecursive algebras define trace semantics for any TB-coalgebra (X , c) and BT-coalgebra
(Y , d):

(13)

It is instructive to characterize this trace semantics in terms of the transpose and the step-induced
coalgebra liftings Fτ�δ and Fδ�τ , showing how they arise as unique maps from an initial algebra:

(14)

In the remainder of this section, we show two classes of examples of the logical approach to trace
semantics. With these descriptions, we retrieve most of the examples from [29] in a smooth manner.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1494 Steps and traces

PROPOSITION 4.3
Let Ω be a set, T : Sets → Sets a functor and t : T(Ω) → Ω a map. Then the set of languages ΩA∗

carries a corecursive algebra for the functor Ω ×T(−)A. Given a coalgebra 〈o, f 〉 : X → Ω ×T(X)A,
the unique coalgebra-to-algebra morphism log : X → ΩA∗

satisfies

log(x)(ε) = o(x) log(x)(aw) = t
(

T(evw ◦ log)(f (x)(a))
)

for all x ∈ X , a ∈ A and w ∈ A∗.

PROOF. We instantiate the assumptions in the beginning of this section by C = D = Sets, F = G =
Ω−, B(X) = Ω ×X A, L(X) = A×X +1 and T the functor from the statement. The initial L-algebra

is . The map t extends to a modality τ : TG ⇒ G, given on components by

The logic δ : BG ⇒ GL is given by the isomorphism Ω × (Ω−)A ∼= Ω(A×−)+1. Instantiating (12),
we obtain the corecursive BT-algebra

The concrete description of log follows by spelling out the coalgebra-to-algebra diagram that
characterizes it. In particular, we have

log(x)(aw) = (Ωα−1 ◦ δ∗
A ◦ id × (tA∗ ◦ st ◦ T(log))A ◦ 〈o, f 〉(x))(aw)

= δ∗
A(id × (tA∗ ◦ st ◦ T(log))A ◦ 〈o, f 〉(x))(a, w)

= ((tA∗ ◦ st ◦ T(log))A ◦ f (x))(a)(w)

= (tA∗ ◦ st ◦ T(log)(f (x)(a)))(w)

= t(st ◦ T(log)(f (x)(a))(w))

= t(T(evw ◦ log)(f (x)(a)))

for all x ∈ X , a ∈ A and w ∈ A∗. �

EXAMPLE 4.4
We instantiate the trace semantics log from Proposition 4.3 for various choices of Ω , T and t.
Similar to the instances in Example 3.5, we consider a coalgebra 〈o, f 〉 : X → Ω × T(X)A, and
we always have log(x)(ε) = o(x). The cases of non-deterministic automata (NDA-∃, NDA-∀) and
probabilistic automata (PA) are the same as in Example 3.5. However, in contrast to the Eilenberg–
Moore approach and other approaches to trace semantics, a monad structure on T is not required
here. This is convenient as it also allows to treat alternating automata (AA), where T = PfPf; the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1495

latter does not carry a monad structure [30].

T Ω t : T(Ω) → Ω log(x)(aw)

NDA-∃ Pf 2 = {⊥, 	} S �→ ∨
S

∨
y∈f (x)(a) log(y)(w)

NDA-∀ Pf 2 = {⊥, 	} S �→ ∧
S

∧
y∈f (x)(a) log(y)(w)

PA Dfin [0, 1] ϕ �→ ∑
p∈[0,1] p · ϕ(p)

∑
y∈X log(y)(w) · f (x)(a)(y)

AA PfPf 2 = {⊥, 	} S �→ ∨
T∈S

∧
b∈T b

∨
T∈f (x)(a)

∧
y∈T log(y)(w)

We also describe a logic for polynomial functors constructed from a signature. Here, we model
a signature by a functor Σ : N → Sets, where N is the discrete category of natural numbers. This
gives rise to a functor HΣ : Sets → Sets as usual by HΣ(X) = ∐

n∈N Σ(n)×X n. The initial algebra
of HΣ consists of closed terms (or finite node-labelled trees) over the signature.

PROPOSITION 4.5
Let Ω be a meet semilattice with top element 	 as well as a bottom element ⊥, let T : Sets → Sets
be a functor, and t : T(Ω) → Ω a map. Let (Φ, α) be the initial HΣ -algebra. The set ΩΦ of ‘tree’
languages carries a corecursive algebra for the functor THΣ . Given a coalgebra c : X → THΣ(X),
the unique coalgebra-to-algebra map log : X → ΩΦ is given by

log(x)(σ (u1, . . . , un)) = t(T(m) ◦ c(x)) , where

m =
(

u �→
{∧

i log(xi)(ui) if ∃x1 . . . xn. u = (σ , x1, . . . , xn)

⊥ otherwise

)
: HΣ(X) → Ω

for all x ∈ X and σ(u1, . . . , un) ∈ Φ.

PROOF. We use C = D = Sets, F = G = Ω−, B = L = HΣ . The map t extends to a modality
τ : TG ⇒ G as in the proof of Proposition 4.3. The logic δ : HΣΩ− ⇒ ΩHΣ(−) is

δX (σ1, φ1, . . . , φn)(σ2, x1, . . . , xm) =
{∧

i φi(xi) if σ1 = σ2

⊥ otherwise

The corecursive algebra �log is then given by

Now, given a coalgebra c : X → THΣ(X), we compute

log(x)(σ (u1, . . . , un))

= (Ωα−1 ◦ tHΣΦ ◦ st ◦ T(δΦ) ◦ THΣ(log) ◦ c(x))(σ (u1, . . . , un))

= t((st ◦ T(δΦ) ◦ THΣ(log) ◦ c(x))(α−1(σ (u1, . . . , un))))

= t((st ◦ T(δΦ) ◦ THΣ(log) ◦ c(x))(σ , u1, . . . , un))

= t(T(ev(σ ,u1,...,un))(T(δΦ) ◦ THΣ(log) ◦ c(x)))

= t(T(ev(σ ,u1,...,un) ◦ δΦ ◦ HΣ(log))(c(x)))

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1496 Steps and traces

To conclude, we analyse the map ev(σ ,u1,...,un) ◦ δΦ ◦ HΣ(log):

ev(σ ,u1,...,un)(δΦ(HΣ(log)(u)))

= δΦ(HΣ(log)(u))(σ , u1, . . . , un)

=
{∧

i log(xi)(ui) if ∃x1 . . . xn. u = (σ , x1, . . . , xn)

⊥ otherwise
.

This coincides with m in the statement of the proposition. �

EXAMPLE 4.6
Given a signature Σ , a coalgebra c : X → PfHΣ(X) is a (top-down) tree automaton. With Ω =
{⊥, 	} and t(S) = ∨

S, Proposition 4.5 gives

log(x)(σ (t1, . . . , tn)) = 	 iff ∃x1 . . . xn.(σ , x1, . . . , xn) ∈ c(x) ∧
∧

1≤i≤n

log(xi)(ti)

for every state x ∈ X and tree σ(t1, . . . , tn). This is the standard semantics of tree automata. It is
easily adapted to weighted tree automata, see [29].

In both Example 4.4 and Example 4.6, the step-induced coalgebra lifting Fδ�τ (respectively
Fτ�δ) of the underlying logic corresponds to reverse determinization, see [29, 42] for details. In
particular, in Example 4.6, it maps a top-down tree automaton to the corresponding bottom-up tree
automaton.

5 Traces via Kleisli

In this section, we brief ly recall the ‘Kleisli approach’ to trace semantics [16] and cast it in our
abstract framework. It applies to coalgebras for a composite functor TA, where T is a monad
modelling the type of branching and A is a functor. For example, a coalgebra X → P(Σ × X + S)

has an associated map X → P(Σ∗ × S) that sends a state x ∈ X to the set of its complete traces.
(Taking S = 1, this is the usual language semantics of a nondeterministic automaton.) To fit this
to our framework, the monad T is P and the functor A is (Σ × −) + S. In general, the following
assumptions are used.

ASSUMPTION 5.1
(Traces via Kleisli).
In this section, we assume

1. An endofunctor A : C → C with an initial algebra .
2. A monad (T , η, μ), with the standard adjunction J � U between categories C ←−−−−−−→ K�(T),

where J(X) = X and U(Y) = T(Y).
3. An extension A of A, as below:

(15)

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1497

or, equivalently, a K�-law λ : AT ⇒ TA.
4. (Ψ , J(β−1)) is a final A-coalgebra.

In the case that A is the functor (Σ ×−)+S, its initial algebra is carried by Σ∗×S, and the canonical
K�-law is given at X by

A central observation for the Kleisli approach to traces is that the fourth assumption holds under
certain order enrichment requirements on K�(T), see [16]. In particular, these hold when T is the
powerset monad, the (discrete) subdistribution monad or the lift monad.

The above assumptions give rise to the following instance of our setting (1):

Similar to the EM-case in Section 3, the map of adjunctions is most easily given in terms of
ρ4 : TA ⇒ UAJ as the identity, using that A extends A.

We apply the step-induced algebra lifting Gρ : Alg(A) → Alg(TA) to the inverse of the final
A-coalgebra and obtain a corecursive TA-algebra, called �kl:(

TAT(Ψ)
�kl−→ T(Ψ)

)
:= Gρ(Ψ , J(β−1)−1)

= Gρ(Ψ , J(β))

=
(

TAT(Ψ)
T(λ)−−→ T2A(Ψ)

μ−→ TA(Ψ)
T(β)−−→ T(Ψ)

) (16)

By Theorem 2.6, this algebra is corecursive, i.e. for every coalgebra c : X → TA(X), there is a
unique map klc as below:

(17)

The trace semantics is exactly as in [16], to which we refer for examples. For later use, we note the
following.

LEMMA 5.2
The above map �kl : TAT(Ψ) → T(Ψ) is a map of Eilenberg–Moore algebras μAT(Ψ) → μΨ .

PROOF. This follows by an easy calculation:

�kl ◦ μ = T(β) ◦ μ ◦ T(λ) ◦ μ = T(β) ◦ μ ◦ μ ◦ T2(λ)

= T(β) ◦ μ ◦ T(μ) ◦ T2(λ)

= μ ◦ T2(β) ◦ T(μ) ◦ T2(λ) = μ ◦ T(�kl).
�

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1498 Steps and traces

6 Partial traces for input/output

6.1 Introduction

To illustrate the versatility of our framework, we show next that it underpins a trace example quite
different from the previous ones, one that arises in programming language semantics and involves
both input and output actions [5].

To avoid confusion, it must be noted that the word ‘trace’ is used with a different meaning in the
automata and semantics communities, as follows.

– In the automata literature and the previous sections, a ‘trace’ ends in acceptance. Semanticists
would call this a ‘complete trace’.

– By contrast, in the semantics literature [5, 24, 32, 33, 36, 41] and this section, a ‘trace’ need
not end in acceptance. For example, a program that prints Hello and then diverges (hangs)
must be distinguished from one that simply diverges, even though—since neither terminates—
neither has a complete trace. Accordingly, the string Hello is said to be a ‘trace’ of the former
program (but not the latter), and so is each prefix. Automata theorists would call these ‘partial
traces’.

This section applies our framework to traces of the second kind, but before doing that, we need two
pieces of background. The first (Section 6.2) explains that, in a transition system for I/O, a state’s set
of traces form a strategy. The second (Section 6.3) characterizes the poset of all strategies as a final
coalgebra. This is a result that appeared in [5].

6.2 Trace sets as strategies

The story begins by fixing a signature, which consists of a set K of operations, and for each k ∈ K
a set Ar(k) called its arity. Each operation k ∈ K is regarded as an output message requesting input,
and Ar(k) as the set of acceptable inputs.1 Accordingly, we use the functor:

X �→ P
(∑

k∈K X Ar(k)
)

= P
(∑

k∈K
∏

i∈Ar(k) X
)

. (18)

A transition system is a coalgebra c : X → P(
∑

k∈K
∏

i∈Ar(k) X). For such a system, a state x ∈ X
represents a program that nondeterministically outputs some k ∈ K, then pauses until it receives
some i ∈ Ar(k) and then is in another state. We write:

x
k�⇒ (yi)i∈Ar(k) for (k, (yi)i∈Ar(k)) ∈ c(x).

A play is a finite or infinite sequence k0, i0, k1, i1, . . ., where kr ∈ K and ir ∈ Ar(kr). It is so called
because it may be viewed a play in a game of two players, called proponent and opponent, where
each output is a proponent move and each input an opponent move. (The game terminology is slightly
misleading in that there is no notion of winning and play can continue forever.) A play of even length
is active ending and one of odd length is passive ending.

A strategy (more precisely, nondeterministic finite trace strategy) is a set σ of passive-ending
plays such that sik ∈ σ implies s ∈ σ . Again, this terminology is based on the game idea, as a
strategy tells proponent (nondeterminstically) how to play. The poset of all strategies, ordered by
inclusion (⊆), is written Strat.

1Many-sorted signatures, in the guise of ‘interaction structures’, are used for a similar purpose in [14].

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1499

Let (X , c) be a transition system and x ∈ X a state. A passive-ending play k0, i0, . . . , kn is said to
be a trace of x when there is a sequence

x = x0
k0�⇒ (y0

i)i∈Ar(k0) , y0
i0 = x1

k1�⇒ (y1
i)i∈Ar(k1) , · · ·

The set of all such traces forms a strategy. Note that active-ending traces need not be considered,
since these are determined by the passive-ending traces. Infinite traces are not considered in [5], nor
are they here. Conversely, every strategy can be obtained in this way [5, Proposition 6.1].

6.3 Strategies form a final coalgebra

A complete semilattice is a poset with all suprema. Hence it also has all infima, which allows it to
be called a ‘complete lattice’. Clearly, the poset Strat of all strategies, ordered by inclusion (⊆), is
a complete semilattice. Let CSL be the category of complete semilattices and homomorphisms, i.e.
monotone functions that preserve suprema. It was shown in [5] that Strat is a final coalgebra for a
certain endofunctor on CSL, which we shall describe in several steps.

Firstly, an almost complete semilattice is a poset where every nonempty subset has a supremum.
Hence, every lower-bounded subset has an infimum, but binary meets a∧b need not exist in general.
Let ACSL be the category of almost complete semilattices and homomorphisms, i.e. monotone
functions that preserve suprema of nonempty sets. Informally, our motivation for using this category
is the fact that, up to trace equivalence, an I/O action such as printing commutes with binary
nondeterminism, and more generally with I-ary nondeterministic choice for any nonempty set I .
This point (and the special role of the empty set) is developed in more detail in [5].

For any set J , we define two functors:

as follows. (In [5], they are linked to universal properties.)

– For a family (Aj)j∈J of complete semilattices, let
∏

j∈J Aj be the cartesian product. Endowed
with pointwise order, it is an almost complete (in fact complete) semilattice.

– For a family (fj : Aj → Bj)j∈J of complete semilattice homomorphisms, let
∏

j∈J fj :
∏

j∈J Aj →∏
j∈J Bj be the map sending (aj)j∈J to (fjaj)j∈J .

– For a family (Aj)j∈J of almost complete semilattices, let
⊕⊥

j∈J Aj be the set of pairs
(U , (aj)j∈U) where U ∈ PJ and aj ∈ Aj for all j ∈ U . It is a complete semilattice when
endowed with the following order: we have (U , (aj)j∈U) � (V , (bj)j∈V) when U ⊆ V and
aj � bj for all j ∈ U .

– For a family (fj : Aj → Bj)j∈J of almost complete semilattice homomorphisms, let⊕⊥
j∈J fj :

⊕⊥
j∈J Aj → ⊕⊥

j∈J Bj be the map sending a pair (U , (aj)j∈U) to (U , (fjaj)j∈U).

From these, we build our endofunctor⊕
k∈K

⊥ ∏
i∈Ar(k)

: CSL → CSL

whose final coalgebra is given as follows.

THEOREM 6.1
[5, Theorem 6.3] Let Ψ : Strat → ⊕⊥

k∈K
∏

i∈Ar(k) Strat send a strategy σ to (Init σ ,

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1500 Steps and traces

((σ/kii)i∈Ar(k))k∈Init σ), where

Init σ
def= {k ∈ K | (k) ∈ σ }

σ/ki
def= {s | k.i.s ∈ σ }

Then (Strat, Ψ) is a final
⊕⊥

k∈K
∏

i∈Ar(k)-coalgebra.

6.4 The step

With the background completed, we now want to instantiate our general setting to form an account
of traces. Our adjunction and endofunctors are as follows:

Here U : CSL → Sets is the forgetful functor, which is monadic. Explicitly, the free complete
semilattice on a set X is PX , ordered by inclusion (⊆), with unit X → PX sending x �→ {x}.
Likewise the forgetful functor U : ACSL → Sets is monadic. Explicitly, the free almost complete
semilattice on a set X is the set P+X of nonempty subsets, ordered by inclusion (⊆), with unit
X → P+X sending x �→ {x}.

Our step is formulated using bimodules and 2-cells, which are explained in the Appendix. Any
functor U : D → C gives rise to a bimodule URight : C →� D by Definition B.4(2), and then, for any
set J , to a bimodule (URight)J : CJ →� DJ by Definition B.3. Central to our story are the following
2-cells (in the sense of Definition B.2(2)) defined for any set J .

They are defined as follows.

– Given a family of functions (fj : Xj → Bj)j∈J , where Xj is a set and Bj a complete semilattice,
the function

∏
j∈J fj :

∏
j∈J Xj → ∏

j∈J Bj sends (xj)j∈J to (fxj)j∈J .
– Given a family of functions (fj : Xj → Aj)j∈J , where Xj is a set and Aj an almost complete

semilattice, the function
∑�

j∈J fj : P
∑

j∈J Xj → ⊕⊥
j∈J Aj sends R to (L, (yj)j∈L) where

L = {j ∈ J | ∃x ∈ Xj. inj x ∈ R}
yj =

∨
x∈Xj : inj x∈R

fj(x) for j ∈ L.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1501

Note that, as in Sections 3 and 5, the ρ4 version of
∑� is an isomorphism, namely,

Combining these 2-cells, we obtain the following 2-cell:

(19)

As Theorem B.6 explains, this provides our step

ρ : P
∑
k∈K

∏
i∈Ar(k)

U ⇒ U
⊕
k∈K

⊥ ∏
i∈Ar(k)

.

From Theorem 6.1 with Proposition B.9(1), we see that, for every coalgebra c : X →
P

∑
k∈K

∏
i∈Ar(k) X , there is a unique morphism to (Strat, Ψ). Specifically, [5, Theorem 6.6]

tells us that what this morphism sends x ∈ X to its set of traces. Finally, by Proposition B.9(2),
Uρ(Strat, Ψ) is corecursive, and the map from (X , c) to it is the same, i.e. it sends x ∈ X to its set
of traces.

Note that, as in Section 3, we can use Pρ to determinize a transition system (X , c). This is applied
in [5, Section 6.2] to obtain a bisimulation method for trace equivalence.

6.5 Input, then output

We adapt the story above to use instead of (18) the functor

X �→ ∏
k∈K P(Ar(k) × X) = ∏

k∈K P
∑

i∈Ar(k) X .

Now a transition system is a coalgebra c : X → ∏
k∈K P

∑
i∈Ar(k) X . In this case, the behaviour of a

state x ∈ X is to first input k ∈ K and then nondeterministically output some i ∈ Ar(k), resulting in
a new state x′. We write

x@k
i�⇒ x′ for (i, x′) ∈ (c(x))k .

Accordingly, the definitions of play, strategy and trace in Section 6.2 are adjusted as follows.

– A play is a finite or infinite sequence k0, i0, k1, i1, . . ., where kr ∈ K and ir ∈ Ar(kr). A play
of odd length is active ending and one of even length is passive ending.

– A strategy is a set σ of passive-ending plays such that ε ∈ σ (where ε is the empty play) and
ski ∈ σ implies s ∈ σ .

– Let (X , c) be a transition system, and x ∈ X a state. A passive-ending play k0, i0, . . . , kn, in is
said to be a trace of x when there is a sequence

x = x0 x0@k0
i0�⇒ x1 , x1@k1

i1�⇒ x2 , · · ·
The set of all such traces form a strategy.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1502 Steps and traces

The poset Strat of all strategies, ordered by inclusion (⊆), forms an almost complete (in fact
complete) semilattice. We adjust Theorem 6.1 to say that Strat carries a final coalgebra for the
endofunctor

∏
k∈K

⊕⊥
i∈Ar(k) on ACSL.

Finally, we have the same results as in Section 6.4, but instead of (19) we use the following 2-cell:

To summarize, we first told our story for transition systems with ‘active’ states, that output and
then input. (These systems are sometimes called ‘generative’.) In this section, we have adapted it
for systems with ‘passive’ states that input and then output. (These systems are sometimes called
‘reactive’.) Another variation would be transition systems with both active and passive states, as in
[36].

7 Comparison

The presentation of trace semantics in terms of corecursive algebras allows us to compare the
different approaches by constructing algebra morphisms between them. In three subsections, we
compare the Eilenberg–Moore approach with the logical approach, the Kleisli approach with the
logical approach, and finally we compare the Kleisli and Eilenberg–Moore approaches.

7.1 Eilenberg–Moore and logic

To compare the Eilenberg–Moore approach with the logical approach, we combine their assump-
tions, as follows.

ASSUMPTION 7.1
(Comparison Eilenberg–Moore and logic).
In this subsection, we assume an adjunction F � G, endofunctors B, L and a monad T as follows:

together with:

1. A final B-coalgebra .
2. An EM-law κ : TB ⇒ BT , or equivalently, a lifting B of B.

3. An initial algebra .
4. A step δ : BG ⇒ GL.
5. A step τ : TG ⇒ G, whose components are EM-algebras (a monad action).

Here we have assumed slightly more than the union of the assumptions of the two approaches. The
step τ is an assumption of the logical approach in Section 4, but there the compatibility with the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1503

monad structure was not assumed—simply because T was not assumed to be a monad before. Here,
we use this assumption as a first compatibility requirement between the logical and Eilenberg–Moore
approaches.

We note that τ being a monad action is the same thing as τ being an EM-law, involving the
monad T on the left and the identity monad on the right. The next result is therefore an instance of
Theorem 2.3.

LEMMA 7.2
The following are equivalent:

1. a monad action τ1 : TG ⇒ G;
2. a map τ2 : F ⇒ FT , satisfying the obvious dual action equations;
3. a monad morphism τ4 : T ⇒ GF;
4. an extension F̂ : K�(T) → Dop (= K�(Id)) of F.
5. a lifting Ĝ : Dop → EM(T) of G.

Such monad actions and the corresponding liftings are used, e.g. in [15, 17, 20] where F̂ is called
Pred. We use ·̂ to indicate liftings associated with the step τ , in order to create a distinction with the
lifting · associated with κ .

We now start focusing on the actual comparison between the Eilenberg–Moore and logical
approach. First, observe that the step δ : BG ⇒ GL gives a lifting Gδ : Alg(L) → Alg(B), where
G is a functor Dop → C. The ‘opposite’ requires some care: the initial algebra α : L(Φ) → Φ in D
forms a final coalgebra α : Φ → L(Φ) in Dop, and thus a corecursive algebra α−1 : L(Φ) → Φ in
Dop. Hence, applying Gδ to the latter corecursive L-algebra gives a corecursive B-algebra, namely,

Since this algebra is corecursive, we obtain a unique map e as in the following diagram:

(20)

This e : Θ → G(Φ) is a morphism from the carrier of the corecursive algebra �em : BT(Θ) → Θ ,
from the Eilenberg–Moore approach (6), to the carrier of the corecursive algebra �log : BTG(Φ) →
G(Φ), from the logical approach (12). Note that, by the above diagram, e is a B-algebra morphism,
whereas �em and �log are BT-algebras. We next describe a sufficient condition under which the map
e is a BT-algebra morphism from �em to �log, which implies that the logical trace semantics factors
through the Eilenberg–Moore trace semantics, see subsequent Theorem 7.4.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1504 Steps and traces

LEMMA 7.3
The EM-law κ : TB ⇒ BT commutes with the step compositions in (11), as in

(21)

iff there is a natural transformation δ̂ : BĜ ⇒ ĜL satisfying U (̂δ) = δ in

The functor Ĝ : Dop → EM(T) is the lifting corresponding to τ , see Lemma 7.2.

PROOF. The existence of such a δ̂ amounts to the property that each component δX : BG(X) →
GL(X) is a T-algebra homomorphism from BĜ(X) to ĜL(X), i.e. the following diagram commutes:

This corresponds exactly to (21), see (11). �
THEOREM 7.4
If the equivalent conditions in Lemma 7.3 hold, then the map e defined in (20) is a BT-algebra
morphism from �em to �log, as on the left below.

In that case, for any coalgebra X
c→ BT(X), the triangle on the right commutes.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1505

PROOF. We use that �em = ζ−1 ◦ B(a) : BT(Θ) → Θ , where ((Θ , a), ζ) is the final B-coalgebra,
see Section 3. We need to prove that the outer rectangle of the following diagram commutes.

The rectangle on the right commutes by definition of e. For the square on the left, it suffices to show
e ◦ a = τ1 ◦ T(e); this is equivalent to F(a) ◦ e = τ2 ◦ e in

Indeed, by transposing, we have on the one hand:

e ◦ a = F(a ◦ e) ◦ ε = F(a) ◦ F(e) ◦ ε = F(a) ◦ e.

And on the other hand, using that τ2 ◦ ε = F(τ1) ◦ ε by Lemma A.1:

τ2 ◦ e = τ2 ◦ F(e) ◦ ε

= FT(e) ◦ τ2 ◦ ε

= FT(e) ◦ F(τ1) ◦ ε

= τ1 ◦ T(e)

By transposing the map e in (20), it follows that e : Φ → F(Θ) is the unique morphism from the

initial L-algebra to F(ζ) ◦ δ2 : LF(Θ) → F(Θ). Hence, for the desired equality
F(a) ◦ e = τ2 ◦ e, it suffices to prove that F(a) and τ2 are both algebra homomorphisms from
F(ζ) ◦ δ2 to a common algebra, which in turn follows from commutativity of the following diagram.

Using the translation (−)1 ↔ (−)2 of Theorem 2.3, one can show that the upper-left rectangle
is equivalent to the assumption (21). To see this, we use Lemma 2.7 to obtain (δ � τ)2 = (δ1 ◦
Bτ1)2 = δ2T ◦ Lτ2 and (τ � δ)2 = (τ1L ◦ Tδ1)2 = τ2B ◦ δ2. Moreover, it is easy to check that

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1506 Steps and traces

(δ1 ◦ Bτ1 ◦ κG)2 = Fκ ◦ (δ1 ◦ Bτ1)2. The lower-right rectangle commutes since ((Θ , a), ζ) is a
B-coalgebra. The other two squares commute by naturality.

For the second part of the theorem, let c : X → BT(X) be a coalgebra. Since e is an algebra
morphism, the equation e ◦ emc = logc follows by uniqueness of coalgebra-to-algebra morphisms
from c to �log. �

The equality e ◦ emc = logc means that equivalence w.r.t. Eilenberg–Moore trace semantics
implies equivalence w.r.t. the logical trace semantics. The converse is, of course, true if e is monic.
For that, it is sufficient if δ : BG ⇒ GL is expressive. Here expressiveness is the property that for
any B-coalgebra, the unique coalgebra-to-algebra morphism to the corecursive algebra Gδ(Φ, α−1)

factors as a B-coalgebra homomorphism followed by a mono. This holds in particular if the
components δA : BG(A) → GL(A) are all monic (in C) [28].

LEMMA 7.5
If δ : BG ⇒ GL is expressive, then e is monic. Moreover, if δ is an isomorphism, then e is an iso as
well.

PROOF. Expressivity of δ means that we have e = m ◦ h for some coalgebra homomorphism h and
mono m. By finality of ζ there is a B-coalgebra morphism h′ such that h′ ◦ h = id. It follows that h
is monic (in C), so that m ◦ h = e is monic too.

For the second claim, if δ is an isomorphism, then G(α−1) ◦ δ : BG(Φ) → G(Φ) is an invertible
corecursive B-algebra, which implies it is a final coalgebra (see [6, Proposition 7], which states the
dual). It then follows from (20) that e is a coalgebra morphism from one final B-coalgebra to another,
which means it is an isomorphism. �

Previously, we have seen both a class of examples of the Eilenberg–Moore approach
(Theorem 3.4) and the logical approach (Proposition 4.3). Both arise from the same data: a monad T
(just a functor in the logical approach) and an EM-algebra t. We thus obtain, for these automata-like
examples, both a logical trace semantics and a matching ‘Eilenberg–Moore’ semantics, where the
latter essentially amounts to a determinization procedure. The underlying distributive laws satisfy
(21) by construction, so that the two approaches coincide (as already seen in the concrete examples).

THEOREM 7.6
Let Ω be a set, T : Sets → Sets a monad and t : T(Ω) → Ω an EM-algebra. The EM-law κ of
Theorem 3.4, together with δ, τ as defined in the proof of Proposition 4.3, satisfies (21). For any
coalgebra c : X → Ω × T(X)A, the map logc coincides (up to isomorphism) with the map emc.

PROOF. To prove (21), i.e. δ � τ ◦ κ = τ � δ, we first compute, following (11),

(δ � τ)X : Ω × (T(ΩX))A −→ ΩA×X+1

= δX ◦ (id × τA
X)

= δX ◦ (id × (tX ◦ st)A)

(τ � δ)X : T(Ω × (ΩX)A) −→ ΩA×X+1

= τA×X+1 ◦ T(δX)

= tA×X+1 ◦ st ◦ T(δX).

Hence, we need to show that

δX ◦ (id × (tX ◦ st)A) ◦ (t × st) ◦ 〈T(π1), T(π2)〉 = tA×X+1 ◦ st ◦ T(δX) (22)

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1507

for every set X . To this end, let S ∈ T(Ω × (ΩX)A) and u ∈ (A × X + 1). We first spell out the
right-hand side:

(tA×X+1 ◦ st ◦ T(δX)(S))(u)

= t((st ◦ T(δX)(S))(u))

= t(T(evu ◦ δX)(S))

=
{

t(T(π1)(S)) if u = ∗ ∈ 1

t(T(evx ◦ eva ◦ π2)(S)) if u = (a, x) ∈ A × X

In the last step, we used the definition of δ:

ev∗ ◦ δX (ω, f) = δX (ω, f)(∗) = ω = π1(ω, f) ,

ev(a,x) ◦ δX (ω, f) = δX (ω, f)(a, x) = f (a)(x) = evx ◦ eva ◦ π2(ω, f) .

For the left-hand side of (22), distinguish cases ∗ ∈ 1 and (a, x) ∈ A × X .

(δX ◦ (id × (tX ◦ st)A) ◦ (t × st) ◦ 〈T(π1), T(π2)〉(S))(∗)

= π1(id × (tX ◦ st)A) ◦ (t × st) ◦ 〈T(π1), T(π2)〉(S))

= t(T(π1)(S))

which matches the right-hand side of (22). For (a, x) ∈ A × X , we have

(δX ◦ (id × (tX ◦ st)A) ◦ (t × st) ◦ 〈T(π1), T(π2)〉(S))(a, x)

= (((tX ◦ st)A ◦ st)(T(π2)(S)))(a)(x)

= (((tX)A ◦ stA ◦ st)(T(π2)(S)))(a)(x)

= (tX ◦ st(st(T(π2)(S))(a)))(x)

= (tX ◦ st(T(eva)(T(π2)(S)))(x)

= (tX ◦ st(T(eva ◦ π2)(S)))(x)

= t(st(T(eva ◦ π2)(S))(x))

= t(T(evx) ◦ T(eva ◦ π2)(S))

= t(T(evx ◦ eva ◦ π2)(S))

which also matches the right-hand side; hence, we obtain (22) as desired.
Since (21) is satisfied, it follows from Theorem 7.4 that e ◦ emc = logc. Since δ is an iso, e is an

iso as well by Lemma 7.5. �

7.2 Kleisli and logic

To compare the Kleisli approach to the logical approach, we combine their assumptions. Further,
similar to the comparison between Eilenberg–Moore and logic in the previous section, we assume a
first compatibility criterion by requiring the components τ to be componentwise Eilenberg–Moore
algebras.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1508 Steps and traces

ASSUMPTION 7.7
(Comparison Kleisli and logic).
In this subsection, we assume an adjunction F � G, endofunctors A, L and a monad T as follows:

together with

1. An initial algebra β : A(Ψ)
∼=−→ Ψ .

2. A K�-law λ : AT ⇒ TA, or equivalently, an extension A : K�(T) → K�(T) of A : C → C.
3. (Ψ , J(β−1)) is a final A-coalgebra.

4. An initial algebra α : L(Φ)
∼=−→ Φ.

5. A step δ : AG ⇒ GL.
6. A step τ : TG ⇒ G, whose components are EM-algebras (a monad action).

By the last assumption, τ satisfies the equivalent conditions in Lemma 7.2; again, this is in itself not
part of the logical approach but is used in the comparison to the Kleisli approach to trace semantics.
We obtain the following unique coalgebra-to-algebra morphism k from the initial A-algebra:

(23)

Since τ is a monad action, for every X , G(X) carries an Eilenberg–Moore algebra τX . Thus, we can
take the adjoint transpose (w.r.t. the Eilenberg–Moore adjunction) k = τΦ ◦ T(k) : T(Ψ) → G(Φ).
We then have the following analogue of Theorem 7.4.

LEMMA 7.8
The distributive law λ : AT ⇒ TA commutes with the logics in (11), as in

(24)

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1509

iff there is a natural transformation δ̂ : LF̂ ⇒ F̂A satisfying δ̂J = δ in

The two natural transformation on the right are written in D instead of Dop. The functor F̂ : K�(T) →
Dop is the extension corresponding to τ , Lemma 7.2.

PROOF. The condition δ̂J = δ simply means that δ̂X = δX for every object X in C. Naturality of δ̂

amounts to commutativity of the outside of the diagram below, for every map f : X → T(Y).

The lower rectangle commutes by naturality; the upper is equivalent to (24). Hence, (24) implies
naturality. Conversely, if δ̂ is natural, then the upper rectangle commutes for each Y by taking f =
id[TY] (the identity map in C). �
THEOREM 7.9
If the equivalent conditions in Lemma 7.8 hold, then the map k = τΦ ◦ T(k) : T(Ψ) → G(Φ) is a
TA-algebra morphism from �kl to �log, as on the left below.

In that case, for any coalgebra c : X → TA(X), there is a commuting triangle as on the right above.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1510 Steps and traces

PROOF. Consider the following diagram.

Everything commutes: the upper right rectangle by assumption (24), the right-most square in the
middle row since τ is an action, the outer shapes by definition of �kl and �log, the lower left rectangle
by (23) and the rest by naturality.

For the second part of the theorem, since k is an algebra morphism, we have that k ◦ klc is a
coalgebra-to-algebra morphism from c to the corecursive algebra �log. Hence, k ◦ klc = logc by
uniqueness of such morphisms. �

The above result gives a sufficient condition under which Kleisli trace equivalence implies logical
trace equivalence. However, contrary to the case of traces in Eilenberg–Moore, in Lemma 7.5, we
currently do not have a converse. The condition that δ has monic components is, surprisingly, not
sufficient for k to be monic, as confirmed by Example 7.10 below. In the comparison between
Eilenberg–Moore and Kleisli traces in Section 7.3, a similar difficulty arises.

EXAMPLE 7.10
We give an example where δ : AG ⇒ GL is monic and (24) commutes, but where nevertheless
logical equivalence does not imply Kleisli trace equivalence. Let C = D = Sets, F = G = 2−,
A = L = (−) + 1, T = Pf, τ : Pf2− ⇒ 2− given by union as before, and define the step δ, for
ϕ ∈ 2X , by δX (ϕ)(t) = 	 iff t ∈ X ∧ ϕ(t), and δX (∗)(t) = 	 (the latter differs from the step in
Proposition 4.5). Notice that δ indeed has monic components. (In the conference version [21], we
used a more general setting with A = L = (Σ × −) + 1, where Σ is a fixed set. However, the
associated δ is not monic if Σ contains more than one element, contrary to what is stated there.
Indeed, we need to choose Σ to be a singleton for the example to go through.)

Let λ : AT ⇒ TA be the distributive law from [16], given by λX (S) = {x | x ∈ S} for S ∈ Pf(X),
and λ(∗) = {∗}. Then (24) is satisfied:

It is straightforward to check that this commutes. However, given a coalgebra c : X → PfA(X),
the induced logical semantics log : X → 2N is log(x)(n) = 	 iff ∗ ∈ c(x) or n > 0 ∧ ∃y ∈
c(x). log(y)(n − 1) = 	. In particular, this means that if ∗ ∈ c(x) and ∗ ∈ c(y) for some states x, y,

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1511

then they are trace equivalent. This differs from the Kleisli semantics, which amounts to the usual
language semantics of non-deterministic automata (over a singleton alphabet) [16].

Cîrstea [9] compares logical traces to a ‘path-based semantics’, which resembles the Kleisli
approach (as well as [31]) but does not require a final A-coalgebra. In particular, given a commutative
monad T on Sets and a signature Σ , she considers a canonical distributive law λ : HΣT ⇒ THΣ ,
which coincides with the one in [16]. Cîrstea shows that, with Ω = T(1), t = μ1 : TT(1) → T(1)

and δ from the proof of Proposition 4.5 (assuming T1 to have enough structure to define that logic),
the triangle (24) commutes (see [9, Lemma 5.12]).

7.3 Kleisli and Eilenberg–Moore

To compare the Eilenberg–Moore and Kleisli approaches, we first combine their assumptions. The
Kleisli approach applies to TA-coalgebras; to match this, we make use of the variant of the Eilenberg–
Moore approach for TA-coalgebras presented in Section 3.1. The latter approach uses a lifting of a
functor B as well as a step relating A and B.

ASSUMPTION 7.11
(Comparison Kleisli and Eilenberg–Moore).
In this subsection, we assume to endofunctors A, B and a monad T , on a base category C, and liftings
A, B to Kleisli and Eilenberg–Moore-categories as follows:

In this situation, we further assume the following ingredients, which combine earlier assumptions.

1. An initial algebra β : A(Ψ)
∼=−→ Ψ .

2. A K�-law λ : AT ⇒ TA, or equivalently, an extension A : K�(T) → K�(T) of the functor A.
3. (Ψ , J(β−1)) is a final A-coalgebra.
4. An EM-law κ : TB ⇒ BT , or equivalently, a lifting B : EM(T) → EM(T).

5. A final coalgebra ζ : Θ
∼=−→ B(Θ).

6. A step ρ : AU ⇒ UB.

The step ρ : AU ⇒ UB is an assumption of the Eilenberg–Moore approach for TA-coalgebras in
Section 3.1, defined on top of the assumptions for the Eilenberg–Moore approach for BT-coalgebras.
Under a further assumption such a law corresponds to an extension natural transformation as in [22],
see Proposition 7.12.

Recall from Section 3 that the final B-coalgebra (Θ , ζ) gives rise to a final B-coalgebra
((Θ , a), ζ). We will make use of the counit ε of the EM-adjunction F � U as a step Uε : TU ⇒ U .
Its components are EM-algebras. For the trace semantics of TA-coalgebras via Eilenberg–Moore,
see Section 3.1, we make use of the composed step:

(25)

These assumptions form an instance of the assumptions in Section 7.2, where we compared Kleisli
to logical trace semantics. In particular, in the latter we instantiate Dop with EM(T), L with B, δ with

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1512 Steps and traces

ρ : AU ⇒ UB and τ with Uε : UT ⇒ U . Thus, we immediately obtain the comparison result from
Theorem 7.9. For presentation purposes, we restate the relevant results and definitions.

There is the following unique coalgebra-to-algebra morphism k from the initial A-algebra:

(26)

The rectangle on the right commutes since �em = ζ−1 ◦ B(a), by definition (6), and

B(a) ◦ U(ρ2) ◦ η = B(a) ◦ ρ ◦ A(η) by Lemma A.1
= ρ ◦ A(a) ◦ A(η) sincea : (T(Θ), μ) → (Θ , a) in EM(T)

= ρ.

Taking the adjoint transpose, w.r.t. the Eilenberg–Moore adjunction F � U , of this map k : Ψ →
Θ = U(Θ , a), yields a map of Eilenberg–Moore algebras:

We have seen in (16) that T(Ψ) is the carrier of the corecursive algebra �kl : TAT(Ψ) → T(Ψ)

giving Kleisli trace semantics. At the same time, Θ is the carrier of the corecursive algebra
�em : BT(Θ) → Θ from (6) as well as the corecursive algebra

GUε�ρ((Θ , a), ζ) = �A
em = �em ◦ U(ρ2) : TA(Θ) → Θ ,

where ((Θ , a), ζ) is the final B-coalgebra, and the equality on the right is given by Lemma 3.8. Thus,
the map k : T(Ψ) → Θ relates the carriers of the corecursive TA-algebras �kl and �A

em. Like in the
previous sections, we now give a sufficient condition for k to be an algebra morphism.

PROPOSITION 7.12
In the above setting, the following three statements are equivalent.

1. The distributive law λ : AT ⇒ TA commutes with the two composed steps ρ � U(ε) and
U(ε) � ρ, as in

(27)

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1513

2. There is a natural transformation e : F̂A ⇒ BF̂ satisfying eJ = ρ2 in

The functor F̂ : K�(T) → EM(T) is the extension corresponding to U(ε), according to
Theorem 2.3; it is often called the ‘comparison’ functor and then written as K.

3. The following ‘extension requirement’ from [22] commutes

(28)

PROOF. The equivalence of points (1) and (2) is an instance of Lemma 7.8, where it should be noted
that we are instantiating D with EM(T)op, which causes the two natural transformations in the above
diagram to be in opposite direction.

We show the equivalence of (1) and (3). Using Lemma 2.7, it is straightforward to check, via
Theorem 2.3, that

(
ρ � U(ε)

)
2 = (

ρ1 ◦ AUε
)

2 = Bε ◦ ρ2 and Uε ◦ Tρ1 ◦ λ = ρ2 ◦ ε ◦ F(λ).
As a consequence, commutativity of Diagram (27) is equivalent to commutativity of the following
diagram:

This amounts to the diagram in point (3). �
Under the above equivalent conditions, we obtain the desired algebra morphism.

THEOREM 7.13
If the equivalent conditions in Proposition 7.12 hold, then the map k : T(Ψ) → Θ obtained from
(26), is a TA-algebra morphism between corecursive algebras �kl and �A

em = �em ◦ U(ρ2), as on the
left below.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1514 Steps and traces

In that case, for any coalgebra c : X → TA(X), there is a commuting triangle as on the right above,
where emA

c is the unique map from (X , c) to the corecursive algebra �em ◦ U(ρ2).

PROOF. In order to prove commutation of the rectangle, we need to combine many earlier facts:

k ◦ �kl
(16)= a ◦ T(k) ◦ T(β) ◦ μ ◦ T(λ)
(26)= a ◦ T(ζ−1 ◦ B(a) ◦ U(ρ2) ◦ η ◦ A(k)) ◦ μ ◦ T(λ)
(5)= ζ−1 ◦ B(a) ◦ κ ◦ TB(a) ◦ TU(ρ2) ◦ T(η) ◦ TA(k) ◦ μ ◦ T(λ)

= ζ−1 ◦ B(a) ◦ BT(a) ◦ κ ◦ TU(ρ2) ◦ T(η) ◦ TA(k) ◦ μ ◦ T(λ)

= ζ−1 ◦ B(a) ◦ B(μ) ◦ κ ◦ TU(ρ2) ◦ T(η) ◦ TA(k) ◦ μ ◦ T(λ)
(9)= ζ−1 ◦ B(a) ◦ U(ρ2) ◦ μ ◦ T(η) ◦ TA(k) ◦ μ ◦ T(λ)

= ζ−1 ◦ B(a) ◦ U(ρ2) ◦ TA(k) ◦ μ ◦ T(λ)

= ζ−1 ◦ B(a) ◦ BT(k) ◦ U(ρ2) ◦ μ ◦ T(λ)
(28)= ζ−1 ◦ B(a) ◦ BT(k) ◦ B(μ) ◦ U(ρ2)

= ζ−1 ◦ B(a) ◦ B(μ) ◦ BT2(k) ◦ U(ρ2)

= ζ−1 ◦ B(a) ◦ BT(a) ◦ BT2(k) ◦ U(ρ2)

= �em ◦ BT(k) ◦ U(ρ2)

= �em ◦ U(ρ2) ◦ TA(k).

Now let a coalgebra c : X → TA(X) be given. We need to prove that k ◦ klc satisfies the defining
property of emA

c . But this easy using the rectangle in the theorem:

�A
em ◦ TA(k ◦ klc) ◦ c = k ◦ �kl ◦ TA(klc) ◦ c

(17)= k ◦ klc

�
Just like in the comparison between Kleisli and logic, the above result gives a sufficient condition

for the Eilenberg–Moore trace semantics to factor through the Kleisli trace semantics. However,
again we do not know of a reasonable condition to ensure that the map k is monic. Such a result is
important for the comparison: it would ensure that two states are equivalent w.r.t. Kleisli traces iff
they are equivalent w.r.t. Eilenberg–Moore traces (right now, we only have the implication from left
to right). In [22], such a condition is also missing; monicity of k is only shown to hold in several
concrete examples.

In [22, Section 6], the Kleisli approach to coalgebraic trace semantics is compared with the
Eilenberg–Moore approach, making use of an ‘extension’ natural transformation e satisfying two
requirements, namely,

In the present step-based setting, the rectangle on the right occurred as (9) in Section 3.1, which
contains the generalization of Eilenberg–Moore trace semantics that is used here. The first of the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1515

above two rectangles captures compatibility in Proposition 7.12 and is used for a comparison of
Kleisli and Eilenberg–Moore semantics in Theorem 7.13. The conclusion is that the approach of
this paper not only covers the approach of [22, Section 6] but also puts it in a wider step-based
perspective, using corecursive algebras.

8 Completely iterative algebras

Milius [37] introduced a notion of ‘complete iterativity’ of algebras that is stronger than corecursive-
ness and has the advantage of being preserved by various constructions. So, whenever we encounter
a corecursive algebra, it is natural to ask whether it is in fact completely iterative. This section shows
that all our corecursive algebras are completely iterative (Theorem 8.3), and that this yields trace
maps in more general settings.

DEFINITION 8.1
Let C have binary coproducts. For an endofunctor H on C, an H-algebra a : HA → A is completely
iterative when [id, a] is a corecursive A + H-coalgebra. Explicitly: when for every c : X → A + HX
there is a unique f : X → A such that the following diagram commutes.

The following gives two useful ways of constructing such algebras.

PROPOSITION 8.2

1. If ζ : A → HA is a final H-coalgebra, then (A, ζ−1) is completely iterative.
2. Given a step as in Section 2, the functor Gρ preserves complete iterativity.

PROOF. Part (1) is included in [37, Theorem 2.8], and part (2) is the dual of [18, Theorem 5.6]. �
We may thus say: ‘step-induced algebra liftings of right adjoints preserve complete iterativity’.

We deduce the following strengthening of Theorem 2.6.

THEOREM 8.3
Given a step as in Section 2 and a final coalgebra ζ : A → HA, the algebra Gρ(A, ζ−1) is completely
iterative.

if L has a final coalgebra (Ψ , ζ), then Gρ(A, ζ−1) is completely iterative.
For example, in the setting of Section 3, we obtain the following variation of (7). Given a

coalgebra c : X → Θ + BT(X), there is a unique map, written as emc, making the following square

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1516 Steps and traces

commute:

(29)

In what sense is emc a ‘trace map’? Let us look at the special case of Example 3.2, where B(X) =
2 × X A so that Θ is the set 2A∗

of languages, and T is the finite powerset monad. Think of c as a
generalized nondeterministic automaton: as well as the usual accepting and rejecting states, there can
also be ‘semantic states’ that are labelled with a language and from which there are no transitions.
For a state x ∈ X , a trace of x is either a word appearing along a path from x to an accepting
state (as usual), or a concatenation of words s and t, where s appears along a path from x to a
semantic state labelled by L, and t ∈ L. With this definition, we see that emc sends x ∈ X to its set
of traces.

Each of our examples is similar to this one: the completely iterative algebra yields trace semantics
for a generalized transition system in which the semantics may sometimes be given directly.

9 Future work

The main contribution of this paper is a general treatment of trace semantics via corecursive algebras,
constructed through an adjunction and a step, covering the ‘Eilenberg–Moore’, ‘Kleisli’ and ‘logic’
approaches to trace semantics. It is expected that our framework also works for other examples, such
as the ‘quasi-liftings’ in [2], but this is left for future work. In [27], several examples of adjunctions
are discussed in the context of automata theory, some of them the same as the adjunctions here, but
with the aim of lifting them to categories of coalgebras, under the condition that what we call the step
is an iso. In our case, it usually is not an iso, since the behaviour functor is a composite TB or BT ;
however, it remains interesting to study cases in which such adjunction liftings appear, as used for
instance in the aforementioned paper and [29, 42]. Further, our treatment in Section 3 (Eilenberg–
Moore) assumes a monad to construct the corecursive algebra, but it was shown by Bartels [1]
that this algebra is also corecursive when the underlying category has countable coproducts (and
dropping the monad assumption). We currently do not know whether this fits our abstract approach.
Finally, the Kleisli/logic and Kleisli/Eilenberg–Moore comparisons (Section 7) are similar, but the
Eilenberg–Moore/logic comparison seems different. So far we have been unable to derive a general
perspective on such comparisons that covers all three.

A further direction of research is provided by the recent [10], where graded monads are used
to define trace semantics in a general way, together with associated expressive logics. On the one
hand it would be interesting to try and capture this within our steps-and-adjunctions framework;
but this would require to capture graded semantics via some notion of finality or corecursiveness,
which we are not currently aware of. On the other hand, as pointed out by one of the reviewers,
the comparison results of Section 7 can be viewed as expressivity results of one semantics w.r.t. the
other—this insight is interesting on its own, and might help in devising a more general method for
making comparisons as in Section 7, also discussed above. Further, the expressiveness criteria in
[10] may be useful to address the issues in the comparison of Kleisli semantics to Eilenberg–Moore
and logical trace semantics. We leave these considerations for future work.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1517

Funding

The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement nr.
320571.

Acknowledgements

We are grateful to the anonymous referees of both the conference version and this extended paper
for various comments and suggestions.

References
[1] F. Bartels. Generalised coinduction. Mathematical Structures in Computer Science, 13, 321–

348, 2003.
[2] F. Bonchi, A. Silva and A. Sokolova. The power of convex algebras. In CONCUR, pp. 23:1–

23:18. Vol. 85 of LIPIcs. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2017.
[3] M. M. Bonsangue and A. Kurz. Duality for logics of transition systems. In FoSSaCS, pp. 455–

469. Vol. 3441 of Lect. Notes Comp. Sci. Springer, 2005.
[4] M. M. Bonsangue, S. Milius and A. Silva. Sound and complete axiomatizations of coalgebraic

language equivalence. ACM Transactions on Computational Logic, 14, 7:1–7:52, 2013.
[5] N. J. Bowler, P. B. Levy and G. D. Plotkin. Initial algebras and final coalgebras consisting of

nondeterministic finite trace strategies. In MFPS, pp. 23–44. Vol. 341 of Elect. Notes in Theor.
Comp. Sci. Elsevier, 2018.

[6] V. Capretta, T. Uustalu and V. Vene. Recursive coalgebras from comonads. Information and
Computation, 204, 437–468, 2006.

[7] V. Capretta, T. Uustalu and V. V. C. algebras. A study of general structured corecursion. In
SBMF, pp. 84–100. Vol. 5902 of Lect. Notes Comp. Sci. Springer, 2009.

[8] L.-T. Chen and A. Jung. On a categorical framework for coalgebraic modal logic. Electronic
Notes in Theoretical Computer Science, 308, 109–128, 2014.

[9] C. Cîrstea. A coalgebraic approach to quantitative linear time logics. CoRR, abs/1612.07844,
2016. https://arxiv.org/abs/1612.07844v1.

[10] U. Dorsch, S. Milius and L. Schröder. Graded monads and graded logics for the linear
time—branching time spectrum. In CONCUR, pp. 36:1–36:16. Vol. 140 of LIPIcs. Schloss
Dagstuhl—Leibniz-Zentrum für Informatik, 2019.

[11] A. Eppendahl. Coalgebra-to-algebra morphisms. Electronic Notes in Theoretical Computer
Science, 29, 42–49, 1999.

[12] J. Y. Girard, Y. Lafont and P. Taylor. Proofs and Types. Vol. 7 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1988.

[13] S. Goncharov. Trace semantics via generic observations. In CALCO, pp. 158–174. Vol. 8089
of Lect. Notes Comp. Sci. Springer, 2013.

[14] P. Hancock and P. Hyvernat. Programming interfaces and basic topology. Annals of Pure and
Applied Logic, 137, 189–239, 05 2009.

[15] I. Hasuo. Generic weakest precondition semantics from monads enriched with order. Theoret-
ical Computer Science, 604, 2–29, 2015.

[16] I. Hasuo, B. Jacobs and A. Sokolova. Generic trace semantics via coinduction. Logical Methods
in Computer Science, 3, 2007.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

https://arxiv.org/abs/1612.07844v1

1518 Steps and traces

[17] W. Hino, H. Kobayashi, I. Hasuo and B. Jacobs. Healthiness from duality. In LICS. IEEE,
Computer Science Press, 2016.

[18] R. Hinze, N. Wu and J. Gibbons. Conjugate hylomorphisms—or: the mother of all structured
recursion schemes. In POPL, pp. 527–538. ACM, 2015.

[19] B. Jacobs. A bialgebraic review of deterministic automata, regular expressions and languages.
In Essays Dedicated to Joseph A. Goguen, pp. 375–404. Vol. 4060 of Lect. Notes Comp. Sci.
Springer, 2006.

[20] B. Jacobs. A recipe for state and effect triangles. Logical Methods in Computer Science, 13,
2017.

[21] B. Jacobs, P. Levy and J. Rot. Steps and traces. In CMCS, pp. 122–143. Vol. 11202 of Lect.
Notes Comp. Sci. Springer, 2018.

[22] B. Jacobs, A. Silva and A. Sokolova. Trace semantics via determinization. Journal of Computer
and System Sciences, 81, 859–879, 2015.

[23] B. Jacobs and A. Sokolova. Exemplaric expressivity of modal logics. Journal of Logic and
Computation, 20, 1041–1068, 2010.

[24] R. Jagadeesan, C. Pitcher and J. Riely. Open bisimulation for aspects. In AOSD,
pp. 107–120. Vol. 208 of ACM International Conference Proceeding Series. ACM,
2007.

[25] P. Johnstone. Adjoint lifting theorems for categories of algebras. Bulletin of the London
Mathematical Society, 7, 294–297, 1975.

[26] G. M. Kelly and R. Street. Review of the elements of 2-categories. In Category Seminar:
Proceedings Sydney Category Seminar 1972/1973, G. M. Kelly, ed. Vol. 420 in Lecture Notes
in Mathematics. Springer, 1974.

[27] H. Kerstan, B. König and B. Westerbaan. Lifting adjunctions to coalgebras to (re)discover
automata constructions. In CMCS, pp. 168–188. Vol. 8446 of Lect. Notes Comp. Sci. Springer,
2014.

[28] B. Klin. Coalgebraic modal logic beyond sets. In MFPS, M. Fiore, ed. Vol. 173 in Elect. Notes
in Theor. Comp. Sci. Elsevier, Amsterdam, 2007.

[29] B. Klin and J. Rot. Coalgebraic trace semantics via forgetful logics. Logical Methods in
Computer Science, 12, 2016.

[30] B. Klin and J. Salamanca. Iterated covariant powerset is not a monad. Electronic Notes in
Theoretical Computer Science, 341, 261–276, 2018.

[31] A. Kurz, S. Milius, D. Pattinson and L. Schröder. Simplified coalgebraic trace equivalence.
In Software, Services, and Systems, pp. 75–90. Vol. 8950 of Lect. Notes Comp. Sci. Springer,
2015.

[32] J. Laird. A fully abstract trace semantics for general references. In ICALP, pp. 667–679. Vol.
4596 of Lect. Notes Comp. Sci. Springer, 2007.

[33] S. B. Lassen and P. B. Levy. Typed normal form bisimulation. In CSL, pp. 283–297. Vol. 4646
of Lect. Notes Comp. Sci. Springer, 2007.

[34] T. Leinster. Higher Operads, Higher Categories. Vol. 298 of London Mathematical Society
Lecture Notes. Cambridge University Press, 2004.

[35] P. B. Levy. Final coalgebras from corecursive algebras. In CALCO, pp. 221–237. Vol. 35 of
LIPIcs. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2015.

[36] P. B. Levy and S. Staton. Transition systems over games. In CSL-LICS, pp. 64:1–64:10. ACM,
2014.

[37] S. Milius. Completely iterative algebras and completely iterative monads. Information and
Computation, 196, 1–41, 2005.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1519

[38] S. Milius, D. Pattinson and L. Schröder. Generic trace semantics and graded monads. In
CALCO, pp. 253–269. Vol. 35 of LIPIcs. Schloss Dagstuhl—Leibniz-Zentrum für Informatik,
2015.

[39] P. S. Mulry. Lifting theorems for Kleisli categories. In MFPS, pp. 304–319. Vol. 802 of Lect.
Notes Comp. Sci. Springer, 1993.

[40] D. Pavlovic, M. W. Mislove and J. Worrell. Testing semantics: connecting processes and process
logics. In AMAST , pp. 308–322. Vol. 4019 of Lect. Notes Comp. Sci. Springer, 2006.

[41] A. W. Roscoe, S. D. Brookes and C. A. R. Hoare. A theory of communicating sequential
processes. Journal of the ACM , 31, 560–599, 1984.

[42] J. Rot. Coalgebraic minimization of automata by initiality and finality. Electronic Notes in
Theoretical Computer Science, 325, 253–276, 2016.

[43] A. Silva, F. Bonchi, M. M. Bonsangue and J. J. M. M. Rutten. Generalizing determinization
from automata to coalgebras. Logical Methods in Computer Science, 9, 2013.

[44] R. Street. The formal theory of monads. Journal of Pure and Applied Algebra, 149–168, 1972.
[45] D. Turi and G. D. Plotkin. Towards a mathematical operational semantics. In LICS, pp. 280–

291. IEEE Computer Society, 1997.

A Details for Section 2

We recall a (standard) lemma that relates a step ρ1 to its mate ρ2.

LEMMA A.1
For any step ρ : HG ⇒ GL, the following diagrams commute.

PROOF. By unpacking the definitions and using naturality, e.g. in the first diagram:

Lε ◦ ρ2G = Lε ◦ εLFG ◦ Fρ1FG ◦ FHηG
= εL ◦ FGLε ◦ Fρ1FG ◦ FHηG
= εL ◦ Fρ1 ◦ FHGε ◦ FHηG
= εL ◦ Fρ1.

�
The above lemma is useful in the proofs of Theorem 2.3 and Lemma 2.7, presented next.

PROOF OF THEOREM 2.3 The correspondence between ρ1, ρ2, ρ3 and ρ4 follows from Theorem
2.2. For the second part of the statement, suppose H and L have monad structures (H , ηH , μH) and
(L, ηL, μL), respectively. The fact that ρ1 is an EM-law iff ρ4 is a monad map can be reconstructed
from [44].

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1520 Steps and traces

We show that if ρ1 is an EM-law then ρ2 is a Kleisli law—the converse follows analogously. To
this end, for the compatibility of ρ2 with μ, consider the following diagram.

The outside shapes commute by definition of ρ2. For the (inner) rectangle, everything commutes,
clockwise starting at the north by naturality, the fact that ρ1 is an EM-law, naturality, Lemma A.1,
and twice naturality. For the unit axiom, we have the following diagram:

which commutes by naturality, a triangle identity of the adjunction, definition of ρ2 and the fact that
ρ1 is an EM-law (middle shape).

Finally, the correspondence between EM-laws and liftings was shown in [25] and the variant for
Kleisli laws in [39]. �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1521

PROOF OF LEMMA 2.7 First, note that
(
θ � ρ

)
2 = εMLF ◦ Fθ1LF ◦ FKρ1F ◦ FKHη. It thus

suffices to prove that the following diagram commutes.

All the inner parts commute, clockwise starting from the top by naturality of θ2 (twice), Lemma A.1,
and definition of ρ2 from ρ1. �

B Steps and bimodules

For the example of partial traces for I/O given in Section 6, it is convenient to take a different view
of our step-and-adjunction setting, using the following notion.

DEFINITION B.1
For categories C and D, a bimodule O : C →� D consists of the following data.

– A family of sets (O(X , Y))X∈C,Y∈D, where g ∈ O(X , Y) is called an O-morphism g : X → Y .
– Each g : X → Y can be composed with a C-map f : X ′ → X or D-map h : Y → Y ′.

For g : X → Y , we must have the following. (We use semicolon for diagrammatic-order
composition.)

idX ; g = g

(f ′; f); g = f ′; (f ; g)

g; idY = g

g; (h; h′) = (g; h); h′

(f ; g); h = f ; (g; h)

For example, for an endofunctor H on C, the coalgebra-to-algebra morphisms constitute a
bimodule CoAlg(H) →� Alg(H). Bimodules C →� D correspond to functors Cop × D → Sets
and are also called distributors or profunctors (but some authors reverse the direction).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1522 Steps and traces

DEFINITION B.2

1. A map of bimodules

sends each O-morphism g : X → Y to an O′-morphism Rg : X → Y with the following
commuting:

2. More generally, a 2-cell

sends each O-morphism g : X → Y to an O′-morphism Rg : HX → LY with the following
commuting:

The product construction on categories extends to bimodules:

DEFINITION B.3
Let (Oj : Cj →� Dj)j∈J be a family of bimodules. Then the bimodule

∏
j∈J Oj :

∏
j∈J Cj →� ∏

j∈J Dj
is defined by saying that a morphism (Xj)j∈J → (Yj)j∈J is a family (gj : Xj → Yj)j∈J , where gj is an
Oj-morphism for all j ∈ J . Composition is defined componentwise.

Of course this construction extends also to maps and 2-cells between bimodules.
Here are two ways of constructing a bimodule C →� D.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1523

DEFINITION B.4

1. A functor F : C → D gives FLeft : C →� D, where FLeft(X , Y)
def= D(FX , Y).

2. A functor G : D → C gives GRight : C →� D, where GRight(X , Y)
def= C(X , GY).

DEFINITION B.5
For a bimodule O : C →� D,

– a left representation consists of a functor F : C → D and an isomorphism m : O ∼= FLeft

– a right representation consists of a functor G : C → D and an isomorphism n : O ∼= GRight.

Note that an adjunction

may be viewed as a bimodule isomorphism FLeft ∼= GRight. Conversely, a bimodule C →� D
equipped with both a left and a right representation constitutes an adjunction.

The natural transformations in Theorem 2.2 correspond to 2-cells of bimodules, as follows.

THEOREM B.6
Suppose we have left representations m : O ∼= FLeft and m′ : O′ ∼= F′Left. Then a 2-cell

corresponds to a natural transformation

where R sends an O-morphism g : X → Y to
(

F′HX
ρ2−→ LFX

Lm(g)−→ LY

)
. The analogous

statements hold for ρ1, ρ3 and ρ4.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

1524 Steps and traces

Now we give a more refined account of steps. Suppose we have a bimodule, two endofunctors and
a 2-cell:

We call R a ‘step’. Given a left representation m : O ∼= FLeft we have ρ2 and the functor Fρ . Given
a right representation n : O ∼= GRight, we have ρ1 and the functor Gρ .

DEFINITION B.7

1. A coalgebra morphism from an H-coalgebra c : X → H(X) to an L-coalgebra d : Θ → L(Θ)

is an O-morphism g : X → Θ such that the following commutes:

This gives a bimodule CoAlg(H) →� CoAlg(L).
2. A coalgebra-to-algebra morphism from an H-coalgebra c : X → H(X) to an

L-algebra a : L(Θ) ⇒ Θ is an O-morphism g : X → Θ such that the following
commutes:

Equivalently: such a morphism is a fixpoint for the endofunction on the homset C(X , Θ)

sending f to the composite X
c−→H(X)

R(f)−→ L (θ)
a−→ θ . This gives a bimodule

CoAlg(H) →� Alg(L).

DEFINITION B.8

1. A final coalgebra d : Θ ⇒ L(Θ) is said to extend across O when from each H-coalgebra
c : X → H(X) there is a unique morphism to (Θ , d).

2. A corecursive algebra a : L(Θ) ⇒ Θ is said to extend across O when from each H-coalgebra
c : X → H(X) there is a unique morphism to (Θ , a).

Now let us decompose Proposition 2.5 into two parts.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

Steps and traces 1525

PROPOSITION B.9

1. Let O have a left representation m : O ∼= FLeft. Then any corecursive L-algebra (Θ , a) extends
across O. (And hence also any final L-algebra.) Explicitly, the map (X , c) → (Θ , a) is m−1

applied to the map Fρ(X , c) → (Θ , a).
2. Let O have a right representation n : O ∼= GRight. Then any corecursive L-algebra (Θ , a)

extending across O is sent by Gρ to a corecursive H-algebra. Explicitly, the map (X , c) →
Gρ(Θ , a) is n applied to the map (X , c) → (Θ , a).

Note that this story also appears, in contravariant form, in [35, Propositions 16–17].

Received 27 January 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/31/6/1482/6355531 by U
niversity of Birm

ingham
 user on 17 N

ovem
ber 2021

	Steps and traces*
	1 Introduction
	2 Coalgebraic semantics from a step
	3 Traces via Eilenberg--Moore
	4 Traces via logic
	5 Traces via Kleisli
	6 Partial traces for input/output
	7 Comparison
	8 Completely iterative algebras
	9 Future work

