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Abstract 29 

Trans-disciplinary solutions are needed to achieve the sustainability of ecosystem services for 30 
future generations. We propose a framework to identify the causes of ecosystem function loss 31 
and to forecast the future of ecosystem services under different climate and pollution scenarios. 32 
The framework i) applies an artificial intelligence time-series analysis to identify relationships 33 
among environmental change, biodiversity dynamics and ecosystem functions; ii) validates 34 
relationships between loss of biodiversity and environmental change in fabricated ecosystems; 35 
and iii) forecasts the likely future of ecosystem services and their socio-economic impact under 36 
different pollution and climate scenarios. We illustrate the framework by applying it to 37 
watersheds, and provide system-level approaches that enable natural capital restoration by 38 
associating centennial biodiversity changes to chemical pollution. 39 

  40 
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The challenge of sustained ecosystem services  41 

Biodiversity is directly linked to healthy ecosystems which provide provisioning (e.g. 42 
food), regulating (e.g. climate), supporting (e.g. nutrient cycling, primary production), and 43 
cultural (e.g. aesthetic and recreational) services [1-4]. At the global level, rapid and severe 44 
biodiversity loss has been identified as the main cause of deterioration of more than 60% of 45 
ecosystem services [1, 3]), affected by various factors [5]. Chemical pollution, habitat loss, 46 
unsustainable use of resources, invasive species and climate change are among the main 47 
acknowledged threats to biodiversity [6, 7].  48 

The sustained delivery of ecosystem services in the face of these threats is challenging 49 
because natural capital is finite and the impact of human interventions on ecosystems is 50 
uncertain and/ or unknown across different spatial, temporal, and economic scales [8]. 51 
Ecosystem management that ensures the delivery of services while preserving natural capital 52 
is a complex, open-ended problem because of limited resources, competing objectives and the 53 
need for economic profitability [9]. This is because:  54 

i) biodiversity loss happens on different spatial and temporal scales, and dynamics are 55 
context-dependent outcomes stemming from processes operating over many years [10, 11]. 56 
The cumulative effect of processes over time can cause delayed dynamics also known to cause 57 
so-called extinction debts [12]. Even state-of-the-art environmental monitoring fails to capture 58 
effects that may arise from cumulative effects over time of multiple threats [5]). Only by 59 
quantifying trajectories of abiotic, biotic and functional systemic change before, during and 60 
after pollution events, can we identify the causes of biodiversity and ecosystem function loss;  61 

ii) research on biodiversity and ecosystem services is often constrained by disciplinary 62 
boundaries, whereas biodiversity loss has ecological, social and economic implications [13]. 63 
Discipline-constrained approaches may neglect process interactions, result in research 64 
undertaken at inappropriate or disconnected scales, or use discipline-specific tools that are 65 
inadequate to address cross-disciplinary questions [14].  66 

iii) decision-making frameworks that enable the prioritization of interventions for the 67 
sustainable use of ecosystems typically require multiple lines of evidence from different 68 
disciplines, making decisions by stakeholders challenging, especially when relationships 69 
between socio-economic and ecological priorities are not linear (e.g. [15, 16]). While such 70 
decision-making frameworks are being developed, they still often fail to cover all types of 71 
ecosystem services, particularly the cultural ones [15].  72 

We propose a ‘Time Machine’ framework that: 1) establishes spatiotemporal 73 
correlations among biotic, abiotic and ecosystem functional changes using multidecadal to 74 
millennial continuous data; 2) provides evidence for cause-effect relations through 75 
experimental validation in fabricated ecosystems from correlations identified in point 1; and 3) 76 
generates likely predictions of future ecosystem services under different pollution and climate 77 
scenarios, driven by localised and regional environmental change and mediated by changes in 78 
overall biotic interactions (Fig. 1).  79 

 80 

The Time Machine framework  81 

We illustrate the framework in five main Steps for applications in freshwater 82 
ecosystems, because they are diverse, geographically distributed and of high conservation 83 
value (Fig 1); they deliver important ecosystem services such as clean water, food and 84 
recreation, and are under increasing threat of destruction and degradation [2, 17].  85 

Step 1 - Sampling through time and space, using Lake sedimentary archives (Fig. 1; 86 
Sampling). Sedimentary archives preserve biological and environmental signals, providing a 87 
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continuous record of changes from a reference baseline predating major human impact on 88 
climate and biodiversity (Anthropocene) to impacted environments [18]; these characteristics 89 
allow better understanding of temporal dynamics of biotic, abiotic and ecosystem functional 90 
data leading to current patterns [10]. To disentangle patterns driven by stochasticity from 91 
patterns driven by environmental change, semi-pristine sites (e.g. alpine lakes) can be used as 92 
reference. Whereas all natural communities experience changes over time, dynamics in semi-93 
pristine sites will likely be driven by demographic and environmental stochasticity, which 94 
results in predictable community dynamics [19, 20]. Conversely, dynamics at impacted sites 95 
will likely be driven by exogenous environmental factors, which leave signatures that depart 96 
from stochasticity (e.g. [21]).  97 

Step 2 - Biochemical and ecosystem functions fingerprinting. Spatiotemporal biotic 98 
assemblages are established by applying metabarcoding to environmental DNA or eDNA 99 
(see Glossary) [22] extracted from dated sediment layers of the biological archives (Fig. 1; 100 
Fingerprinting). DNA extracted from environmental matrices provides the means to collect 101 
continuous temporal data over time and space [23]. These data inform conservation biology by 102 
estimating human impact on biodiversity [24], invasion biology by identifying timing and 103 
severity of alien species invasion [25] and biodiversity science by enabling the census of 104 
species/taxa on a global scale in real time [26]. Through DNA sequence similarity, molecular 105 
operational taxonomic units (MOTUs) are identified by matching sequence similarity to 106 
records in public databases (e.g. NCBI, SILVA), allowing the analysis of compositional shifts 107 
and relative abundance of known and unknown taxonomic units. MOTUs enable the 108 
retrospective characterization of past community-level dynamics (e.g. microbes, plants and 109 
animals) without requiring specialist skills (e.g. light microscopy and taxonomy) and without 110 
being limited to taxonomic groups with well-preserved remains in environmental matrices (e.g. 111 
pollen, exoskeletons, bones) [27]. On the same sediment samples, abiotic changes (e.g. 112 
presence and concentrations of chemical mixtures) are quantified using high resolution mass 113 
spectrometry (MS), combining suspect and non-target screening of chemical pollutants in 114 
sediment samples [28] (Fig. 1; Fingerprinting). The spatiotemporal biochemical fingerprinting 115 
is complemented by the analysis of ecosystem functions [e.g. biogeochemical functions 116 
measured as the accumulation rate of total organic carbon (C), nitrogen (N) and phosphorus 117 
(P)] via bulk stoichiometry of sediments to help elucidate long-term dynamics in productivity 118 
as influenced by nutrient availability, and the relationships of stoichiometric ratios, 119 
productivity, decomposition and biological attributes. A potential caveat of reconstructing 120 
temporal community records from sediment matrices is the preservation state of DNA that may 121 
be affected by climatic conditions (e.g. warmer/humid climates influence mineralization; 122 
Outstanding Questions). However, metabarcoding has been successfully applied to fossil or 123 
remnant DNA as far back as the Holocene (e.g. [29]). In addition, only relative abundance of 124 
MOTUs can be quantified from community assemblages. This enables the reconstruction only 125 
of relative changes in MOTU abundance between sites and time points.  126 

Step 3 - Establishing associations between past biodiversity, abiotic and functional 127 
changes with the use of Artificial Intelligence (AI) (Fig. 1; Association). Combining 128 
explainable network models with multi-view learning [30], co-varying elements (nodes) 129 
within and between networks are identified, where networks can represent MOTUs, 130 
environmental variables and pollutants (Box 1). This leads to the identification of interacting 131 
environmental factors putatively driving changes in MOTUs and ecosystem functions. These 132 
correlations are then validated experimentally in fabricated ecosystems as explained in Step 4. 133 
In a pilot study conducted on a natural lake, we applied the AI approach and determined that 134 
the decline in a specific taxonomic group of primary producers (e.g. green algae) was inversely 135 
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correlated with ten herbicides among the hundreds that were quantified in the sediment (Box 136 
1).  137 

Step 4 - Establishing causality. Fabricated ecosystems are used to establish causal links 138 
between the associations identified in Step 3 (Fig. 1; Causality). Focusing on short-term 139 
dynamics (weeks to months), fabricated ecosystems, such as artificial ponds, are used to isolate 140 
effects, explore controlled interactions among multiple factors, and determine causality among 141 
MOTUs’ relative abundance (quantified via eDNA metabarcoding), ecosystem functions (P, 142 
N, C content measured through nutrient stoichiometry), climate variables and chemical 143 
pollutants (quantified with MS). Natural communities are used to inoculate fabricated 144 
ecosystems, which are then exposed to the environmental factors identified in Step 3 to co-vary 145 
with MOTUs. For example, the effect of global warming on biodiversity and ecosystem 146 
functions can be quantified by measuring MOTUs dynamics in fabricated ecosystems exposed 147 
to current temperature and in ecosystems exposed to temperature plus 2.5°C, representing the 148 
IPCC mid-range forecasts (RCP 6.0). While experimental results investigating short-term 149 
dynamics may not be directly comparable to natural dynamics, they provide a validation of 150 
observed trends in natural ecosystems for extrapolations to long-term dynamics using e.g. 151 
machine learning algorithms. The fabricated ecosystems serve a dual role of providing an 152 
experimental validation of a) observed past correlative patterns, and b) predictions of 153 
biodiversity and ecosystem functional changes in different climate and pollution scenarios (see 154 
Step 5).  155 

Step 5 - Forecasting biodiversity and ecosystem services. Ecological process-based 156 
models, informed by the associations identified by the AI in Step 3, are used to generate 157 
predictions about projected future states of freshwater ecosystems (Fig. 1; Forecasting). 158 
These predictive models are incorporated into simulations that project solutions for 159 
ecosystem services (Fig. 2). Although it is likely that a range of complex processes interact to 160 
determine how environmental drivers and associated biodiversity shifts influence ecosystem 161 
functions, we propose to start with a simple model that illustrates the impacts of community 162 
composition and structure, species interactions, and the covariation of these with 163 
environmental factors on freshwater ecosystem functions. Process-based models with these 164 
components include PCLake [31], a process-based model that links species composition, 165 
environmental drivers (e.g. nutrient loading, temperature), and ecosystem responses (e.g. 166 
water quality; [32]). Alternatively, ELCOM–CAEDYM, a coupled hydrodynamic and 167 
biological model of phytoplankton dynamics and their impacts on water quality can be used 168 
[33]. For reviews on process-based models see (e.g. [34]). Inputs for these models can be 169 
provided from correlative approaches [35, 36], such as correlative ecological models (e.g. 170 
[37]), or AI-based inferences such as described in Step 3. 171 

The Time Machine framework is widely applicable because it finds signatures that 172 
recapitulate community dynamics (e.g. loss of MOTUs) driven by environmental change (e.g. 173 
warming, pollution) that alter ecosystem function (e.g. nutrients ratio). For example, it is 174 
applicable to physical, chemical and biological long-term observations of oceanic and coastal 175 
areas available from Continuous Plankton Recorders Survey, collecting records from the North 176 
Atlantic and the North Sea since 1931 [38]. However, the ecological models that best describe 177 
these ecosystems may differ from the ones described here.   178 

 179 

 180 

 181 
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The Time Machine Emulator 182 

Continuous temporal data are paramount to explain present-day patterns and to model 183 
relationships between biodiversity and environmental change [18]. In particular, 184 
palaeoecological data are a valuable source of temporal data and can inform the conservation 185 
management of future biodiversity (e.g. [39]). However, past dynamics may differ from that 186 
caused by future environmental changes or threats, introducing uncertainties in model 187 
estimates. To reduce uncertainty in forecasts, realistic dynamic interactions among several 188 
biotic and abiotic variables should be used (e.g. [40]). Generating predictions that account for 189 
all these variables in different scenarios (e.g. projected IPCC climate scenarios) is 190 
computationally intensive and time consuming. Emulators can provide robust predictions with 191 
calculated uncertainties across multiple scenarios while reducing computational cost and time. 192 
An ‘emulator’ is a low-order, computationally efficient model which emulates the specified 193 
output of a more complex model in function of its inputs and parameters. Emulators work with 194 
both structure-based methods, where the mathematical structure of the original model is 195 
manipulated to a simpler, more computationally efficient form; and data-based approaches, 196 
where the emulator is identified and estimated from empirical/experimental data [41]. 197 
Emulators are widely applied in big data science, such as i) climate science to generate 198 
predictions under different socio-economic scenarios in long-range simulations (e.g. [42] and 199 
references therein); ii) ecology to predict the status of ecological processes in changing 200 
environments using e.g. long-term remote sensing data [40]; and iii) environmental science to 201 
predict e.g. the hydrological status of water reservoirs [43]. 202 

 203 
We propose a Time Machine Emulator (TME) to generate forecasts of biodiversity and 204 

ecosystem functions. The TME ‘learns’ from past correlations, it is tested iteratively against 205 
long-term empirical data (e.g. collected in Step 3) and refined to predict the future biotic, 206 
abiotic and functional associations (Fig. 2). In our applications, it emulates ecological process-207 
based models (e.g. [32, 44]) to generate predictions across a range of historical and future 208 
climates and ecosystem states, albeit in a more computationally scalable and efficient manner. 209 
Empirical data collected from sedimentary archives, including biodiversity changes over time 210 
and pollution, as well as climate data, are used to establish past correlations that inform 211 
ecological process-based models (Fig. 2A). These models integrate historical contamination 212 
trends that disrupt ecosystem functions mediated by changes in MOTUs, to identify risk 213 
trajectories, with measured uncertainties (Fig. 2B). The TME is applied to produce the same 214 
output as the process-based models without the time consuming and computationally expensive 215 
running of the vast number of possible model setups for every possible climate and pollution 216 
scenario (Fig. 2C). One of the biggest challenges for AI on medium to long-range timescales 217 
is the lack of high-quality data for training model predictions. The TME uses empirical past 218 
biodiversity-ecosystem dynamics (collected in Step 3), as well as temperature projections from 219 
regional climate simulations, as ‘training sets’ to reduce uncertainty in forecasting the future 220 
of ecosystem states under different climate scenarios (Fig. 2C). Predictions are also made over 221 
non-simulated regions and climates with higher uncertainty, informing strategies for additional 222 
sampling, in this way mitigating uncertainties when new data are introduced in the model (Fig. 223 
2D). This directs sampling efforts improve the accuracy of forecasts. The output of the TME 224 
are predictions for changes in ecosystem functions driven by localised and regional climate 225 
change and mediated by changes in overall biotic/abiotic interactions, including on partial 226 
training sets. The robustness of the TME predictions is assessed by removing data (i.e. locations 227 
and conditions) from complete training sets and comparing predictions on whole and partial 228 
datasets. The future associations predicted by the TME are validated using fabricated 229 
ecosystems as described in Step 4. By identifying the MOTUs and ecosystem functions altered 230 
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by abiotic factors and/or climate variables, the TME provides probabilistic decision-support 231 
information for ecosystem services management (Fig. 2E).   232 
 233 

Concluding remarks  234 

Lack of understanding of the processes that underpin ecosystem services has often led 235 
to mismanagement with clear dis-benefits for the environment, the economy and human well-236 
being. Systemic approaches, like the framework presented here, enable the prioritization of 237 
interventions that accelerate ecological restoration, and mitigate environmental factors that 238 
cause harm to MOTUs associated with key ecosystem functions and services. However, it 239 
requires critical changes in current environmental practice and a shift to whole-system 240 
evidence-based approaches. To overcome socio-technical barriers to adoption, stakeholder-241 
enabled platforms are needed that include: 1) experimental protocols for the routine systemic 242 
biomonitoring of biodiversity; 2) a TME dashboard relying on Data Visualization Technology 243 
tested for ‘usability’ and ‘utility’; and 3) changes in legislation and regulatory practices to 244 
facilitate the adoption of novel tools and frameworks.  245 

The use of the Time Machine framework comes with caveats. Process-based models 246 
cannot be easily validated in future climate regimes that have not been observed. To mitigate 247 
this, ecosystems over diverse climatic regions (e.g., warmer and drier environments) can be 248 
included as analogues of future climate states (see Outstanding Questions). In addition, known 249 
biotic interactions can be included in the model with information metrics, such as Granger 250 
causality [45]. This approach infers biotic interactions using the time series empirical data 251 
collected from sedimentary archives and/or other known associations (e.g. predator/prey 252 
interactions), with estimated uncertainties. Uncertainties in the TME can be reduced by 253 
constraining the models with available past and projected climate data collected from local 254 
weather stations, globally gridded ERA5-Land datasets [46], and Earth Observation data 255 
(https://earthdata.nasa.gov/earth-observation-data). Downscaling methods that use either 256 
physically-based regional climate models or statistical models to project future large-scale 257 
climate [47, 48], can be used to increase spatial granularity down to <10km and even to single 258 
point locations (e.g. [48, 49]). Although it is expected that uncertainty increases with increasing 259 
granularity, it may be reduced by using spatial scales for which the temporal variability is well 260 
simulated. 261 

The TME applications can be, in principle, extended beyond predictions based on the 262 
ecological and functional status of ecosystems. By coupling ecological and economic 263 
modelling, the TME can also enable the alignment of socio-economic and ecological outcomes 264 
under different climate and pollution scenarios (see Outstanding Questions). To overcome 265 
adoption barriers by stakeholders, an AI-based Emulator dashboard can be developed, 266 
accessible to regulators and policy makers through data visualizations techniques. These tools 267 
can be adapted for probabilistic predictions of ecosystem services to aid decision-making and 268 
socio-economic trade-offs.  269 
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Box 1 388 

Artificial Intelligence (AI) and eDNA metabarcoding on lake sediment: a case study  389 

AI approaches that use explainable network models combined with multi-view learning 390 
[50] allow the simultaneous interrogation of different data matrices, to learn what 391 
components co-vary within a matrix (e.g. environmental variables), and among matrices (e.g. 392 
environmental variables and Molecular Operational Taxonomic Units or MOTUs) (Fig. I). 393 
These approaches are often used in a systems biology context in which e.g. protein-protein 394 
(within matrix) or protein-gene (between matrices) interaction are investigated. We use the 395 
AI approach on a pilot study to establish correlations between environmental factors and 396 
biodiversity, measured with eDNA metabarcoding. For this pilot study, eDNA data were 397 
obtained from the sedimentary archive of a watershed with a well-known history of human-398 
driven environmental change (Lake Ring, Denmark; 55°57′51.83″N, 9°35′46.87″E) [51]. The 399 
history of Lake Ring can be separated into four main phases: semi-pristine (PR; <1950); 400 
eutrophication (E; 1960-1970); pesticides (P; 1980-1990); and partial recovery (R; >1999). 401 
The beta diversity (community diversity between each pair of sediment layers) from the dated 402 
sedimentary archive showed that whereas the prokaryotic community was shaped by the 403 
redox state of the sediment (Fig. IIA), the eukaryotic freshwater community composition 404 
changed with the major lake phases (Fig. IIB). Applying the explainable multi-view learning 405 
algorithm combined with matrix-on-matrix regression (Fig. I) we identified the top 10 406 
herbicides with significant adverse effects on primary producers, specifically identifying 407 
green algae as target MOTUs (Fig. IIB). A top-down Pearson correlation analysis (vector-on-408 
vector regression) validated this approach.  409 

Figure I. Illustration of multi-view 410 
learning combined with network analysis. 411 
Combining multi-view learning and network 412 
analysis, symmetric matrix-on-matrix 413 
regressions are obtained. The matrices 414 
represented in Figure I are Molecular 415 
Operational Taxonomic Units (MOTUs); 416 
Environmental Variables (e.g., temperature); 417 
and chemical pollutants (chemicals). Co-418 
varying elements within a matrix as well as 419 
co-varying elements between matrices are 420 
identified. For example each node in the 421 

MOTUs network is a molecular taxonomic unit. Both co-variation in relative abundance of 422 
different MOTUs and their co-variation with environmental factors and chemical pollutants is 423 
identified using AI.  424 

 425 

Figure II. Biodiversity changes through time and correlations with chemical pollution. 426 
A) Eukaryote and prokaryote beta diversity through time (between each pair of layers) 427 
quantified with metabarcoding applied to eDNA extracted from lake sediment. Similarity in 428 
the composition of each sample (sediment layer) is measured through heat maps. Similarity 429 
decreases from blue to red. PR: pristine phase; E: eutrophication phase; P: pesticides phase; 430 
R: recovery phase; B) Inverse correlation between herbicides and primary producers (green 431 
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algae) established using the explainable multi-view learning algorithm combined with matrix-432 
on-matrix regression shown in Fig. I. 433 

  434 

  435 
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Glossary  436 

eDNA or environmental DNA is DNA extracted from environmental matrices, such as soil, 437 
sediment, water, ice and aerosol without any obvious signs of biological source material.  438 

Metabarcoding is high throughput sequencing of PCR-amplified taxonomic marker genes. 439 

MOTU or Molecular Operational Taxonomic Units. Units of taxonomic diversity that, 440 
differently from Operational Taxonomic Units, do not necessarily correspond to species, but 441 
they are treated as such when measuring diversity. Clustering within MOTU is based on 442 
similarity of DNA sequences.  443 

Suspect and non-target screening of chemical compounds are techniques to screen for 444 
chemical pollutants using mass spectrometry (MS). The suspect screening uses a library of 445 
catalogued data such as chromatographic retention times in lieu of reference standards. Non-446 
target screening uses no pre-existing knowledge for comparison before analysis. 447 

Mass Spectrometry (MS) is an analytical technique used to quantify concentrations of 448 
chemical compounds in different matrices by measuring the mass-to-charge ratio of the 449 
chemicals.  450 

AI or Artificial Intelligence refers to the simulation of human intelligence in machines.  451 

Machine learning or ML is a subset of artificial intelligence and focuses on the development 452 
of algorithms that can access data and use it to learn for themselves 453 

Explainable network model (ENM) is a recent advancement in Machine Learning algorithms 454 

designed to identify which features in the data are responsible for driving a certain output, 455 

providing more trustable predictions. A typical application of ENM is for diagnosing breast 456 

cancer based on observed patterns on pathology slides.  457 

Multi-view learning is an emerging direction in machine learning, also called deep learning, 458 
which learns from multiple networks (or views). Typical applications of multi-view learning 459 
include systems biology where functional links between e.g. gene networks and metabolite 460 
networks are established.  461 

An Emulator is a hardware or software that permits programs written for one computer to be 462 
run on another computer. This enables to increase the efficiency of time-consuming 463 
simulations by parallelising resources. In climate science, emulators are used to evaluate the 464 
realism of the warming signal in different models on both global and regional scales, by 465 
comparing global trends and regional response parameters to observations. 466 

Granger causality is a statistical test for determining whether one time series is useful in 467 
forecasting another.   468 

Process-based models are models that characterize changes in a system’s state as explicit 469 

functions of the events that drive those state changes (sensu [34]) 470 

Correlative ecological models are models based on environmental associations derived from 471 

analyses of geographic occurrences of species.  472 
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Figure 1. The Time Machine framework 473 
The Time Machine Framework is shown to establish past correlations between biodiversity, 474 
ecosystem functions and environmental change, and generate the likely forecasts of 475 
ecosystem services under different pollution and climate scenarios. Sedimentary archives 476 
from watersheds are sampled at continental scale and across climatic regimes. Sampled and 477 
dated sedimentary archives are used to fingerprint biodiversity, chemical pollution and 478 
ecosystem functions. Other environmental factors (e.g. temperature) are collected from 479 
weather stations or retrieved from public databases. Associations between biodiversity, 480 
ecosystem functions and environmental factors are established with the use of AI combined 481 
with explainable network models. Associations are then validated in fabricated ecosystems 482 
that are perturbed to identify cause-effect relations between biotic and abiotic changes. Model 483 
forecasts that ‘learn’ from past dynamics and feedback are tested iteratively against real data 484 
and refined to predict the future of biodiversity, ecosystems services and their economic 485 
value. 486 

487 

 488 
 489 
Figure 2. The Time Machine Emulator 490 
Mapping out the various components of the data pipeline required for the Time Machine 491 
Emulator and the interoperability with data collection, process-based research, and the 492 
decision-making user interface. Arrows indicate the flow of data and information between the 493 
components. Empirical data (e.g. from watersheds) are analysed with an AI time series 494 
approach to establish non-linear relationships among multi-dimensional features (past) (A). 495 
The associations identified by the AI (A) and the process-based simulators (B) inform each 496 
other and are supported by empirical data. The Emulator (C) provides predictions and 497 
intelligence on regions that require further sampling to reduce prediction uncertainties (D) 498 
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and intelligence on more process-based modelling (B). A consensus model is obtained using 499 
a generalized additive framework that generates predictions through an AI-based emulator 500 
dashboard with a graphical user interface (GUI) (E).  501 

502 

 503 
  504 
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Highlights  505 

Chemical pollution and climate change are recognized as the two main causes of Earth’s 506 
ecosystem services deterioration and overuse, linked to the loss of biodiversity. Yet, 507 
preventive interventions that mitigate this loss and preserve natural resources are inadequate 508 
because the dynamics leading to biodiversity loss are context-dependent outcomes from 509 
processes operating over many years.  510 

We propose a framework that uses sedimentary archives from watersheds to establish causal 511 
links between abiotic change and systemic loss of biodiversity, ecosystem functions and 512 
services.  513 

Just like a time machine, we go back in time and reconstruct a library of biological, chemical, 514 
environmental and functional changes at a yearly resolution, enabling the understanding of 515 
the spatiotemporal impacts of abiotic change on ecosystems and their services.  516 

Outstanding questions  517 

Is there a bias in the recovery of eDNA from fossil or remnant DNA in aged sediment and in 518 
warm climates?  519 

While we found stable composition of primary producers across 100 years, a bias might still 520 
exist in sedimentary archives from warmer climates where mineralization of fossil remains is 521 
influenced by higher temperature and humidity. For these archives shorter time series may be 522 
used.  523 

How to deal with high levels of uncertainty in the Emulator projections?  524 

While the Emulator makes predictions over non-simulated regions and climates, guiding data 525 
collection efforts, it carries a level of uncertainty. This has to be accounted for in decision- 526 
making.  527 

How does the Time Machine Emulator forecast the potential economic value of ecosystems?  528 

Monetary and non-monetary estimates of values associated with ecosystem services can be 529 
generated with the current monetary valuation strategies and the predicted changes in 530 
ecosystem functions, uncertainty and risk provided by the Emulator. However, an outstanding 531 
challenge for decision-making is incorporating how values held by society for different 532 
services (e.g. carbon sequestration, food production, biodiversity, disease regulation) might 533 
change through time.  534 

 535 


