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a b s t r a c t

Urban form controls the overall aerodynamic roughness of a city, and hence plays a significant role in
how air flow interacts with the urban landscape. This paper reports improved model performance
resulting from the introduction of variable surface roughness in the operational air-quality model ADMS-
Urban (v3.1). We then assess to what extent pollutant concentrations can be reduced solely through local
reductions in roughness. The model results suggest that reducing surface roughness in a city centre can
increase ground-level pollutant concentrations, both locally in the area of reduced roughness and
downwind of that area. The unexpected simulation of increased ground-level pollutant concentrations
implies that this type of modelling should be used with caution for urban planning and design studies
looking at ventilation of pollution. We expect the results from this study to be relevant for all atmo-
spheric dispersion models with urban-surface parameterisations based on roughness.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

It has been estimated that over 1 billion people are exposed to
poor air quality, and that it causes 1 million premature deaths each
year (World Health Organization, 2005; United Nations, 2010). In
principle, there are four ways to reduce exposure to poor urban air
quality and improve the health of the inhabitants of a city: reduce
overall emissions (Mayer, 1999); increase the depositional sink for
pollutants (Nowak et al., 2000); relocate people and/or polluting
industries (i.e., better segregation between pollutant sources and
vulnerable populations) (Okuda et al., 2011); or improve the
ventilation of city neighbourhoods and streets (Vardoulakis et al.,
2011).

The ventilation of a city is intricately linked with urban form
because urban form (i) controls the overall aerodynamic roughness
of the urban area, (ii) produces specific quasi-stationary modifica-
tions to the impinging flow (e.g., venturi effects, cross-wind flows,
wakes, vortices, etc), and (iii) interacts with the radiative and
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turbulent energy transfer between surface and atmosphere, and
effects heat storage in the underlying surface or buildings. Surface
aerodynamic roughness is a function of the spatial density, orien-
tation and height of obstacles to the wind and plays a significant
role in how air flow interacts with the urban landscape (Mahrt,
1999; Holland et al., 2008; Di Sabatino et al., 2010; Salizzoni
et al., 2011). Historically, few users had the computational power
to model spatially varying roughness, hence single (fixed) values
were adopted (Rotach,1993; Kastner-Klein et al., 2004). However, it
is now possible to account for the effects of variable surface
roughness using models that run on desktop computers
(Edussuriya et al., 2011; Millward-Hopkins et al., 2011; Soulhac
et al., 2011).

In classical, one-dimensional, boundary-layer theory, surface
roughness is parameterized through the roughness length (z0),
which is equivalent to the height where the mean wind speed
becomes zero (Seinfeld and Pandis, 2006; Holland et al., 2008; Li
et al., 2009). is approximately one thirtieth of the height of the
surface roughness elements, with values ranging from 1.5 m for
large urban areas, to 0.5 m for open suburbia and 0.1 m for parkland
(Rotach, 2001; Hang and Li, 2011; Wania et al., 2012). Roughness
length varies greatly from the dense, compact and often high-rised
city centres to the more homogeneous areas found on the outskirts,
especially those of older European cities (Grimmond and Oke,1999;
Roth, 2000; Ng et al., 2011). Spatially-variable roughness creates
ts reserved.

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:a.r.mackenzie@bham.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envpol.2013.09.039&domain=pdf
www.sciencedirect.com/science/journal/02697491
http://www.elsevier.com/locate/envpol
http://dx.doi.org/10.1016/j.envpol.2013.09.039
http://dx.doi.org/10.1016/j.envpol.2013.09.039
http://dx.doi.org/10.1016/j.envpol.2013.09.039


M.J. Barnes et al. / Environmental Pollution 185 (2014) 44e51 45
horizontal variations in turbulence and the local mean flow, both of
which can affect pollutant dispersion.

Overall, the degree to which an urban form promotes the
removal and dilution of pollutants is encapsulated in the concept of
‘urban breathability’ (Bottema, 1997; Monks et al., 2009; Buccolieri
et al., 2010; Panagiotou et al., 2013), which is defined by Neophytou
et al. (2005) and Buccolieri et al. (2011) as a parameter indicating
the potential of a city to ventilate itself through the exchange of
pollutants, heat, moisture and other scalars with the atmosphere
above. Operational dispersion modelling does not explicitly simu-
late the urban canopy and its exchange with the planetary
boundary layer above, but attempts to capture ”breathability”
through canyon parameterisations and aerodynamic roughness.

ADMS-Urban is a tool for modelling air quality at a city-wide
scale, and can include industrial, domestic and traffic emissions.
Many recent studies have verified the accuracy of the model
(Courthold and Whitwell, 1998; Righi et al., 2009; Mohan et al.,
2011), while others have used it to assess the effects of climate
change on air quality (Athanassiadou et al., 2010) or to estimate
background urban carbon monoxide concentrations (Leuzzi et al.,
2010). Additionally, many local authorities use ADMS-Urban to
evaluate changes in air quality associated with major infra-
structural developments, or to assess the potential impact of traffic
management schemes (Oduyemi and Davidson, 1998), or changes
in fleet composition (Rexeis and Hausberger, 2009).

The current version of ADMS-Urban allows users to model the
spatial variation of surface roughness over a given modelling
domain. In previous versions of the model, users were restricted to
specifying a single roughness value for the entire urban area, or else
modelling the spatial variation of terrain height together with the
surface roughness. ADMS-Urban is proprietorial model code,
although details of the algorithms are available via the company
website and are based on research published in various journal
articles (Carruthers et al., 2001). It is a steady-state quasi-Gaussian
plume model, which contains the FLOWSTAR model (Belcher and
Hunt, 1998) for calculating the spatial variation of flow field and
turbulence parameters that drive the dispersion. FLOWSTAR cal-
culates the perturbations to the mean wind speed boundary layer
profile, u, which is formulated as:

uðzÞ ¼ u�
k

�
ln
�
zþ z0
z0

�
þ jðz; z0; LÞ

�
(1)

This formulation illustrates that the mean wind speed at height
z is a function of surface roughness z0, stability through the function
j, and the friction velocity u* (k is the von Kármán constant and L is
the Monin-Obukhov length).

It is useful to note at this point that the expression for the mean
wind speed used in ADMS-Urban (1) does not allow for the
displacement of the wind speed profile to above the urban canopy.
Instead, the local value of z0 represents the mixing close to the
surface, and is related to the building height. An alternative
formulation, that includes this zero-plane displacement height, d, is
given by:

uðzÞ ¼ u�
k

�
ln
�
z� d
z0

�
þ jðz; z0; L;dÞ

�
(2)

This paper has two aims.

� To assess changes in model performance resulting from the
implementation of variable roughness values in ADMS-Urban,
and

� To use the best model representation to assess the air-quality
benefits of improving ventilation.
Based on the literature discussed above, our hypothesis is that
selectively decreasing surface roughness for part of the built-up
urban area will improve ventilation and hence reduce local
pollutant concentrations. To examine our hypothesis, we must
undertake the first evaluation of the effect of spatially-varying
roughness in ADMS-Urban. To aid interpretation of the modelling,
we will work in the framework of the Gaussian Plume Equation
(GPE, see Seinfeld and Pandis (2006) ch. 18), a commonly used
version of which is:

Cðx; y; zÞ ¼ q
2psysz

�
u
� exp

 
� y2

2s2y

!"
exp

 
� ðh� zÞ2

2s2z

!

þ exp

 
� ðhþ zÞ2

2s2z

!# (3)

where C is the concentration at point (x,y,z) (kg m�3) which is
directly proportional to q, the mass emission rate (g s�1) (Turner,
1994). sy is the standard deviation of Gaussian distribution func-
tion in direction y (m), sz is the standard deviation of Gaussian
distribution function in direction z (m), hui is the wind speed
(m s�1) averaged over the vertical and horizontal domain of the
dispersion model, and h is the effective plume release height (m),
which for road vehicles is taken as 1 m in ADMS-Urban. The s

parameters depend principally on the travel time of the pollutant
from the source and the relevant components of the turbulent
velocities, which near the ground depend principally on the surface
friction velocity, which in turn is a function of surface roughness.
The domain-average wind, hui, depends on the geostrophic wind
and surface roughness. Both the plume spread and mean wind
speed depend on stability effects.

The effect of changing roughness on ground-level pollutant
concentrations near a ground-level sourcewill therefore depend on
the relative sensitivities to z0 of sz and sy on the one hand (see the
appendix), and of hui, sensitivities whichwill tend to have opposing
effects on pollutant concentrations at a given point. This is dis-
cussed further below where we refer to the opposing effects as
being the turbulent mixing (i.e., the sz and sy) sensitivity and the
horizontal ventilation (the hui sensitivity).
2. Model set-up, evaluation, and effects of variable roughness

As our test case, we use a modelling scenario for central Bir-
mingham, UK. The model area of interest covered 6.5 km2 of Bir-
mingham city centre (UK grid reference for the bottom-left cornere
406274, 285376), containing over 300 road sources (Fig. 1). ADMS-
Urban allows for the effects of street canyons when modelling
pollutant concentrations, and many of the roads in the area of in-
terest were classified as canyons with heights varying from 5 to
20m. The 2008 emission inventory built into ADMS-Urbanwas used
to model traffic emissions, while background pollutant concentra-
tions were obtained from the UK government’s Automatic Urban
and Rural Network (AURN) of air quality monitors, where one
monitor is situatedwithin the city centre (www.uk-air.defra.gov.uk).
Annual mean backgrounds of 34.8 mg m�3 and 23.1 mg m�3 were
adopted forNOx andNO2, respectively. One year of hourly sequential
meteorological data from Coleshill Met station (inset, Fig. 1) was
used in the model runs. We follow standard practice in choosing a
meteorological station close to, but not inside the urban area of in-
terest (Oke, 2006). This is because meteorological data fromwithin
anurban area havewell-knownproblemsof representativeness. The
ADMS-Urban modelling suite, used in this study, includes a mete-
orological pre-processor that accounts for the change in roughness
associated with moving from rural to urban land cover.

http://www.uk-air.defra.gov.uk


Fig. 1. A map of Birmingham City centre with the diffusion tubes and area of reduced roughness illustrated. The smaller inset map highlights where the area of interest was situated
within Birmingham, along with the relative position of the Coleshill meteorological station.

Table 1
Summary of mean concentration (mg m�3) of NO2 over all sites.

Observed Fixed surface
roughness

Variable surface
roughness

Mean 44.2 53.6 50.0
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Observed pollutant concentrations were obtained from NO2
diffusion tube data, made available by Birmingham city council. The
exposure time of the diffusion tubes was four to fiveweeks, and the
concentrations were calculated in accordance with guidelines from
DEFRA (2009). Fourteen diffusion tubes were included in the study.
The coordinates of the diffusion tubes were defined as receptors
and ADMS-Urban was used to simulate annual mean concentra-
tions at these specific points.

ADMS-Urban version 3.1 was initially run with a single fixed
roughness value of 1.5 m, which is representative of a large city
centre (Wieringa, 1993); the model was then run again using a
variable roughness file over the same area. The variable roughness
file was created by Brade (2011) from airborne LIDAR data and
digital map data in a GIS at 200 m spatial resolution. The file
comprised 168 points with a mean roughness value of 1.44 m. Ur-
ban surface roughness is, in principle, also a function of wind di-
rection, because the roughness is affected by the orientation of
buildings with respect to the wind; this wind-direction-
dependence was not accounted for in the current study.
Table 1 compares the mean of the observed and modelled
concentration data over all sites (Oreskes et al., 1994). Table 2
summarises related statistics, as calculated by the ‘openair’ soft-
ware package (Carslaw and Ropkins, 2012).

Tables 1 and 2 clearly indicate that both models have a tendency
to over-estimate the observed NO2 concentrations. The likely
explanation for this is that the background concentrations were
taken from within the urban area modelled (as opposed to using
rural values), which will lead to some double counting of pollution.
Whilst improvements to the model set up would be possible, the
main aim of this paper is to assess the change in model behaviour



Table 2
Summary of statistics relating to the ability of the ADMS-Urban model to predict the observed concentrations at the 14 receptors used in the study. Note that the Index of
Agreement provides an overall indicator of model quality; the parameter ranges between �1 and þ1, with values approaching þ1 representing better model performance.

Definition of
surface roughness
parameter

Proportion of points
within a factor of two of
the observed data (FAC2)

Mean
bias
(MB)

Mean gross
error (MGE)

Normalised
mean bias
(NMB)

Normalised
mean gross
error (NMGE)

Root mean
square error
(RMSE)

Pearson correlation
coefficient (r)

Index of
agreement

Fixed 100% 9.4 9.8 0.21 0.22 13.8 0.67 0.07
Variable 100% 5.8 6.8 0.13 0.15 9.6 0.72 0.35
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due to the inclusion of a spatially varying surface roughness file, in
order to assess its suitability for modelling changes to building
density within an urban area. The statistics clearly indicate that
better model performance was achieved when using variable as
opposed to fixed surface roughness. ADMS-Urbanwas therefore re-
run with variable surface roughness across the area of interest to a
regular grid of receptors (90 by 90) to create a ‘base case’ against
which subsequent runs could be compared.

3. Reduced roughness scenarios

To assess whether, through the horizontal ventilation effect, a
significant reduction in pollutant concentrations could be achieved
without reducing emissions, a sizeable area of Birmingham city
centre was modelled with a reduced roughness length. Selected
values in the spatially varying roughness file were reduced for two
modelled scenarios: z0¼0.5 m and z0¼0.1 m (Fig. 2), corresponding,
roughly, to replacement of buildings with urban parkland and
grassland, respectively (Turner, 1994). (Note that this study does
not take explicit account of the effects of vegetation on air pollution
(see, e.g., Donovan et al. (2005); Pugh et al. (2012)) other than
throughmodification of the roughness length). Street canyonswere
also removed from ADMS-Urban over the corresponding area. The
spatially varying differences between the “base case” and the
z0¼0.1m case are given in Table 3. (Results for the z0¼0.5m case are
similar in pattern but smaller in magnitude.) The extra computa-
tional power required to generate output for 8100 receptors meant
that representative meteorology, based on annual mean values of
Fig. 2. Variable surface roughness. Figure 2a shows the urban roughness of Birmingham city
simulate an urban parkland. The roughness length has been decreased initially to 0.5 m, an
meteorological variables, was used in place of the hourly sequential
data that had been used in the model evaluation. Wind direction
was therefore input as 200�, wind speed 3.8 m s�1, temperature
9.8 �C and cloud cover as 5.3 Oktas. Table 3 shows that there was an
overall mean increase in pollutant concentration in all of the
squares for NO2, and in most of the squares for NOx, with a very
small decrease in squares D and H.MaximumNO2 increases inmost
squares (row 3 of Table 3); this is because most of the maximum
concentrations in the base case do not occur near streets modelled
as street canyons by ADMS-Urban.

The difference between the “base case” and the runs with
roughness reduced to 0.1 m can also be seen in Fig. 3. The black
areas indicate an increase in ground-level NO2 and NOx concen-
trations whilst the grey areas indicate a decrease in concentra-
tions. The difference in the maximum concentration is far greater
for NOx than it is for NO2, but the increases are less spread out and
more focused on street corridors. This is to be expected as the
primary source for NOx is traffic emissions, while NO2 concen-
trations can be increased when NO reacts with O3. In spite of this,
concentration increases at ground level dominate for both
pollutants.

The case-study NO2 concentration contour was generated at 4-
m increments from ground level up to a height of 20 m above
ground level, across each square. For all the squares with reduced
roughness length (A to G), reducing roughness increased pollutant
concentrations below 5 m but reduced concentrations above that
height (Fig. 4). In the two sample squares where the roughness
length had not been not reduced (H and I), the model runs with
centre at present, while Figure 2b highlights the reduction in surface roughness (m) to
d then to 0.1 m, diagonally through the squares A to G. Each square is 200 � 200 m.



Table 3
ADMS-Urban results (mg m�3) for ‘base case’ and runs adopting reduced surface
roughness values. The letters on the top row relate to the squares in Figs. 2 and 3. The
results from two extra squares, H and I, were used to reference additional pollutant
changes (Fig. 3). The values are summarized for each square at ground level. The
differences in concentration relate to the modified results minus the unmodified
results.

A B C D E F G H I

Base case (unmodified)
roughness length, m

1.7 3.1 2.0 2.5 2.1 2.3 1.3 3.0 0.4

Modified roughness
length, m

0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.0 0.4

Difference in maximum
NO2 concentration

12.0 11.0 2.7 �1.8 13.7 0.7 4.0 1.9 3.4

Difference in minimum
NO2 concentration

�0.8 �0.9 0.1 1.3 �0.3 0.1 0.1 0.7 1.2

Mean NO2 change
(increase) over square

2.4 4.8 1.8 1.6 2.3 2.2 3.2 1.2 2.2

Difference in maximum
NOx concentration

80.5 72.3 28.8 �37.4 17.7 �9.8 8.4 �36.0 4.1

Difference in minimum
NOx concentration

�0.7 �0.7 0.5 1.0 �0.2 �0.1 1.6 1.5 1.1

Mean NOx change
(increase) over square

11.4 14.7 7.8 �0.2 7.3 7.8 7.9 �0.2 2.0
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reduced roughness in the other sample squares had higher
pollutant concentrations at all heights (Fig. 4).
3.1. Seasonal variations

To assess the impact of seasonal variations, meteorological data
from the Coleshill site for the months of February and August were
again used. Typical meteorological days were compiled for each
month and the model re-run. The biggest differences between the
two months were temperature and wind speed (February: wind
speed 6 m s�1, direction 250�, cloud 4 oktas, temperature 7.8�C;
August: wind speed 2.5 m s�1, direction 225�, cloud 3.5 oktas,
temperature 14.3�C). The results for the seasonal runs (Table 4)
Fig. 3. The difference between the ‘base case’ and the model run in which surface roughnes
model runwith the modified roughness values. Both NOx and NO2 concentrations are in mg m
can be seen in Table 3, along with additional squares H and I. Areas with no change have b
bracket the annual average results given in Table 3. In all cases,
reducing surface roughness increases mean ground-level NO2
concentrations in boxes A-I. The effect is smallest in the February
case, whenwind speeds are high and temperatures moderately low
(i.e., neutral stability).

4. Discussion

The localized reduction in roughness length from a maximum
of 3.1 me0.1 m has resulted in a localized increase in ground-level
concentrations (and due to mass conservation, reduction in con-
centrations above ground-level). The effects seen are not uniform,
due to the heterogeneous nature of the street plan for Birming-
ham city centre, and different volumes of traffic along each street,
but patterns are consistent. Following our discussion around
Equations (1) and (2), we can say that, for our case study, the
turbulent mixing effect dominates over the horizontal ventilation
effect. Modelled concentrations above ground-level (above about
5 m) decrease when roughness is reduced, consistent with a
redistribution of pollutant through reduced vertical mixing when
roughness is reduced. Overall, the effect of decreasing surface
roughness in the model is to worsen ground-level air quality,
which would thus increase calculated human exposure. This is
true in our case study even though the built environment
parameterisation used in the model includes street canyons. We
would expect the removal of street canyons when roughness is
reduced to increase the horizontal ventilation effect beyond that
expected from simple inspection of the logewind profile (Equa-
tion (1)).

The outcome of our modelling may be counter-intuitive but can
be explained in terms of the model formulation. In neutral condi-
tions the plume spread (sy and sz) in Equation (3) depends on the
travel time of the pollutant from the source, which is determined by
the distance from the source and wind speed at plume height and
the relevant component of the root mean square turbulent veloc-
ities. For example, in ADMS-Urban at a distance X close to the
s was reduced to 0.1 m. The black areas indicate where concentrations are higher in the
�3 and are based on the annual mean. Statistics from the seven lettered squares (A to G)
een defined as plus or minus 1 mg m�3.



35 40 45

0

5

10

15

20

B

H
ei

gh
t 

(m
)

µg m−3
35 40 45

0

5

10

15

20

G

H
ei

gh
t 

(m
)

µg m−3

35 40 45

0

5

10

15

20

I

H
ei

gh
t 

(m
)

µg m−3

Unmodified
Modified

35 40 45
34

36

38

40

42

44

46

Unmodified (µg m−3)

M
od

if
ie

d 
(µ

g 
m

−3
)

H
ei

gh
t 

(m
)

0

5

10

15

20

Fig. 4. The difference between the ‘base case’ and the model run in which the surface roughness was reduced to 0.1 m at different heights for the mean NO2 concentration across
each square. It can be seen that for the modified roughness case there is a higher pollutant concentration at ground level, but this decreases with height more than with the
unmodified roughness case. The two squares (H and I) where there was no modification to the roughness length had higher concentrations at all heights when the roughness had
been modified across the other squares. The bottom right scatter plot includes the results from the seven modified squares, with higher pollutant concentration towards the ground.
It can also be seen that closer to the ground the concentrations for the modified roughness results are significantly higher. Squares B and G were chosen because they are
representative of all of the modified squares.
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source when the average wind speed is hui, the expression for the
vertical plume spread can be approximated as:

szwswtwu�
X
hui (4)
Table 4
ADMS-Urban results (mg m�3) for ‘base case’ and runs adopting reduced surface
roughness values for the two months of February and August. The letters on the top
row relate to the squares in Figs. 2 and 3. The values are summarized for each square
at ground level. The differences in concentration relate to the modified results minus
the unmodified results. Therewas a significant increase in pollutant concentration in
all of the squares in August, but very little in February.

A B C D E F G

Aug Difference in maximum
NO2 concentration

24.9 25.7 26.5 12.4 34.4 26.2 37.5

Difference in minimum
NO2 concentration

�1.3 �1.1 �2.2 �1.8 �2.6 �2.9 �0.7

Mean NO2 change
(increase) over square

3.4 5.4 3.4 1.6 4.3 2.1 4.1

Feb Difference in maximum
NO2 concentration

3.2 2.9 3.2 1.5 3.9 3.2 4.2

Difference in minimum
NO2 concentration

0 0 0.1 0 0.1 0 0.1

Mean NO2 change
(increase) over square

0.4 0.7 0.6 0.2 0.6 0.4 0.5
Focussing, for simplicity, on plume centreline concentrations
by ignoring both the exponential terms in (3) and the mixing in
the transverse direction, which is of less significance than ver-
tical mixing for line sources, we can deduce from (3) and (4)
that:

1=Cwhuiszwu�X (5)

Since increasing surface roughness increases u* for a given
geostrophic windspeed, the concentration will decrease with
increasing roughness, or increase with decreasing roughness. Tak-
ing account of sy and also any stability effects in the expressions for
sz and sy d as is done within ADMS-Urban, of course d does not
change the general result that increasing roughness generally re-
duces maximum surface concentrations for surface emissions in
this model formulation.

The presence of buildings in an urban area generates a very
complex flow field that cannot be modelled explicitly in ADMS-
Urban. Rather than such an obstacle-based approach, ADMS-
Urban assumes a roughness-based approach. One fundamental
assumption of the roughness-based approach in ADMS-Urban is
that the physical presence of the building is ignored. This means
that in a highly built up area, where the buildings may contribute
a large proportion of volume of the space occupied, the concen-
tration predicted solely by the increased mixing due to the



Table A.1
Value of zcrit/sz for different conditions.

sz ¼ 1 m sz ¼ 2 m sz ¼ 3 m sz ¼ 4 m

h ¼ 0.5 m 1.17 1.10 1.07 1.05
h ¼ 1.0 m 1.92 1.42 1.27 1.20
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presence of buildings would lead to an underestimate of the
predicted concentrations. In order to account for this, ADMS-
Urban includes a relatively simple treatment of street canyons,
based on the Operational Street Pollution Model (OSPM), in which
the build-up of pollutants between buildings is taken into account
in particular parts of the domain. Note, however, that this increase
in concentrations within the canyon is not accounted for outside the
canyon and that only a relatively small fraction of the urban
landscape can be treated in this way in the model (see, for
example, the areas of ‘street canyon’ shown by decreases in air
pollutant concentrations in Fig. 3). Another aspect of the problem
is that there is no allowance for the vertical displacement of the
wind profile in the model (see Equation (3)), and the lower
windspeeds and turbulence levels between the buildings, as seen
for example, in wind tunnels (Di Sabatino et al., 2008; Carruthers
et al., 2011). This effect would be diminished in the ventilation
corridor.

Sections of the city downwind of the area of change were also
adversely affected (Squares H and I, Fig. 3). The model outcome
suggests that, when implementing an urban ventilation corridor,
there needs to be an “exit” for air pollution, otherwise there will
be significant increases in pollution concentrations d and hence
exposure d in built-up areas just downwind. Overall, however,
the simplifications inherent in a roughness-based approach d

and the additional simplificiations inherent in the locally one-
dimensional closure of a roughness-based surface scheme d

should make us sceptical of the realism of any of the model results
presented here.

5. Conclusions

Implementation of an option to model variable roughness
within the air pollution dispersion model ADMS-Urban has
improved model performance, although this does have the penalty
of a significant increase in run time. We have used the new
variable-roughness facility in ADMS-Urban to examine reduced
roughness scenarios (without reducing emissions). Our case-study
model produces increased ground-level pollutant concentrations
for reduced surface roughness, both locally in the area of reduced
roughness and downwind of that area. We discuss this modelling
outcome from the perspective of Gaussian dispersion, and intro-
duce a turbulent mixing effect and a horizontal ventilation effect,
whose sensitivities to changing roughness are such that they act in
opposite ways on ground-level pollutant concentrations. In our
case study, the turbulent mixing effect dominates. Since the model
predicts that reducing roughness has the (at first glance) perverse
effect of increasing ground-level pollutant concentrations, we
caution against using this type of modelling for urban planning
and design studies in which the concept of breathability is
important.

We expect the results from this study to be relevant for all at-
mospheric dispersion models with urban-surface parameter-
isations based on 1-D roughness-based closure schemes. To the
extent that such models reflect actual atmospheric behaviour, the
results presented are most relevant to those post-industrial
“shrinking” cities (e.g., Kabisch (2007)) in which plots of land
next to transport corridors become vacant and derelict. However,
there are well-known limitations of 1-D roughness-based closure
schemes near the surface of urban areas (e.g., Oke (2006)). We hope
that the model case study reported here illustrates the cautionwith
which modelling based on 1-D roughness-based closure should be
viewed when undertaking urban redevelopment, and that our
modelling will stimulate discussion and CFD analyses to investigate
further this type of behaviour with a view to improving the per-
formance of air-quality dispersion models.
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Appendices

A. Appendix

For Equation (3), and with szfz0, we may examine the effects of
small perturbations in a parameter value, say, hui, or z0 (effectively
sz) by using the partial differential of C with respect to the
parameter. For example, a small change in mean wind speed hui
will cause a change in C:

DC
���
hui

¼ dC
dhuiD

	
u



¼
�
� Dhui

hui
�
C: (6)

That is, the relative change in hui reduces (due to theminus sign)
the pollutant concentration by the same relative amount, which is
thewell-knowndependence of pollutant dispersion onwind speed.
We can derive a similar relationship for sz, which is slightly more
complicated:
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775

¼ Dsz
sz

C$½A� 1�
(7)

If the first term in the square bracket is ignored, the relationship
would be the same as that for wind speed. By letting A ¼ 1, we can
find the critical height zcrit, below which A < 1 and above which
A > 1. Therefore in the domainwhere z < zcrit, a small increase in sz
will cause C to reduce, and a small decrease of sz will cause C to
increase. This is consistent with the modelling results in which a
decrease of z0 (thus a decrease of sz because szfz0) caused C to
increase for small z (Fig. 4). Note that A is larger than 1 for z > zcrit
and a small decrease of sz will cause C to decrease in this part of the
domain.

Under the conditions given in themanuscript (h¼ 0.5m or 1m),
several values of zcrit/sz are calculated and shown in Table A.1. The
results show that zcrit is larger than sz.
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