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RESEARCH ARTICLE

Mitochondrial DNA and Traumatic
Brain Injury

Harry Bulstrode, BMBCh,1 James A. R. Nicoll, MD,2 Gavin Hudson, PhD,3

Patrick F. Chinnery, FMedSci,3 Valentina Di Pietro, PhD,4 and

Antonio Belli, MD4,5

Objective: Traumatic brain injury (TBI) is a multifactorial pathology with great interindividual variability in response to
injury and outcome. Mitochondria contain their own DNA (mtDNA) with genomic variants that have different physio-
logical and pathological characteristics, including susceptibility to neurodegeneration. Given the central role of mito-
chondria in the pathophysiology of neurological injury, we hypothesized that its genomic variants may account for
the variability in outcome following TBI.
Methods: We undertook an analysis of mitochondrial haplogroups in a large, well-characterized cohort of 1,094 TBI
patients. A proportional odds model including age, brain computed tomography characteristics, injury severity, pupil-
lary reactivity, mitochondrial haplogroups, and APOE was applied to Glasgow Outcome Score (GOS) data.
Results: mtDNA had a significant association with 6-month GOS (p 5 0.008). Haplogroup K was significantly associ-
ated with favorable outcome (odds ratio 5 1.64, 95% confidence interval 5 1.08–2.51, p 5 0.02). There was also a sig-
nificant interaction between mitochondrial genome and age (p 5 0.002), with a strong protective effect of both
haplogroups T (p 5 0.015) and K (p 5 0.017) with advancing age. We also found a strong interaction between APOE
and mitochondrial haplogroups (p 5 0.001), indicating a protective effect of haplogroup K in carriers of the APOE e4
allele.
Interpretation: These findings reveal an interplay between mitochondrial DNA, pathophysiology of TBI, and aging.
Haplogroups K and T, which share a common maternal ancestor, are shown as protective in TBI. The data also sug-
gest that the APOE pathways interact with genetically regulated mitochondrial functions in the response to acute
injury, as previously reported in Alzheimer disease.

ANN NEUROL 2014;75:186–195

Traumatic brain injury (TBI) is a leading cause of

death and disability across all ages and all popula-

tions. Its incidence continues to rise owing to increasing

road use in developing countries and aging in the West-

ern World; by 2020 the World Health Organization pre-

dicts that TBI will represent the third leading cause of

morbidity and mortality worldwide. Understanding the

variability in response to injury between individuals

promises to be key to advances in clinical management.

Existing studies have demonstrated detrimental outcome

associated with the apolipoprotein E e4 allele,1 and there

is evidence for allele-specific differences in outcome for

other genes, including catechol-o-methyltransferase

(COMT), dopamine D2 receptor (DRD2), phosphopro-

tein p53 (TP53), and the calcium channel alpha-1 subu-

nit (CACNA1).2 The mitochondrial genome has received

little attention, despite mitochondria playing a central

role in the pathophysiology of TBI. However, mitochon-

drial DNA (mtDNA) haplogroups have been widely

reported as factors for degenerative pathologies and neu-

rodegenerative conditions, including Parkinson disease

(PD), Alzheimer disease (AD), Huntington disease, and

motor neuron disease.3 For example, in PD, haplogroups

J, T, U, and K, which share a common maternal ancestor
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distinct from the more common haplogroup H, have

been shown by independent studies, and subsequent

meta-analyses, to confer a significant reduction in the

risk of developing the condition.4,5 Associations have also

been identified between mtDNA haplogroups and lon-

gevity; for example, haplogroups K, J, U, and D are

overrepresented in centenarians,6–9 and a recent animal

study by Gilmer et al indicated an age-related increase in

mitochondrial dysfunction following injury.10

The mtDNA encodes factors that are key to the

mechanisms of cell damage and survival after neurological

injury. Therefore, we reasoned that, as reported for neuro-

degenerative disorders, mtDNA haplogroups may account

for some of the individual variability in resilience to TBI.

Patients and Methods

Participants
The study cohort (1,094 patients) was recruited from consecu-

tive TBI admissions to the regional Neurosurgical Unit for the

West of Scotland at the Institute of Neurological Sciences, Glas-

gow between 1996 and 1999. Consent and source DNA (buc-

cal swab or blood sample) were obtained according to local

research ethics committee (REC) permissions as previously

detailed.11 This study originally set out to analyze the effect of

apolipoprotein E (APOE) polymorphism on TBI outcome; the

original consent form allowed for the samples to be retained for

future genetic analysis of novel factors. Subsequent reanalysis of

the existing DNA samples for the purposes of this study was

approved by the Southampton and South West Hampshire

Research Ethics Committee (REC reference 09/H0502/124).

Clinical Features
Patient demographics, mechanism of injury, clinical presenta-

tion, key clinical events (raised intracranial pressure, seizures,

sepsis, systemic complications, and surgery), and radiological

and operative findings were collected prospectively by the study

investigators. The computed tomography (CT) appearances at

presentation were classified according to the Marshall system.12

Outcome
Patients were contacted by mail and telephone at 6 months

after injury. Answers to a structured questionnaire were

obtained by staff unaware of the patient’s status in the acute

stage and of the results of genotyping. Proxy interviews were

utilized wherever the patient was unable to answer the question-

naire in person. The medical records were also reviewed to col-

lect mortality data. The patient’s ability to conduct activities at

home and outside, including shopping, travelling, working, and

leisure activities, and the extent of any family disruption was

used to evaluate their Glasgow Outcome Scale (GOS).13

Some survivors were functioning at a severely disabled

level even prior to injury; these were allocated to the favorable

outcome group if they recovered to their previous state, or to

the unfavorable group if they were left with increased disability

and dependency. Patients for whom the available information

was insufficient to discriminate between moderate disability and

good recovery were allocated to the favorable group if it was

clear that they were independent in society.

mtDNA Haplogrouping
The mtDNA haplogroup was determined from buccal swabs or

blood samples by analysis with polymerase chain reaction and

restriction fragment length polymorphism according to methods

described by Torroni et al.14 By this procedure, each mtDNA

was ascribed to 1 of the 5 haplogroups (H, J, K, T, and U) spe-

cific to European populations. Uncommon haplogroups and

mtDNAs that were not classifiable within a haplogroup were

grouped as “others.”

Exclusions and Missing Data
From the initial study cohort, 91 were determined to have a

chronic subdural hematoma as opposed to an acute head injury

and were therefore excluded, leaving 1,003 eligible patients.

Twenty-two of these were missing follow-up data; additionally,

in 101 patients haplogrouping was not achieved. The 880

remaining patients are analyzed here.

Statistical Analysis
Statistical analysis was undertaken using SPSS software version

20 (IBM Solutions, Armonk, NY).

An ordinal regression analysis (proportional odds model)

was carried out to analyze the effect of mitochondrial hap-

logroups on outcome, in accordance with established statistical

principles in this field.15 The predictors were selected based on

the variables of the “core 1 CT” model of the International

Mission on Prognosis and Analysis of Clinical trials in Trau-

matic brain injury (IMPACT; http://www.tbi-impact.org).16

These variables include age, motor score of the Glasgow Coma

Scale, pupillary reactivity, hypoxia, hypotension, Marshall CT

classification grade, presence of traumatic subarachnoid hemor-

rhage, and presence of epidural hematoma. This model and its

predictive variables have received external validation in large

cohort studies.17,18 The ordinal regression analysis included the

polychotomous term “mtDNA haplogroup” (H, J, T, U, K,

and others), the dichotomous term “APOE genotype” (e4/non-

e4), and all the above terms, except “epidural hematoma,”

which was not available for our cohort. APOE genotype was

available for every case from the original study.11

For the purpose of the analysis, the 5-point GOS was col-

lapsed into a 4-point scale, pooling together death and vegetative

outcomes. The collapsed GOS scale is commonly used in TBI

studies, as a vegetative outcome is not generally regarded an

improvement from death. The remaining 3 points on this scale

were severe disability, moderate disability, and good outcome.

We also analyzed the interaction between mtDNA hap-

logroups and age, and between mtDNA haplogroup and APOE

by fitting the interaction terms “age by mtDNA haplogroup”

and “APOE genotype by mtDNA haplogroup” into the model.

The ordinal regression analysis assumptions and goodness

of fit were tested and found to be valid. A p value of <0.05

was considered significant.
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TABLE 1. Patient Demographics and Admission Characteristics by Mitochondria Haplogroup Frequency
Followed by Percentage of Total for Given Haplogroup Except Where Stated

Characteristic Haplogroup

H J T U K Other All

Frequency (% of total) 357 (40.5) 122 (13.8) 78 (8.9) 146 (16.6) 74 (8.4) 103 (11.8) 880 (100)

Sex

M 297 96 62 115 65 83 718

F 60 26 16 31 9 20 162

Age, mean yr [SD] 35 [20.7] 38 [24.5] 34 [21.5] 34 [22.5] 34 [20.6] 33 [21.6] 35 [21.7]

Motor score of GCS (%)

No response 30 (8.4) 11 (9) 6 (7.7) 18 (12.3) 4 (5.4) 4 (3.9) 73 (8.3)

Extending to pain 9 (2.5) 2 (1.6) 2 (2.6) 8 (5.5) 4 (5.4) 5 (4.9) 30 (3.4)

Abnormal flexion 10 (2.8) 3 (2.5) 3 (3.8) 1 (0.7) 1 (1.4) 5 (4.9) 23 (2.6)

Withdrawing to pain 33 (9.2) 9 (7.4) 6 (7.7) 12 (8.2) 2 (2.7) 5 (4.9) 67 (7.6)

Localizing to pain 74 (20.7) 23 (18.9) 20 (25.6) 26 (17.8) 18 (24.3) 14 (13.6) 175 (19.9)

Obeying commands 196 (54.9) 70 (57.4) 40 (51.3) 77 (52.7) 43 (58.1) 67 (65) 493 (56)

Not assessable 5 (1.4) 4 (3.3) 1 (1.3) 4 (2.7) 2 (2.7) 3 (2.9) 19 (2.2)

Pupil reactivity (%)

Both 310 (88) 105 (86) 70 (90) 117 (81) 65 (88) 86 (84) 753 (86)

One 18 (5) 4 (3) 3 (4) 13 (9) 5 (7) 7 (7) 50 (6)

Neither 26 (7) 13 (11) 5 (6) 15 (10) 4 (5) 9 (9) 72 (8)

CT grade (%)

N/A 2 (1) 1 (1) 0 1 (1) 1 (1) 0 5 (1)

1 94 (26) 39 (32) 19 (24) 34 (15) 13 (6) 22 (21) 221 (25)

2 132 (37) 44 (36) 31 (40) 58 (40) 38 (51) 38 (37) 341 (39)

3 22 (6) 7 (6) 7 (9) 8 (6) 5 (7) 4 (4) 53 (6)

4 3 (1) 1 (1) 0 0 1 (1) 0 5 (1)

5 84 (24) 22 (18) 17 (22) 37 (25) 11 (15) 36 (17) 207 (24)

6 20 (6) 8 (7) 4 (5) 8 (6) 5 (7) 3 (3) 48 (6)

Traumatic SAH (%)

No 283 (79.3) 99 (81.1) 61 (78.2) 108 (74) 57 (77) 83 (80.6) 691 (78.5)

Yes 74 (20.7) 23 (18.9) 17 (21.8) 38 (26) 17 (23) 20 (19.4) 189 (21.5)

Hypoxia (%) 7 (2) 3 (2.5) 2 (2.6) 1 (3) 0 (0) 5 (2.1) 18 (2)

Hypotension (%) 19 (5.3) 7 (5.7) 7 (9) 10 (6.8) 6 (8.1) 5 (4.9) 54 (6.1)

ApoE (%)

e2 or e3 241 (67.5) 85 (69.7) 50 (64.1) 99 (67.8) 50 (67.6) 63 (61.2) 588 (66.8)

e4 116 (32.5) 37 (30.3) 28 (35.9) 47 (32.2) 24 (32.4) 40 (38.8) 292 (33.2)

CT 5 computed tomography; F 5 female; GCS 5 Glasgow Coma Scale; M 5 male; N/A 5 not available; SAH 5 subarachnoid
hemorrhage; SD 5 standard deviation.
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Results

mtDNA and Response to Injury
The haplogroup distribution was in line with comparable

UK studies,4 with the predominant European haplotype

H accounting for 40.5% of this study population. Mito-

chondrial haplogroup distribution, along with key demo-

graphic and clinical parameters, is shown in Table 1.

The predictive value (R2) of the IMPACT model is

0.35, with the remainder of the variability thought to be

accounted for either genetically or by other biological

factors yet to be identified.19 After adding mitochondrial

haplogroups to the predictive terms of the IMPACT

model, we found a significantly predictive effect of

mtDNA genotype on the 6-month GOS (p 5 0.008).

When haplogroups were considered individually,

patients who possessed the K variant had significantly

better outcome than those who did not (odds ratio

[OR] 5 1.64, 95% confidence interval [CI] 5 1.08–2.51,

p 5 0.02). However, individually, there was no significant

association between 6-month outcome and haplogroups

H, J, T, and U, and all other uncommon variants. The

outcome data are shown in Table 2. As expected, all

other predictive terms were found to be significant (Table

3), with the exception of APOE and hypoxia (only 18

patients—2% of the sample—were recorded to have suf-

fered a hypoxic episode).

Interaction between mtDNA and Aging
Mitochondrial dysfunction is a shared feature of TBI and

aging; therefore, we reasoned that mtDNA haplogroups

might differentially modulate the effect of aging as a

determinant of TBI outcome. The inclusion of the inter-

action term “age by haplogroup” in the model revealed a

strong interaction between age and mtDNA haplogroups

(p 5 0.002). Possessing either haplogroup K or T

significantly mitigated the negative effect of aging on

outcome (p 5 0.017 and p 5 0.015, respectively), as

shown by Figure 1A.

These findings are consistent with the evidence

from epidemiological studies showing over-representation

of haplogroup K in longevity and under-representation

of haplogroups K and T in neurodegenerative conditions

such as PD.4,20,21

Interaction between mtDNA and APOE
Genotype
APOE has several known relevant roles after brain injury,

from the maintenance of vascular integrity and function

of the blood–brain barrier to protection against oxidative

stress. APOE has 3 isoforms that have allele-specific

effects (E2>E3>E4) in protecting neuronal cell lines

from oxidative cell death.22 An interaction between

APOE polymorphisms and mtDNA haplogroups in TBI

has been described for AD in a cohort of 213 patients.23

In view of this, we analyzed a possible interaction

between these factors in our cohort. We found this inter-

action to be highly significant (p 5 0.001). Specifically,

patients who carried the APOE e4 allele had significantly

better outcome if they also possessed the mtDNA K hap-

logroup (OR 5 5.86, 95% CI 5 2.14–17.44, p 5 0.002),

as shown by Figure 1B.

Discussion

The response to TBI is multifactorial; clinical presenta-

tion, physiological condition, and clinical management

are determinants of outcome, but genetic factors are also

hypothesized to play a key role. Few genomic associations

have been identified in the field of TBI. The APOE gene

is arguably the most extensively studied in this area, and

recently cytokine polymorphisms have also been found to

TABLE 2. Outcomes 6 Months after Head Injury According to Mitochondrial Haplogroup

Parameter GOS Haplogroup

H J T U K Other All

Frequency (% of total) 357 (40.5) 122 (13.8) 78 (8.9) 146 (16.6) 74 (8.4) 103 (11.8) 880 (100)

Outcome (%)

Dead 1 45 (13) 18 (15) 7 (9) 15 (10) 6 (8) 10 (10) 101 (12)

Vegetative 2 13 (4) 4 (3) 2 (3) 7 (5) 2 (3) 5 (5) 33 (4)

Severe disability 3 64 (18) 13 (11) 12 (15) 31 (21) 11 (15) 23 (22) 154 (18)

Moderate disability 4 92 (26) 41 (34) 24 (31) 41 (28) 18 (24) 21 (20) 237 (27)

Good recovery 5 143 (40) 46 (38) 33 (42) 52 (36) 37 (50) 44 (43) 355 (40)

GOS 5 Glasgow Outcome Scale.
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TABLE 3. Model Effects

Parameter Category Chi-Square df F OR (95% CI) p

mtDNA haplogroup,
overall effect

15.601 5 3.120 0.008

H 1.57 (0.84–2.96)

J 1.2 (0.55–2.63)

T 1.23 (0.52–2.88)

U 1.14 (0.55–2.39)

K 0.21 (0.07–0.56)

Other 0.83 (0.38–1.82)

Age 132.52 1 132.52 1.04 per year
(1.03–1.04)

0.000

Motor score of GCS 46.739 6a 7.790 0.000

No response 1 REFERENCE

Extending to pain 1.35 (0.64–2.87)

Abnormal flexion 1.6 (0.73–3.55)

Withdrawing to pain 0.58 (0.34–0.93)

Localizing to pain 0.57 (0.34–0.93)

Obeying commands 0.3 (0.18–0.48)

Not assessable 0.23 (0.09–0.61)

CT Marshall grade 59.238 5 11.856 0.000

6 1 REFERENCE

5 0.38 (0.22–0.67)

4 0.24 (0.03–1.8)

3 0.39 (0.19–0.78)

2 0.22 (0.13–0.38)

1 0.52 (0.27–0.84)

Traumatic SAH 10.149 1 10.149 0.001

Absent 1 REFERENCE

Present 1.57 (1.17–2.11)

Hypotension [blood
pressure< 90mmHg
within the first 24 hours]

4.002 1 4.4002 0.046

Absent 1 REFERENCE

Present 1.8 (1.2–2.7)

Hypoxia [PO2< 8kPa
or SaO2< 85%
in the first 24 hours]

0.945 1 0.945 0.331

No hypoxia 1 REFERENCE

Confirmed hypoxia 0.67 (0.3–1.5)

Pupillary reactivity 9.112 2 4.556 0.011

Both reacting 1 REFERENCE
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influence the outcome of TBI in the same cohort of

patients studied here.24

Although most mitochondrial proteins are encoded

by nuclear DNA, mtDNA encodes key components;

these include 13 key subunits of the electron transport

chain, as well as essential components of the translational

machinery (Fig 2). MtDNA haplogroup is a determinant

of the efficiency of oxidative phosphorylation

(OXPHOS), with substantial physiological and patho-

physiological implications. In crude terms, it is thought

that haplogroups conferring more or less efficient

OXPHOS may have evolved in response to selective pres-

sures of food scarcity and cold climate, respectively.25,26

The differential susceptibility to age-related neurodege-

nerative conditions demonstrated by different mtDNA

haplogroups can then be framed in terms of the

OXPHOS efficiency, and resulting rate of generation of

reactive oxygen species (ROS), associated with individual

haplogroups4,5,20 (see Fig 2). A similar argument has

been proposed to explain the over-representation of hap-

logroups K, J, U, and D in centenarians.6–9

TBI, across the entire spectrum of severity, imposes

a metabolic stress associated with reduced OXPHOS

capacity of neural tissue, and generation of ROS.27–29

Our results point to a protective effect of haplogroup K.

The enzymatic components of the mitochondrial electron

transport chain (ETC) encoded by haplogroup K are

reported to be less tightly coupled than corresponding

variants in other haplogroups, which reduces ROS pro-

duction as a byproduct of adenosine triphosphate (ATP)

synthesis.20 ROS are key mediators of secondary cell

damage after a neurological insult, including TBI29,30; it

is therefore unsurprising that a less tightly coupled ETC

may confer a cell survival advantage after injury. Recent

literature also suggests that downregulation of ATP syn-

thesis after TBI may be a neuroprotective mecha-

nism.31,32 This may also provide an explanation for a

less tightly coupled ETC conferring a neuroprotective

effect in the case of haplogroup K.

Genomic Variants of mtDNA Differentially
Mitigate the Effect of Aging on TBI Outcome
Aging causes a progressive loss of mitochondrial function

and a reduction in OXPHOS enzyme activities in human

tissues, including the brain.33 In addition, mitochondria

are also both the source and the target of ROS damage,

as mtDNA lacks protective histones and DNA repair

enzymes.34 With aging, cells accumulate a progressively

larger burden of mtDNA damage, which is preferentially,

clonally amplified within cells. The mitochondrial ener-

getic output therefore declines and ROS production

increases, as does the propensity for apoptosis, leading to

progressive cell loss and tissue function decline.

It is important to remember that age is a very strong

determinant of outcome after TBI, with most studies

showing a linear relationship between age and TBI mortal-

ity and disability after the 3rd decade of life.19 We there-

fore reasoned that mtDNA haplogroups might

differentially affect resilience to TBI with advancing age.

We found a strong mitigating effect of haplogroups K and

T on the effect of aging on TBI outcome. The observed

effect of haplogroup K is compatible with its reduced ROS

TABLE 3: Continued

Parameter Category Chi-Square df F OR (95% CI) p

Only 1 reacting 1.71 (1.05–2.78)

Neither reacting 1.83 (1.09–3.08)

ApoE genotype
[e4 vs e2 or e3]

0.507 1 0.507 0.476

e4 1 REFERENCE

e2/e3 0.82 (0.41–1.63)

Interaction between
mtDNA haplogroup and age

13.439 5 2.688 0.02

Interaction between mtDNA
haplogroup and APOE e4

21.35 5 4.27 0.001

Effects of predictors of the ordered regression analysis on the collapsed Glasgow Outcome Scale. Chi-quare, degrees of freedom
(df ), F statistics, odds ratio (OR), and significance are shown. OR< 1 favors better outcome. As mtDNA haplogroup is a polyno-
mial term, the ORs for this parameter indicate the odds of better outcome for carriers of each haplogroup compared to noncarriers
of the same haplogroup.
aIncludes the 6 possible motor scores and the category “not assessable.”
CI 5 confidence interval; CT 5 computed tomography; GCS 5 Glasgow Coma Scale; SAH 5 subarachnoid hemorrhage.
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output compared to other haplogroups.20 The effect of

haplogroup T is less clear, but it is of note that, similarly

to haplogroup K, haplogroup T has been found to be

under-represented in neurodegenerative conditions.4,5 It is

somewhat surprising that we did not see a similar interac-

tion between age and mtDNA haplogroup J, given the

close genetic relationship between haplogroups J and T. Of

note, these haplogroups are distinguished by different var-

iants of nicotinamide adenine dinucleotide (NADH) dehy-

drogenase, another key enzyme of the respiratory chain.

Haplogroup K Interacts with APOE e4
We did not find an association between APOE genotype

and outcome in our cohort. This is consistent with the

findings of the original study from which our cohort was

derived,11 despite some methodological differences

between the 2 studies. However, we found a very strong

interaction between APOE e4 and mtDNA haplogroup K.

A similar interaction has been reported by Carrieri et al

for AD; this study found significant under-representation

of haplogroups K and U in e4 carriers and concluded that

these haplogroups might neutralize the harmful effect of

the APOE e4 allele.23 As illustrated by Figure 1B, in our

cohort there is a strong effect of haplogroup K on out-

come in patients who are APOE e4 positive. For those

who lack APOE e4, haplogroup K appears to have no

impact on outcome. The low ROS production associated

with haplogroup K might be expected to mitigate the low

efficiency of the antioxidant activity of APOE e4,35 and

this would seem to be an attractive possible mechanism of

interaction for further study.

The Role of Mitochondrial Genome in the
Pathophysiology of TBI
Few studies to date have examined the role of the mito-

chondrial genome in TBI pathophysiology. In a small

study, long-term survivors of TBI were shown to have a

lower prevalence of key mtDNA deletions than age-

matched controls, raising the possibility that free radical–

induced accumulation of mtDNA damage may selectively

influence the survival of mitochondria or their host.36 In

another recent study of 336 patients by Conley et al, mito-

chondrial single nucleotide polymorphisms (SNPs) were

found to be significantly associated with patient outcomes

1 year after injury37; only severe TBI patients managed

with external ventricular drainage were eligible for this

study, but the findings are nonetheless broadly compatible

with ours. For example, Conley et al found the A10398G

mitochondrial SNP, located within the NADH–ubiquinone

oxidoreductase subunit-3 (ND3) locus encoding part of

complex I, to be associated with TBI outcome; the

A10398 and 10398G alleles of this SNP were associated,

respectively, with slower and faster recovery. The A10398

allele is found in haplogroup H and appears to increase

the susceptibility to neurodegenerative and mental health

disorders,5 whereas the 10398G allele is associated with

haplogroups K and J, and is reported to exert a protective

effect from the risk of PD. It is important to bear in mind

that the modifying role of an mtDNA haplogroup on

injury response or disease risk is most probably due to the

synergistic action of a set of different polymorphisms rather

than to the effect of a single polymorphism. Haplogroups

J and K belong to widely diverging mitochondrial clades,38

FIGURE 1: Effect of mtDNA haplogroups on outcome in
relation to age (A) and APOE genotype (B). Panel A shows
the linear regression lines of each haplogroup on a scatter
plot of outcome versus age. Each circle represents a case.
Haplogroups K and T clearly have different slopes from the
other haplogroups, indicating that age, which is a strong
determinant of outcome in traumatic brain injury, has a
comparatively smaller effect in patients who possess these
haplogroups. Panel B illustrates the interaction between
mtDNA haplogroups and APOE genotype on outcome, illus-
trated by the 95% confidence interval of the collapsed Glas-
gow Outcome Scale (GOS) score (1 5 dead or vegetative,
2 5 severe disability, 3 5 moderate disability, 4 5 good out-
come) by mtDNA haplogroups and APOE e4 possession.
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which may explain the different results obtained for the 2

haplogroups in our cohort.

No effective neuroprotective drugs for TBI have

emerged to date. The limited ability to explain the vari-

ability in response to injury has resulted in challenges in

dealing with signal-to-noise ratio and consequent under-

powering of many previous studies. Our findings have

the potential to contribute to effective patient stratifica-

tion in clinical trials, and mtDNA genomics should be

included in future outcome prediction models, for exam-

ple those developed on the basis of forthcoming compar-

ative effectiveness research studies. Moreover, the

molecular mechanisms of cell damage following TBI are

still poorly understood; our findings shed further light

on the pivotal role of mitochondria in the pathophysiol-

ogy of TBI and advance our understanding of the molec-

ular mechanisms regulated by mitochondrial genome.

The interpretation must accept certain limitations of

the study. First, our cohort was drawn from neurosurgical

admission, and the findings may not be generalizable to

unselected admissions. However, the study included a large

number of patients who were not severely injured, and so

the bias is likely to be limited. Second, although the

follow-up rate was extremely high, data are incomplete in

some participants, and mitochondrial genotyping was not

successful on all samples, although there is no suggestion

that test failures did not occur randomly. Third, outcome

was assessed by GOS, which is a global measure of out-

come; the possible effects of mtDNA haplogroups on the

individual components of outcome (eg, neuropsychological

health status, behavior, social interaction, and functional

performance) would have added further dimensionality to

our findings, although a much larger study would have

been required to explore multiple parameters. Neverthe-

less, GOS remains the most widely used method of assess-

ment of outcome in TBI and has several advantages.

These include its applicability across all ranges of age,

severity, and outcome; the high reliability and validity of

assessment achieved by the structured approach used in

this study; and its high degree of correlation with the

results of specific assessments focused on limited aspects of

the state of survivors (eg, cognitive, behavioral, and emo-

tional sequelae) and of detailed multidimensional assess-

ments of health and psychosocial state, such as the SF-36

questionnaire.39 Finally, mitochondrial haplogroup fre-

quencies vary greatly between populations, and the nuclear

genetic background of subjects with haplogroups T and K

may differ from the nuclear genetic background of other

mtDNA haplogroups. Therefore, it is possible that further

associations of mtDNA haplogroups with particular

nuclear genotypes are responsible for our findings, rather

than the mtDNA haplogroups themselves. This issue is

FIGURE 2: The human mitochondrial DNA and known and putative genetic location of mutations associated with neurological
conditions. ATP 5 adenosine triphosphate; MELAS 5 mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes;
MERRF 5 myoclonic epilepsy with ragged red fibers; MND 5 motor neuron disease; NADH 5 nicotinamide adenine dinucleotide;
TBI 5 traumatic brain injury. Adapted from the Free Software Foundation and licensed under the GNU Free Documentation
License.
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likely to be minimized by the analysis being restricted to a

cohort from a regional unit in Scotland.

Although our cohort had a representative distribu-

tion of mtDNA haplogroups with respect to Northern

European populations, like all genetic studies, it would

be advisable to validate our findings in different geo-

graphical regions and populations.
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