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Abstract 24 

Road transport is the main anthropogenic source of NOx in Europe, affecting human health and 25 

ecosystems. Thus, mitigation policies have been implemented to reduce on-road vehicle emissions, 26 

particularly through the Euro standard limits. To evaluate the effectiveness of these policies, we 27 

calculated NO2 and NOx concentration trends using air quality and meteorological measurements 28 

conducted in three European cities over 26 years. These data were also employed to estimate the trends 29 

in NOx emission factors (EFNOx, based on inverse dispersion modeling) and NO2:NOx emission ratios 30 

for the vehicle fleets under real-world driving conditions. In the period 1998-2017, Copenhagen and 31 

Stockholm showed large reductions in both the urban background NOx concentrations (-2.1 and -2.6 % 32 

yr-1, respectively) and EFNOx at curbside sites (68 and 43%, respectively), proving the success of the Euro 33 

standards in diminishing NOx emissions. London presented a modest decrease in urban background NOx 34 

concentrations (-1.3% yr-1), while EFNOx remained rather constant at the curbside site (Marylebone Road) 35 

due to the increase in public bus traffic. NO2 primary emissions –that are not regulated– increased until 36 

2008-2010, which also reflected in the ambient concentrations. This increase was associated with a strong 37 

dieselization process and the introduction of new after-treatment technologies that targeted the emission 38 

reduction of other species (e.g., greenhouse gases or particulate matter). Thus, while regulations on 39 

ambient concentrations of specific species have positive effects on human health, the overall outcomes 40 

should be considered before widely adopting them. Emission inventories for the on-road transportation 41 

sector should include EFNOx derived from real-world measurements, particularly in urban settings. 42 

 43 

 44 

 45 

Key words: NOx; air quality in Europe; OSPM model; road transport; dieselization. 46 
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1. Introduction 47 

Road transport is the main anthropogenic source of nitrogen oxides (NOx) on a global scale (23% in 48 

2017, McDuffie et al., 2020) and across Europe (39% in 2017, EEA, 2019). In traffic environments, NOx 49 

consists mainly of nitric oxide (NO) and nitrogen dioxide (NO2), with the latter associated with a series 50 

of deleterious health effects (Nathan and Cunningham-Bussel, 2013; Brown, 2015; Atkinson et al., 2018). 51 

Moreover, NOx affects human health indirectly −through the production of surface ozone (O3) (Monks 52 

et al., 2015) and secondary inorganic aerosol (Fuzzi et al., 2015)− and impacts the environment −through 53 

eutrophication and acidification of sensitive ecosystems (Peel et al., 2013).  54 

European countries, in particular those in the northwest, have pioneered strategies to tackle 55 

environmental issues, with prominent roles in the international community (Liefferink et al., 2009; 56 

Grennfelt et al., 2020). In that context, air pollution has been a major political concern in Europe since 57 

the late 1970s, leading to the development of ambient air quality standards and control of the major 58 

emissions sources (Crippa et al., 2016). In the case of road transport, new vehicles have had to meet 59 

increasingly stringent emission limits since the early 1990s, established by the so-called ‘Euro emission 60 

standards’ (European Commission, 2021). These standards are based on emission factors (EF) measured 61 

in laboratories under controlled conditions following regulatory driving cycles.   62 

However, field studies revealed that the EF simulated with traffic emission models (COmputer 63 

Programme to calculate Emissions from Road Transport COPERT, and Handbook Emission Factors for 64 

Road Transport HBEFA), and validated with laboratory-based EF, largely underestimated the real 65 

exhaust emissions (Carslaw et al., 2011; Carslaw and Rhys-Tyler, 2013; Krecl et al., 2017). Because 66 

laboratory-based EF are used to compile the official national inventories for the road transport sector, it 67 

is of utmost importance to conduct real-world EF measurements to identify mismatches in the emission 68 

models (Franco et al., 2013). In light of this, the European Union through the Real Driving Emissions 69 
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mandates that laboratory tests be complemented with real driving condition tests for new passenger cars 70 

(PC) and light-commercial vehicles (LCV) since September 2019 (European Commission, 2021). On the 71 

other hand, to assess how EF has responded to policies on emission reduction and its long-term trend, 72 

we need to consider approaches based on continuous measurements over a long period. In that context, 73 

extended datasets of ambient air pollutant concentrations at roadside sites available in several European 74 

cities can be used.  75 

In the case of nitrogen species, only NOx emissions are regulated for on-road vehicles in Europe, despite 76 

NO2 being also directly emitted by vehicle exhausts (Carslaw et al., 2011). The NO2:NOx emission ratios 77 

largely increased in Europe in the period 1995-2010 (Grange et al., 2017), and the annual air quality 78 

standard for NO2 was still exceeded at 10% of the European stations (329 out of 3260), mainly near roads 79 

(European Environmental Agency, 2019). This is particularly worrying since roadside stations are 80 

located in densely populated areas where population exposure can be large. 81 

Based on unique long-term datasets, this study analyzed the trends of NO2 and NOx concentrations at 82 

three curbside sites in three European cities: Copenhagen, London and Stockholm. Then, EFNOx for the 83 

vehicle fleet were determined based on the street increment of the NOx concentrations and inverse 84 

modeling techniques. The NO2:NOx vehicles emission ratios were estimated using their respective 85 

ambient concentrations as proxies. We compare our EFNOx values for the mixed fleet with EF extracted 86 

from databases and remote sensing studies. Finally, the temporal evolutions of EFNOx and primary NO2 87 

emissions are discussed in relation to regional and local policies applied to mitigate the road transport 88 

emissions. 89 

 90 

 91 

 92 
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2. Methods  93 

2.1 Sampling sites and instrumentation 94 

We selected paired street canyon and urban background sites in Copenhagen, London and Stockholm, 95 

where long-term hourly NOx (NO+NO2), O3 and traffic measurements were available. Another criterion 96 

was the availability of meteorological data at stations representative of winds above the corresponding 97 

street canyons (Table 1, and Supplementary Material).  NOx and O3 concentrations were measured using 98 

chemiluminescence and ultraviolet photometry analyzers, respectively, complying with European 99 

reference methods (EN14211, 2012;  EN14625, 2012). Note that the measurements conducted at the air 100 

pollution and meteorological sites are subject to rigorous quality assurance procedures since they belong 101 

to national networks. 102 

Hourly traffic data consisted of traffic volume (TR) and vehicle speed (VS). Traffic measurements were 103 

continuously recorded on Hornsgatan St. (Stockholm) (Krecl et al., 2017) and Marylebone Road 104 

(London) (Harrison et al., 2011) by using loop-profilers embedded in the surface. In the case of Jagtvej 105 

St. (Copenhagen), pre-defined traffic data profiles provided by the Danish Operational Street Pollution 106 

model (OSPM) were scaled up by the annual average daily traffic (AADT) and mean vehicle speed as 107 

described in the Supplementary Material, together with details of traffic data validation. 108 

 109 

2.2 Data processing  110 

2.2.1 Trend analysis of atmospheric concentrations 111 

Trends in air pollutant concentrations can be driven by changes in meteorological conditions, emissions, 112 

atmospheric chemistry or the built environment (Grange and Carslaw, 2019; Malley et al., 2018). When 113 

trend analysis is conducted for assessing the success of certain air quality management strategies, the 114 

influence of the weather conditions on ambient concentrations should be removed. Thus, we applied the 115 
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rmweather R package (version 0.1.51; Grange and Carslaw, 2019) on hourly concentrations measured at 116 

all sites to remove this influence. The package builds Random Forest models that predict hourly NOx (or 117 

NO2) concentrations based on several independent variables, and then estimates the meteorologically 118 

normalized series. We used the following explanatory variables: Unix date (number of seconds elapsed 119 

since Jan. 1, 1970) representing the trend term, Julian day (day of the year) as the seasonal trend, day of 120 

the week, hour of the day, and meteorological variables (Table 1). The importance of the predictor 121 

variables on the air pollutant concentrations was also assessed with the rmweather package. Further 122 

details on the model development and normalization technique are given in the Supplementary Material.  123 

The normalized hourly ambient concentrations were aggregated to mean monthly values, which were 124 

subsequently used to estimate linear trends by the non-parametric Theil-Sen method (Snell et al., 1996) 125 

for each pollutant and site over the common period (1998-2017). The Theil-Sen trend is a median slope 126 

trend line resistant to outliers. It was calculated with the TheilSen function available in the openair R 127 

package (Carslaw and Ropkins, 2012), which also computed the confidence intervals at 95% and p-128 

values by bootstrap resampling.  129 

 130 

2.2.2 Calculation of NO2:NOx emission ratios  131 

We estimated the NO2:NOx vehicle emission ratios by filtering ambient concentrations of NO2 and NOx 132 

measured at curbside sites following Grange et al. (2017). This technique isolates the primary NO2 133 

component by selecting measurements conducted in periods when the production of NO2 via the NO+O3 134 

reaction is negligible. Thus, we chose only NO2 and NOx concentrations corresponding to traffic-135 

dominated periods (06:00-18:00 on weekdays), with low O3 background concentrations.  An O3 threshold 136 

of 10 µg m-3 was found appropriate to minimize the NO2 secondary production and still have enough 137 

measurements for the emission ratio calculation (more details are provided in the Supplementary 138 

Material).  For each curbside site and year combination, we calculated the slope of the robust linear 139 
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regression between the filtered NOx and NO2 atmospheric concentrations, which is a proxy of the 140 

primary NO2:NOx emission ratio. 141 

  142 

2.2.3 Determination of EFNOx 143 

For each street canyon and year, hourly EFNOx [g veh-1 m-1] were determined for the mixed fleet as 144 

follows (Ketzel et al., 2003; Krecl et al., 2018): 145 

 146 

𝐸𝐹𝑁𝑂𝑥 =
∆𝑁𝑂𝑥(𝑡) 𝐷(𝑡)

𝑇𝑅(𝑡)
,                                                                                                             (1) 147 

 148 

where ΔNOx [g m-3] is the measured increment concentration (curbside minus urban background 149 

concentrations) due to the emissions of vehicles driving on that street, TR [veh s-1] is the total traffic 150 

volume on that street, D [m2 s-1] is the dilution rate and t is the time [s]. The dilution rate depends on 151 

wind conditions, traffic characteristics (TR and VS) and street canyon geometry, and was computed by 152 

inverse dispersion modeling using the OSPM (Berkowicz, 2000). Details on the inverse modeling 153 

technique can be found elsewhere (Palmgren et al., 1999; Ketzel et al., 2003). 154 

The OSPM has been extensively tested (Kakosimos et al., 2010) and successfully simulates the NOx 155 

concentrations at regular street canyons, such as Jagtvej and Hornsgatan (Ottosen et al., 2015). However, 156 

an initial screening of our OSPM results revealed abnormally high D values (> 24 m2 s-1) at Marylebone 157 

Road site associated with northerly winds with WS > 2.0 m s-1, which we attributed to the more complex 158 

street canyon geometry. This wind condition was not very frequent (12%), but may lead to the 159 

overestimation of both the dilution and the mean EFNOx values if it prevails for certain hours. Thus, these 160 

occurrences were excluded from further analysis. 161 
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Only hourly EFNOx values for the period 07:00-23:00 on weekdays were considered for the analysis 162 

because (i) the fleet composition is rather similar between weekdays, and (ii) it avoids the large 163 

uncertainties in EFNOx calculations associated with the small street increments and low TR, typically 164 

observed  in the early hours on weekdays (Krecl et al., 2018). Then, mean annual values were calculated 165 

for the years displayed in Table 1. Further details on EFNOx calculations and OSPM model setup are given 166 

in the Supplementary Material. 167 

 168 

2.2.4 Validation with other databases 169 

The EFNOx computed by inverse modeling (Eq. 1) was compared with 𝐸𝐹𝑁𝑂𝑥_𝑤  calculated by aggregating 170 

𝐸𝐹𝑁𝑂𝑥 𝑖,𝑗,𝑘 per vehicle category and weighted according to each category share n within the fleet, as 171 

follows: 172 

𝐸𝐹𝑁𝑂𝑥_𝑤 =  ∑ 𝐸𝐹𝑁𝑂𝑥 𝑖,𝑗,𝑘 . 𝑛𝑖,𝑗,𝑘
𝑖,𝑗,𝑘

 ,                                                                                      (2)                      173 

 174 

where the category is a combination of vehicle class i, fuel j and Euro standard stage k.   175 

𝐸𝐹𝑁𝑂𝑥 𝑖,𝑗,𝑘 were extracted from three sources: (i) the European Monitoring and Evaluation Program 176 

(EMEP) guidebook (EMEP/EEA, 2019), (ii) HBEFA V.3.3 handbook processed for typical site-specific 177 

traffic conditions by Burman et al. (2019), and (iii) remote sensing studies conducted under urban driving 178 

conditions in Europe (UK: Carslaw et al., 2011; Carslaw and Rhys-Tyler, 2013; Carslaw et al., 2019; 179 

Ghaffarpasand et al., 2020, and Sweden: Liu et al., 2019; Zhou et al., 2020) (Table 2). We used the 180 

HBEFA EFNOx for ethanol and biogas since the other two sources do not include these fuels.  181 

Individual EFNOx largely depends on the vehicle category, and the vehicle category share at national and 182 

municipal levels can largely differ from the typical share of the actual fleet driving on the canyon street 183 
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for the same year (Burman et al., 2019). Thus, we profited from the detailed in situ surveys of the vehicle 184 

fleet on Hornsgatan St. for the years 2009 and 2017 to validate our EFNOx against the EMEP, HBEFA 185 

and remote sensing estimates. These surveys analyzed automatic number plate recordings of four million 186 

vehicles, and subsequent inquiry of vehicle information from the city municipality provided detailed 187 

composition of the fleet in terms of vehicle class, fuel and Euro standard stage (Burman et al., 2019). 188 

 189 

3. Results and Discussion 190 

3.1 Trends in ambient concentrations 191 

The most polluted street canyon was Marylebone Road (mean of NOx and NO2 in 2017: 286.3 and 83.9 192 

µg m-3), followed by Hornsgatan (79.9 and 35.3 µg m-3) and Jagtvej (55.2 and 27.5 µg m-3). The urban 193 

background air was cleanest in Stockholm (mean of NOx and NO2 in 2017: 13.3 and 10.7 µg m-3) 194 

followed by Copenhagen (18.4 and 15.3 µg m-3) and London (50.4 and 32.3 µg m-3).  195 

Figure 1 shows the monthly mean NOx and NO2 concentrations measured at the street canyon and urban 196 

background sites in Copenhagen (1994-2017), London (1998-2017) and Stockholm (1992-2017), 197 

together with the street increments of NOx and NO2 (ΔNOx and ΔNO2, respectively) and the normalized 198 

concentrations. Note that the mean NO2 annual limit of the EU air quality directive (40 µg m-3) was 199 

exceeded every year at the street canyon sites in Copenhagen (1994-2009), London (1998-2017) and 200 

Stockholm (1992-2016), and the urban background site in London (1998-2003). The meteorologically 201 

normalized series show a decreasing trend in NOx, NOx and (to a lesser extent) NO2 in Stockholm and 202 

Copenhagen over the years, but London presented either modest improvements or increase in 203 

concentrations at Marylebone Road (Figs. 1a-f). Over the period 1998-2017, Copenhagen and Stockholm 204 

showed similar patterns in concentration reductions: (i) NOx decreased more at curbside (55-60%) than 205 

at urban background sites (41-52%), and (ii) NO2 reductions were smaller than NOx, and declined more 206 

at urban background (35-46%) than at street canyon sites (27-35%). London exhibited a different 207 
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behavior, with the largest NOx reduction recorded at the urban background site (36%), and no reductions 208 

in NO2 concentrations at the curbside site (Figs. 1b,e).  209 

Although road transport dominates the total NOx emissions in Europe (EEA, 2019), other local and non-210 

local sources might have contributed to ambient NOx concentrations at specific sites. Hence, by 211 

calculating the NOx increment at the street canyon sites the non-local contributions are filtered out, 212 

leaving only the traffic-related contributions from vehicles driving on that street. Street increments for 213 

NO2 and NOx were higher for London compared to Stockholm and Copenhagen (Figs. 1g-i), which is 214 

consistent with the ADDT values recorded at the canyon streets in the period 1998-2017: 78300, 27500 215 

and 18900 respectively.  216 

In general, the monthly mean concentrations at all sites showed a sawtooth pattern due to 217 

meteorologically driven effects on atmospheric mixing and transport and temperature-driven effects on 218 

emissions, which were removed after normalization (Fig. 1, orange lines). The analysis of the importance 219 

of the explanatory variables of the Random Forest models revealed that the nitrogen oxide concentrations 220 

within the street canyons were largely influenced by rooftop-level wind (WD and WS, Fig. S2a, 221 

Supplementary Material). This result agrees with Krecl et al. (2015), who reported that recirculation 222 

patterns governed the air pollution concentrations within Hornsgatan street canyon (Fig. S2a, 223 

Supplementary Material). For example, the site-dependent Random Forest model run in our study was 224 

able to capture the recirculation pattern at that site. The meteorologically normalized concentrations 225 

showed non-linear associations with WS, with dilution increasing with WS (e.g., Fig. S2b,d, 226 

Supplementary Material). The main predictor for the urban background sites was WS, with high NOx 227 

concentrations associated with low WS, as also reported by Krecl et al. (2011), while WD had negligible 228 

influence. This confirms that the sites can be taken as representative of urban background environment. 229 

Kamińska (2019) and Laña et al. (2016) found similar results at other European sites. 230 
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In general, seasonal trends played a modest role on NOx concentrations, with lower NOx values observed 231 

in summertime. This is most likely due to improved dispersion and reduced emissions, since summer 232 

presents lower traffic volume (long holidays) and higher ambient temperatures might decrease NOx 233 

emissions for the diesel fleet (Grange et al., 2019). 234 

The trend analysis is very sensitive to the chosen period, as reported by several studies (Grange and 235 

Carslaw, 2019; Olstrup et al., 2018). Hence, we focused on the overlapping period 1998-2017 to avoid 236 

the influence of site-specific conditions outside these years. Overall, there was a significant downward 237 

trend in concentrations (Fig. 2), with NOx decreasing faster than NO2 in the three cities. At the curbside 238 

sites, this pattern is explained by the higher NO2:NOx emission ratios due to the introduction of some 239 

exhaust treatments for diesel vehicles (that convert NO to NO2) and the accelerated penetration of diesel 240 

PC (Grange et al., 2017). At urban background sites, the NO2 concentrations are mainly controlled by 241 

the photochemical conversion of locally emitted NO to NO2 rather than direct NO2 emissions (Keuken 242 

et al., 2009; Anttila and Tuovinen, 2010). In urban atmospheres highly impacted by NOx emissions, a 243 

reduction in NO concentrations reduces the consumption of O3 by titration (Monks et al., 2015) and, 244 

specifically for Europe, the regional background O3 has been increasing (0.20–0.59 µg m−3 yr−1 for the 245 

annual mean in 1995-2014, Yan et al., 2018). As a consequence, more O3 is available to oxidize NO to 246 

NO2, causing a steeper downward trend of NO concentrations than NO2 at the urban background sites.  247 

To facilitate the comparison of the concentration trends among sites with different pollution levels, 248 

changes were also expressed as percentage of variation per year over the period 1998-2017 (Fig. 2). The 249 

reductions in NOx concentrations in the urban background atmosphere were comparable in Copenhagen 250 

and Stockholm (-2.1 and -2.6 % yr-1, respectively). In Denmark, the reduction in NOx emissions is due 251 

to the increasing use of catalysts in vehicles, and installation of low-NOx burners and denitrifying units 252 

in power plants and district heating plants (Nielsen et al., 2019). In Sweden, the total decline in NOx 253 

emissions is linked to more stringent road transport emission standards, increased use of district heating 254 
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and introduction of a NOx fee in 1992 for reducing industrial emissions (Swedish Environmental 255 

Protection Agency, 2020). Particularly, the former might be more relevant for Stockholm where road 256 

traffic is the dominant NOx source (Johansson et al., 2008). Note that changes in the urban atmosphere 257 

can be also affected by variations in the regional concentrations since they have non-negligible 258 

contributions (Ellermann et al., 2017; Krecl et al., 2011). The reduction in NOx concentrations in the 259 

urban background atmosphere of London was modest (-1.3 % yr-1) compared to the other two cities.  260 

Figure 2 also shows that the negative trends of the NOx street increments in Copenhagen and Stockholm 261 

were even larger (-2.6 and -3.0 % yr-1, respectively) than at the urban background sites. These large drops 262 

were attributed to variations in the traffic emissions over time, since neither the street canyons nor the 263 

adjacent areas underwent any changes in their configuration, and concentrations were already 264 

meteorologically normalized. In Denmark, the largest source of NOx emissions is road transport (30% 265 

in 2017), with a 65% decrease in the period 1998-2017 (mean of -3.2 % yr-1) (Nielsen et al., 2019). Based 266 

on the emission inventories for Sweden in 1998 and 2017 (SCB, 2021), road traffic emissions were the 267 

main NOx sources and decreased 48.5% over the 20-year period, which corresponds to -2.4 % yr-1. Thus, 268 

this national reduction in traffic emissions is in the same order of the reduction in concentrations found 269 

at the street canyon (-3.0% yr-1). In the case of London, the main emission source for NOx was road 270 

transport (49%) in the year 2016 (Transport for London, 2016). Road transport also dominates the NOx 271 

emissions at national level in the UK (33% in 2017), with a reduction of 67% in the period 1998-2017 272 

(DEFRA, 2020). This represents a reduction of -3.3 % yr-1 at UK level, which is far from the small street 273 

increment trend at Marylebone Road site (-0.2 % yr-1). This large discrepancy could be explained by the 274 

use of emission inventories built with EFNOx that largely underestimate the real emissions in the UK 275 

(Carslaw et al., 2011; Carslaw and Rhys-Tyler, 2013) and/or changes in the vehicle fleet composition for 276 

certain streets.  277 
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In relation to the NO2 concentration trends, both urban background and curbside sites showed long-term 278 

improvements, but smaller for the latter where traffic emissions dominate. London presented the smallest 279 

decreases in concentration, with slight positive NO2 street increment but not statistically significant for 280 

the study period (1998-2017). The discussion on the NO2:NOx emission ratios is further developed in 281 

Section 3.2. 282 

 283 

3.2 Trends in EF for the vehicle fleet  284 

The annual evolutions of the EFNOx for the vehicle fleet at the three curbside sites over the study period 285 

are displayed in Figs. 3a-c. The grey shadows represent the 95% confidence interval of the mean, 286 

calculated using the monthly mean values for each year and site. In general, the decreasing trends 287 

observed at Jagtvej and Hornsgatan sites for the mixed fleet (Fig. 3 a,c) match the temporal reduction in 288 

EFNOx for different vehicle categories/fuel, as reported by remote sensing studies conducted in European 289 

urban areas (Tables 2). These results agree with the introduction of new technologies in the vehicle fleet 290 

to reduce air pollution emissions. However, the EFNOx pattern was rather constant at Marylebone Road 291 

over the period (Fig. 3b), and showed a larger monthly variability.  292 

Inspecting the normalized ΔNOx trends (Figs. 3d-f), we can observe a clear resemblance between the 293 

EFNOx trends for Copenhagen and Stockholm (Figs. 3a, c). However, note that the EFNOx value was 294 

reported as the mean of the mixed fleet per vehicle whereas the normalized ΔNOx does not consider 295 

variations in traffic patterns (volume, speed, or vehicle type share). For example, the “bump” observed 296 

in the EFNOx time series at Hornsgatan site in the period 2011-2017 (Fig. 3c) coincided with the reduction 297 

in the total TR observed since January 2010, when a ban on studded tires was introduced for the 298 

wintertime and which remained over the years (Norman et al., 2016). The normalized ΔNOx was flat for 299 

the same period (Fig. 3f), suggesting that total NOx emissions might have not changed, but increased per 300 

vehicle. We hypothesize that this increase in EFNOx for the mixed fleet at Hornsgatan site could have 301 
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been caused by the introduction of buses fueled with 100% Rapeseed Methyl Ester (RME) in 2011, as 302 

part of the city of Stockholm’s strategy for running the entire bus fleet on renewable fuels and to comply 303 

with the Clean Vehicles Directive (2009/33/EC). Note that RME buses emit on average 2.5 times more 304 

NOx than the diesel ones with similar engine and after-treatment technology (Table S2, E5 and Selective 305 

Catalytic Reduction SCR). In the year 2011, 10% of the public bus fleet was fueled with 100% RME 306 

(Johan Böhlin, personal communication, Feb. 2021), and the RME bus consumption doubled in 2014 307 

(Clean Fleets, 2014). This information is consistent with the fast increase in RME sales in the Stockholm 308 

county in the period 2011-2017 (Stockholms stad, 2021). The reduction observed in EFNOx after the year 309 

2015 might be mainly associated with the introduction of newer bus engines and/or cleaner exhaust after-310 

treatment technologies for NOx emissions. 311 

The ΔNOx trend at Marylebone Road demonstrates that, despite all the measures implemented for NOx 312 

control, the total emission remained stable since 2002. According to Font and Fuller (2016), the ΔNOx 313 

trends in London showed a large spatial heterogeneity in the period 2005-2014. They found that 314 

increasing ΔNOx trends were experienced on streets with increasing number of buses per day, such as 315 

Marylebone Road in 2010-2014. Conversely, ΔNOx reductions were associated with a lower traffic 316 

volume of buses and/or retrofitted buses with cleaner technologies (such as SCR + Diesel Particulate 317 

Filter DPF, Carslaw et al., 2015).   318 

The time evolution of the NO2:NOx  emission ratios for the vehicle fleet is displayed in Figs. 3g-i for the 319 

three canyon sites. The interpretation is complex because the mean emission ratio for the whole fleet is 320 

influenced by the large variation observed with vehicle category/fuel and Euro standard stage (Tables 2). 321 

The fraction of primary NO2 emissions also depends on the exhaust after-treatment (particularly for 322 

buses, Table S2, Supplementary Material), vehicle mileage (Carslaw et al., 2019), mean VS (Grice et al., 323 

2009), ambient temperature (Grange et al., 2019), and engine load (Carslaw et al., 2011; Carslaw and 324 

Rhys-Tyler, 2013). Moreover, differences in emission ratios vary considerably from manufacturer to 325 
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manufacturer even for the same Euro standard stage and model year (Bernard et al., 2018; Carslaw et al., 326 

2019).  327 

Grange et al. (2017) showed a clear positive trend in annual mean NO2:NOx emission ratios for 61 328 

European cities between 1995 and 2010. This trend can be attributed to the wide use of diesel oxidation 329 

catalysts (DOC) on PC −that target CO and hydrocarbons, but intentionally convert NO into NO2 (Fiebig 330 

et al., 2014; Russell and Epling, 2011). Remote sensing studies confirm the increase of the NO2:NOx 331 

emission ratios with the introduction of DOC in E3 diesel PC (Table 2). The overall impact of these 332 

primary NO2 emissions became important due to the dieselization of the European PC fleet, driven by 333 

improvements in fuel economy and supposed CO2 emission reduction (Cames and Helmers, 2013).  334 

This dieselization process was strong in the three countries (Figs. 3j-l) with the help of government 335 

incentives (Cames and Helmers, 2013). Even though the emission ratios are slightly higher for diesel 336 

LCV than for diesel PC for certain Euro stages (Table 2), diesel PC have become abundant at national 337 

and urban street levels in more recent times. For example, the shares of diesel PC and LCV in relation to 338 

the total fleet on Hornsgatan St. were 33 and 13% in 2017 vs. 17 and 11% in 2009. Note that when the 339 

shift towards the use of diesel fuel in PC at the expense of gasoline occurred, increasing NO2:NOx 340 

emission ratios were clearly observed at Jagtvej and Hornsgatan sites until 2008 and 2010, respectively 341 

(Figs. 3g,i). The decay in primary NO2 emissions observed afterwards might be explained by the 342 

development of more efficient DOC systems by the car manufacturers (Carslaw et al., 2016; Carslaw et 343 

al., 2019). E6 standards introduced tighter limits for NOx emissions, and diesel PC were also equipped 344 

with NOx after-treatment systems that increased the NO2:NOx emission ratios again (Table 2, E6). 345 

Jagtvej and Hornsgatan experienced this increase in emission ratios but differences in time and magnitude 346 

might be explained by the composition of the diesel PC fleet per manufacturer group, given the large 347 

variations reported by Carslaw et al. (2019). Finally, the absolute NOx and NO2 emissions remained low 348 
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in the period matching the E6 stage, and reductions in ΔNOx and ΔNO2 were found at Jagtvej (Figs. 2g,j) 349 

and Hornsgatan sites (Figs. 2i,l).  350 

Note that certain particular characteristics of the vehicle fleet might arise when analyzing the behavior 351 

of NO2:NOx emission ratios for individual cities and sites. Notably, Marylebone Road showed the 352 

maximum peak value (23 vol. %) in 2005 and dropped thereafter (Fig. 3h). This site was largely affected 353 

by changes in the urban bus engines and exhaust after-treatment technologies, since the number of buses 354 

operating on that street is high (e.g., 1473 buses per weekday in 2003). For example, the steep increase 355 

in ratios observed between 2002 and 2003 was attributed to the retrofitting program of London urban 356 

buses (E3 stage) with continuously regenerating particle traps (formed by a combination of DOC and 357 

DPF, Grange and Carslaw, 2019) and an increase in buses as part of the London congestion charge 358 

scheme (Givoni, 2012).  The decline in ratios after 2008 was linked to the introduction of buses with 359 

newer and cleaner technologies and removal of old buses (Grange and Carslaw, 2019). The peak and 360 

decay of NO2:NOx at Marylebone Road were observed earlier than those in inner London (Carslaw et 361 

al., 2016) and we hypothesize that this shift might be due to the different implementation stages in the 362 

bus retrofitting programs and bus fleet renewal, depending on the analyzed street. Even though buses 363 

largely influence the emissions at Marylebone Road, the contribution of the diesel PC to the emission 364 

ratios cannot be ruled out because of their large number (Fig. 3k). 365 

 366 

3.3 Comparison of EFNOx at Hornsgatan with literature data 367 

Figure 4 shows the mean EFNOx for the mixed fleet at Hornsgatan site in the years 2009 and 2017 368 

extracted from the EMEP and HBEFA databases, urban remote sensing studies (Table 2), and the results 369 

based on inverse modeling. Regardless of the method, lower EFNOx values were found in 2017 than in 370 

2009, following the general trend of decreasing NOx emissions with the introduction of new engines and 371 

after-treatment systems.  372 
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For both years, the EMEP-based EFNOx presented the lowest values (0.73 and 0.51 g km-1 veh-1 in 2009 373 

and 2017, respectively), whereas the results based on HBEFA and remote sensing studies were very 374 

similar (1.13 and 1.19 g km-1 veh-1 in 2009; 0.92 and 0.98 g km-1 veh-1 in 2017). This similarity might be 375 

explained by the update of the HBEFA database (V.3.3) with EFNOx of diesel PC for E4-E6 stages, 376 

considering new laboratory and real-world measurements (portable emission monitoring systems and 377 

remote sensing data), after compelling evidence that these EF were lower than in-use vehicles studies 378 

(Carslaw et al., 2011; Carslaw and Rhys-Tyler, 2013). The EFNOx presented in the EMEP guidebook 379 

were developed with the COPERT model, which has been reported to predict lower NOx emissions than 380 

the HBEFA database under stop-and-go traffic conditions in cities, particularly for diesel vehicles (Borge 381 

et al., 2012). A recent UK study (Davison et al., 2021) also found that the national inventory –that heavily 382 

relies on the COPERT database– underestimates the NOx emissions from PC and LCV up to 47% in 383 

urban areas compared with emissions calculated with real-world EFNOx from remote sensing studies.  384 

The inverse modeling results presented the highest mean values for both years (1.72 and 1.35 g km-1 veh-385 

1 in 2009 and 2017, respectively). The weighted EFNOx calculations at Hornsgatan street using mean 386 

values per vehicle category from remote sensing data (Table 2) was a conservative approach. Considering 387 

the upper 95% confidence interval of EFNOx for each vehicle category yielded weighted EFNOx values 388 

much closer to those obtained with inverse modeling (1.69 and 1.23 g km-1 veh-1 in 2009 and 2017, 389 

respectively). Moreover, most of the remote sensing studies were conducted in the UK (Table 2), where 390 

ambient conditions and the mix of on-road vehicle manufacturers and engine sizes might be different 391 

from Hornsgatan St.  Thus, all these factors could have contributed to the EFNOx differences between 392 

inverse modeling and remote sensing methods.  393 

 394 

3.4 Study strengths and limitations 395 
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As far as we know, this is the first study to analyze the trends of real-world EFNOx for the vehicle fleet at 396 

the same locations over two decades. Previous studies analyzed NOx emission trends using only street 397 

increment concentrations as a proxy, or remote sensing measurements. Our approach (inverse modeling) 398 

presents advantageous features since: (i) we delivered EFNOx rather than NOx street increments; this 399 

means that we addressed variations in traffic patterns that can largely influence emissions, and (ii) we 400 

assessed the overall effectiveness of policies for reducing the fleet emissions over a long time period. 401 

Although remote sensing studies provide individual EFNOx for a large vehicle sample, they might not 402 

cover the entire fleet particularly on busy roads with several lanes. Moreover, remote sensing field 403 

campaigns are short and traffic and ambient conditions might not be representative of the entire year.  404 

This study was limited to the analysis of three paired sites because of the reduced availability of long-405 

term measurements. Hence the transferability of the results to other streets in the same cities should be 406 

done cautiously, considering site-specific features and local traffic policies. 407 

 408 

4. Conclusions 409 

The Euro standard limits for new road vehicles have been successful in reducing NOx vehicle emissions 410 

in the studied sites and the ambient concentrations over time, except for Marylebone Road. This busy 411 

street canyon –which experienced an increase in bus traffic since 2003– masked the modest effects of 412 

the Euro standard limits on citywide road traffic emissions in London, as shown by the reduction in NOx 413 

concentrations in the urban background atmosphere. The NO2:NOx emission ratios showed a positive 414 

trend until 2008-2010, which was also reflected in the NO2 ambient concentrations. This increase was 415 

associated with a strong dieselization process and the introduction of new after-treatment technologies 416 

that targeted the emission reduction of other species (greenhouse gases, carbon monoxide or particulate 417 

matter). Thus, while regulations on ambient concentrations of specific species have positive effects on 418 

human health, the overall outcomes should be considered before widely adopting them. 419 
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Our results suggest revising the low EFNOx values presented in the EMEP guidebook for vehicle 420 

emissions, since they are used to compile official national inventories in Europe, estimate the exposures 421 

of population to air pollutants and of ecosystems to acidification and eutrophication. Finally, this work 422 

showed the relevance of long-term observations combined with dispersion modeling to detect trends, to 423 

assess the effectiveness of programs aimed at improving the urban air quality, and to validate emission 424 

estimates based on models and laboratory tests. 425 

 426 

Supplementary Material 427 

Details of air pollution sampling sites, traffic data, meteorological normalization of ambient 428 

concentrations, calculation of NO2:NOx ratios, determination of EFNOx for the mixed fleet, partial 429 

dependence plots, and review of real-world EFNOx for urban buses are available. 430 
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Tables 639 

 640 

Table 1. Details of the sites and datasets used in this study. 641 

City Site Type Variables Period 

Copenhagen Jagtvej Street canyon NOx, NO2, TR, VS 1994-2017 

H.C. Ørsted Urban background NOx, NO2, O3 

H.C. Ørsted Meteorology T, RH, WS, WD 

London Marylebone Road Street canyon NOx, NO2, TR, VS 1998-2017 

North Kensington Urban background NOx, NO2, O3 

Heathrow Meteorology T, RH, P, WS, WD 

Stockholm Hornsgatan Street canyon NOx, NO2, TR, VS 1992-2017 

Torkel Urban background NOx, NO2, O3 

Högdalen Meteorology T, P, WS, WD 

T: air temperature, RH: relative humidity, WS: wind speed, WD: wind direction, P: atmospheric pressure  642 
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Table 2. Mean EFNOx and NO2:NOx emission ratios for several vehicle categories, taken from remote sensing 660 

studies conducted in European cities (UK: Carslaw et al., 2011; Carslaw and Rhys-Tyler, 2013; Carslaw et al., 661 

2019; Ghaffarpasand et al., 2020, and Sweden: Liu et al., 2019; Zhou et al., 2020). 662 

 663 

Variable Euro 

stage 

PC  

gasoline 

PC      

diesel 

LCV  

diesel 

Truck (<12 t) 

diesel 

Truck (>12 t) 

diesel  

aUrban bus 

diesel 

EFNOx E0 2.38 1.22 1.46 5.36 bn.a. n.a. 

[g km-1 veh-1] E1 1.59 1.24 2.27 3.44 n.a. 11.13 

  E2 1.05 1.30 2.01 5.95 13.01 12.35 

  E3 0.41 1.23 1.83 5.33 10.61 15.58 

  E4 0.23 1.00 1.57 5.09 7.75 16.93 

  E5 0.14 1.02 1.86 5.33 7.59 12.78 

  E6 0.19 0.51 0.67 2.64 0.74 2.40 

NO2:NOx  E0 3.2 10.8 7.6 6.2 n.a. n.a. 

[vol. %] E1 2.8 16.8 12.5 11.0 n.a. 11.0 

  E2 3.1 8.1 8.4 21.0 11.7 15.4 

  E3 4.1 14.9 13.2 12.3 15.8 8.9 

  E4 5.6 22.5 23.0 6.2 2.9 8.0 

  E5 8.4 18.8 15.5 6.4 4.9 11.3 

  E6 10.5 21.7 24.2 15.2 22.5 17.9 
aA large variation could be observed within the same Euro stage, depending on the after-treatment system (Table S2, 664 
Supplementary Material).  bNot available.  665 
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Figure captions 685 

 686 

Figure 1. Monthly mean NOx and NO2 concentrations at curbside and urban background sites (a-f), together with 687 

NOx and NO2 street increment concentrations (g-l). The orange lines represent the meteorology-normalized 688 

concentrations. Note the different y-axis scales adopted to enhance the features in the time series of each site. 689 

 690 

Figure 2. Yearly trends (bar plots; in µg m-3 yr-1) and relative changes (numbers; in % yr-1) in NOx (a) and NO2 691 

(b) concentrations for the three cities over the period 1998-2017, based on monthly mean changes in 692 

meteorologically normalized air pollutant concentrations at urban background and curbside sites, together with 693 

street increments. The error bars show the 95% confidence intervals of the trends. *Indicates that the trend is not 694 

significant. 695 

 696 

Figure 3. a-c) Annual mean EFNOx for the vehicle fleet at the curbside sites, with the grey shadows representing 697 

the 95% confidence intervals. d-f) Annual mean ΔNOx concentrations (normalized) at curbside, together with the 698 

95% confidence intervals. g-h) Annual NO2:NOx emission ratios at curbside with 95% confidence intervals. j-l) 699 

Diesel PC penetration in the national markets (International Council on Clean Transportation, 2018) expressed as 700 

percentages of all PC (thick black line) and new PC (thin black line), together with Euro standard registration dates 701 

(E1: Euro 1, E6: Euro 6).  702 

 703 

Figure 4. EFNOx for the vehicle fleet at Hornsgatan site in the years 2009 and 2017 calculated using databases 704 

(EMEP and HBEFA), remote sensing studies (Table 2) and by inverse modeling. The error bars represent the 95% 705 

confidence intervals of the mean. 706 
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