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Abstract—Time Delay Reservoir (TDR) can exhibit effects of
high dimensionality and short-term memory based on delay
differential equations (DDEs), as well as having hardware-
friendly characteristics. However, the predictive performance and
memory capacity of the standard TDRs are still limited, and de-
pendent on the hyperparameter of the oscillation function. In this
paper, we first analyze these limitations and their corresponding
reasons. We find that the reasons for such limitations are fused by
two aspects, which are the trade-off between the strength of self-
feedback and neighboring-feedback caused by neuron separation,
as well as the unsuitable order setting of the nonlinear function
in DDE. Therefore, we propose a new form of TDR with second-
order time delay to overcome such limitations, incurring a more
flexible time-multiplexing. Moreover, a parameter-free nonlinear
function is introduced to substitute the classic Mackey-Glass
oscillator, which alleviates the problem of parameter dependency.
Our experiments show that the proposed approach achieves
better predictive performance and memory capacity compared
with the standard TDR. Our proposed model also outperforms
six other existing approaches on both time series prediction and
recognition tasks.

I. INTRODUCTION

Reservoir computing (RC) is a computing paradigm in
the field of machine learning [1]. RC has different variants
since it was firstly invented, such as Echo State Network
(ESN) [2] and Liquid State Machine (LSM) [3]. It has been
widely applied in the time series problems [4] [5] [6] [7]
[8]. Both of these two variants are originally composed of
fixed randomly-generated reservoir architectures and neuron
weights, where a reservoir with H neurons will have up
to H2 connections, potentially incurring a large area and
power overhead [9]. Moreover, the paradigms of RC with
randomly-generated topology are also complex to implement
in hardware, where the routing complexity, area, and power
consumption are high [10]. Another category of RC called
Time Delay Reservoirs (TDR) can prevent the large overhead
of traditional ESN by time multiplexing resources [9], while
satisfying the following desirable properties of RC [11], [12]:
(1) RCs should nonlinearly transform the input signal into
a high-dimensional state space. (2) The dynamics of the
reservoir should be such that it exhibits a short-term memory.
(3) The results of RC computations must be reproducible and
robust against noise.

Due to the time multiplexing of neuron states, TDRs incur
less neuron connections compared with random-connection

reservoir and have friendly features to hardware implementa-
tion [13]. Generally, a simple first-order delay dynamic system
could be applied to model the TDR, tackling different tasks.
For example, L. Appeltant et al. [12] proposed a special TDR
utilizing a single neuron and a delayed feedback to fulfil
the demands required of reservoirs. L. Grigoryeva et al. [13]
solved the stochastic nonlinear time series forecasting problem
by constructing a time-delay dynamic system with a first-order
inertial element and a delay element. L. Keuninckx et al. [14]
tackled a real-time audio processing task by applying a cascade
of TDR with a discrete form of first-order delay system. Since
the first-order delay dynamic system could be modelled by
Delay Differential Equations (DDEs), TDR is amenable to a
large number of experimental hardware implementations [11],
such as FPGA (Field Programmable Gate Array) TDR [15],
optoelectronic TDR [16] and memristive TDR [17], while the
performance of TDR with first-order delay dynamic system
may potentially be not enough.

The parameters of TDR play a significant role on its
performance. Researchers [12] have clarified the analogue re-
lationship between the parameters of random-connected ESNs
and TDRs modelled by dynamic system, where the input
gain, feedback gain, and delay time in TDR are related to
input scaling, spectral radius, and sparsity of the adjacent
matrix in ESN, respectively. There have been related work
on selecting the optimal parameter values for TDR [12], [18],
however, how to further improve the predictive performance
and memory capacity of TDR under the existing optimal
parameter values and how to prevent the parameter dependence
of the predictive performance of TDR are still needed to be
taken into consideration. Therefore, we propose a novel TDR
to solve these problems from two aspects. First, a second-order
time delay approach is designed to model TDR making the
time multiplexing more flexible, which promotes the memory
capacity and further improves predictive performance. Second,
a parameter-free nonlinear function is applied to the proposed
second-order time delay system, reducing the number of
parameters to be tuned in the TDR. Our experiments show that
the proposed approach obtains good results both in time series
prediction and recognition tasks. In summary, the contributions
of this work are summarised as follows:

• We provide an analysis of the problems of standard TDR,



showing that the predictive performance and memory
capacity are still limited and parameter-dependent. The
causes of these problems are also given.

• We propose a second-order time delay reservoir for the
time series problem, leading to a more flexible time-
multiplexing, which improves the predictive performance
and memory capacity of TDR.

• Combined with this second-order time delay, we intro-
duce a parameter-free oscillator with exponential decay
to substitute the classic Mackey-Glass oscillator, avoiding
the need to tune the nonlinearity degree in the proposed
TDR.

• Through experiments with artificial and real-world
datasets, we show the second-order time delay reservoir
computing outperforms standard TDR and some existing
approaches on both time series prediction and recognition
tasks in terms of predictive performance and memory
capacity.

The rest of the paper is organized as follows: Section II
introduces the formulation of the standard TDR [12], and
analyzes its existing problems as well as their corresponding
reasons. Section III proposes the second-order time delay
reservoir computing (STDR). Section IV evaluates and dis-
cusses the proposed STDR from different aspects via artificial
and real-world data sets. At the end, Section V concludes the
paper.

II. PROBLEM ANALYSIS OF STANDARD TDR
In this section, we first gives the formulation of standard

TDR in Section II-A. And then, the main problems of standard
TDR will be analyzed and their corresponding reasons will be
given in Section II-B and Section II-C. The main problems
are limited memory capacity and predictive performance even
when the optimal hyperparameters are used.

A. Formulation of Standard TDR

The states of the reservoir in TDR can be described gener-
ally by the solutions of the following DDE:

ẋ(t) = −x(t) + f(x(t− τ), I(t)), (1)

where x(t) refers to the states of reservoir, I(t) is the input
signal connected to the reservoir, and f refers to a nonlinear
function. With delay interval τ , N equidistant points will be
separated in time by θ = τ/N , and these N equidistant points
could be regarded as virtual neurons being multiplexed in the
given time scale. By Euler discretization of Equation (1) with
integration step θ, the reservoir state xi(k) could be rewritten
as:

xi(k) =
1

1 + θ
xi−1(k) +

θ

1 + θ
f(xi(k − 1), Ii(k)). (2)

The reservoir state xi(k) is not only related to the state of
previous neuron xi−1(k) but also the state xi(k − 1) of the
neuron in previous layer and triggered by the corresponding
reservoir input as depicted in Figure 1.

Based on Equation (2), we can see that there are two
parameters that can influence the performance of standard

Fig. 1. Basic structure of standard TDR.

TDR – the neuron separation θ and the nonlinear function f .
The neuron separation θ controls the strength of neuron self-
feedback and neighboring-feedback and the nonlinear function
f controls the type and degree of nonlinearity. In the next
subsections, we analyse how these two factors lead to such
limitations. The specific setup of the experiments involved this
analysis will be introduced in Section IV-B, as it becomes
more relevant in that section.

B. Hyperparameter Selection of θ

Fig. 2(a) shows the normalized mean squared error (NMSE)
[11] for a 10th order nonlinear auto-regressive moving average
(NARMA) [19] task as a function of node separation θ,
where we can find that smaller or larger θ both lead to
performance degradation, and when θ = 0.2, TDR can perform
well. Therefore, θ = 0.2 has been regarded as the optimal
hyperparameter value for TDR [12]. However, with θ = 0.2,
the memory capacity of TDR (depicted in Fig. 2(b)) is limited
to within 101 lags. This means that TDR is only able to have
good memory capacity (100) for recalling the previous 101

steps history, being suboptimal for tasks that require longer
memory. The specific definition of memory capacity will be
given in Section IV-B1.

We further analyze the reasons of the above mentioned
problems, which are concluded as follows:

• Smaller θ will weaken the self-feedback between neurons.
As Equation (2) indicates, when θ is smaller, the latter
term of Equation (2) tends to be zero, causing the neuron
state to loose the dependency on the delay and on the
input to the neuron state.

• Larger θ will lead to invalid Euler discretization. When θ
is larger, the first-order difference quotient cannot replace
the first-order derivation in Equation 1. Moreover, as
Equation (2) indicates, a larger θ may incur too much
self-feedback and less neighboring-feedback such that the
system behaves like independent nodes, each of which is
coupled only to itself at the previous time step.



Fig. 2. (a) NMSE of standard TDR with varying neuron separation θ in
Santa Fe Laser prediction task. (b) Memory capacity (from Equation (18))
corresponding to varying lags k when using θ = 0.2. The shadowed areas
of each curve indicate standard deviation (20 runs).

Fig. 3. Performance of standard TDR with varying p for (a) 10th order
NARMA task; (b) Santa Fe Laser prediction task. The shadowed areas of
each curve indicate standard deviation (20 runs).

• The optimal value of θ still cannot satisfy the requirement
of short-term memory capacity for the tasks with high-
order dynamic systems, as discussed in the beginning of
this section and illustrated in Fig. 2.

Based on the problems and their reasons, it is valuable to
further improve the memory capacity of TDR.

C. Selection of Nonlinear Type

In TDR, f applied in Equation (2) is the Mackey-Glass
oscillator [20]:

f (x) =
ηx

(1 + x)p
, (3)

where η is the feedback gain and the exponent p refers to
the nonlinear type of TDR. As explained by Appeltant et
al. [12], the exponent p plays an important role in changing
the nonlinearity of TDR, where smaller p indicates weaker
nonlinearity and longer memory, while larger p leads to higher
degree of nonlinearity. Fig. 3 shows how the NMSE of the
standard TDR varies with the exponent p of the Mackey-Glass
oscillator for two time series prediction tasks.

As for 10th order NARMA task shown in Fig. 3(a), when
p = 1, the standard TDR achieved its best NMSE. However,
larger values of p led to a dramatic increase in NMSE.
This is because the predictive performance for the 10th order
NARMA task relies on longer memory instead of higher non-
linearity. So, when p = 1 (which indicates longer memory),
the TDR can perform best. As we can see, the optimal value
of p may be different depending on the task being solved
and its underlying characteristics. As for the Santa Fe Laser
prediction task shown in Fig. 3(b), we also can see the NMSE
differences between p = 3 and p = 6.

Based on the analysis above, the value of the hyperparame-
ter p can have a significant impact on predictive performance,
which is highly dependent on the task being solved. It is valu-
able to research how to achieve good predictive performance
without having to rely on hyperparameters such as p.

III. SECOND-ORDER TIME DELAY RESERVOIR
COMPUTING

In this section, we introduce a second-order TDR to tackle
the mentioned-above problems, where Section III-A gives the
structure of second-order TDR, Section III-B introduces the
input layer of proposed model, and Section III-C gives the
construction of readout layer, respectively.

A. Construction of Second-order Time Delay Reservoir

In order to solve the limited predictive performance and
memory capacity in standard TDR, we propose a time-delay
reservoir with multi-time multiplexing by introducing another
delay τjump, which can establish the connection between the
current neuron and another neuron at different locations in
the previous layer(s). The approach is equipped with more
flexible time multiplexing and allows for the representation of
various dynamical timescales, specifically, the current neuron
state not only relates to the two states mentioned in Equation
(2) (xi−1(k) and xi(k − 1)), but also to states from different
locations in the previous layer, corresponding to a delay of
τjump. Therefore, the delay differential equation in our method
is described as follows:

ẋ(t) = −x(t) + f(x(t− τ), x(t− τ − τjump), I(t)). (4)

The two types of time delay are represented as follows:
τ = Nθ, (5) τjump = Jθ, (6)

where N is the number of nodes in the reservoir and θ is
the separation between neurons. Given that jump step J is an
integer within (0, N), Equation (4) can be rewritten by Euler
discretization with integration step θ := τ/N as follows:

xi =

{
xi−1(k)
1+θ + θf(xi(k−1),xi−J (k−1),Ii(k))

1+θ i ≥ J + 1
xi−1(k)
1+θ +

θf(xi(k−1),xN−(J−i)(k−2),Ii(k))
1+θ i < J + 1.

(7)

In the equation above, xi(k) is the i-th neuron value of the
k-th layer of the reservoir, xi(k−1) refers to the self-feedback,
which is the state of the neuron in the same position of k− 1
layer, and xi−1(k) denotes the neighboring-feedback, which
is the state of the neuron in the previous (i − 1) position in
the same layer. This is depicted in Fig. 4, which illustrates
the proposed approach. For different values of i = 1, 2, ..., N ,
three different scenarios are depicted in Fig. 4, where the first
two layers describe the scenario of i < J +1, the middle two
layers describe the scenario of i = J + 1, and the last two
layers describe the scenario of i > J + 1.

As shown in Fig. 4, within an interval τ , the DDE-based
TDR is discretized as N virtual neurons in the vertical
direction, and these virtual neurons are all history-dependent,
so that history states could be transferred in the horizontal
direction. In addition, the neuron states in the previous one
or two layers could also be transferred to the current state.



Fig. 4. Diagram of second-order time delay reservoir computing.

Therefore, the current state xi(k) in the second-order time
delay reservoir is traced form three components:

• Neighboring-feedback xi−1(k) in the same layer, denoted
by black solid vertical arrows in Fig. 4;

• Self-feedback xi(k−1) in the previous layer, denoted by
black dotted horizontal arrows in Fig. 4;

• Jump-feedback xi−J(k−1) or xN−(J−i)(k−2) with the
interval J , denoted by red solid arrows in Fig. 4.

For the sake of decoupling the exponent p of the Mackey-
Glass oscillator from the nonlinearity of the reservoir, we in-
troduce a parameter-free oscillation function with exponential
decay as the nonlinear function f in Equation (4), which is
described as:

f(x) = e−x sinx. (8)

Different from the Mackey-Glass oscillator (Equation (3)) that
has been generally used as f [12], this new nonlinear function
can be expanded to infinite order using Taylor expansions,∑∞
n=0

(−x)n
n!

∑∞
k=0(−1)k

x2k+1

(2k+1)! , which is an analytic func-
tion that convergences to the derivatives of arbitrary orders.
Therefore, there is no requirement of tuning the hyperpa-
rameter p of the Mackey-Glass oscillator to obtain different
nonlinear fitting for different tasks. In addition, the exponential
decay of the newly-applied oscillation function also matches
the fading memory of reservoir’s features.

B. Construction of Input Layer

As shown in Fig. 4, the time series sample z = z1, ..., zM is
given as input. Before the sample is imported into the reservoir,
there is a random input mask Win that will produce a new
signal I , which can be described as:

I =Winz, (9)

where Win ∈ RM×N . This process has two effects:

• The input mask distributes the information contained in
the same time series value into all neurons and it makes
the dimensional multiplexing of the input.

• The mask values with zero mean make the input time
series z with non-zero mean to be zero; such property
is convenient for eliminating the intercept in the ridge
regression.

C. Construction of Readout Layer

With the input signal of reservoir I(t), there is a corre-
sponding teaching signal y(t) ∈ RM and a M-dimensional
output could be obtained by output matrix and reservoir state
ŷ(t) := x(t)T×Wout. The training process will find the output
matrix Wout ∈ RN×M by minimizing the distance between
the output and the teaching signal, which is described as the
following optimization problem:

Wout := argmin
W

(
M∑
i=1

||x(i)T ×W − y(i)||2 + λ||W ||2
)
(10)

where ||W ||2 refers to a regularisation term to prevent over-
fitting, and λ controls its intensity. In order to optimize this
problem, ridge regression has been applied, whose solution
could be given by:

Wout = (XXT + λI)−1Xy. (11)

IV. EXPERIMENTS

In this section, we first conduct experiments to compare
the predictive performance resulting from the better memory
capacity and parameter-free nonlinear function of the proposed
STDR against the standard TDR. We ran both STDR and TDR
with Mackey-Glass (MG) and with our proposed exponential
nonlinear function (EXP) to support the analysis. Then, we
conduct comparisons with several benchmark models for time
series prediction, namely vanilla ESN [2], vanilla LSTM [21],
vanilla RNN [22], memory-augmented LSMT and memory-
augmented RNN [23]. As for the later two, another pa-
rameter D is introduced for the memory-augment, therefore,
memory-augmented LSMT and memory-augmented RNN will
be abbreviated as mLSTM FIXD and mRNN FIXD in the
following Sections. The hyperparameters of these approaches
are set as the same way with their corresponding literatures.

A. Time Series Tasks

This section explains the 155 time series tasks used in our
experiments, including 2 system identification tasks, 2 time
series prediction tasks, 1 spoken digit recognition task, and
150 memory mapping tasks.

1) System Identification Task: In the system identification
task, we considered the NARMA systems of order 10 and 20
respectively [19]:

y (t+ 1) =0.3y (t) + 0.05y (t)

9∑
i=0

y (t− i)

+ 1.5s (t− 9) s (t) + 0.1,

(12)



y (t+ 1) = tanh (0.3y (t) + 0.05y (t)

19∑
i=0

y (t− i)

+ 1.5s (t− 19) s (t) + 0.1),

(13)

where s (t) is the random input series ranged from [0, 0.5]
and y (t) is the output of the system. NARMA tasks aim at
measuring the ability of a neural network to model nonlinear
and long-term memory systems. We selected the NARMA
sequence with 8000 items, where the first 2000 were used
as the training set, the following 4000 were validation set,
and the remaining were testing set, the first 200 items of them
were used as the washout.

2) Time Series Prediction Tasks on Santa Fe Laser data
set: For the task of time series prediction, the Santa Fe Laser
data set [24] was used 1, which is a cross-cut through periodic
to chaotic intensity pulsations of a real laser. This task is to
predict the next value of the input sequence. Two different
Santa Fe datasets were used, the first of which is the univariate
time series A derived from laser-generated data, and the second
is the computer-generated time series D. For both time series
A and D, we selected the training, validation, testing sets and
washout as in the system identification tasks.

3) Time Series Prediction Tasks on Nonlinear Audio pre-
diction: We also applied a nonlinear audio prediction task,
which is to predict the future samples under the given history
horizon. We selected the training, validation, testing sets and
washout as in the system identification tasks

4) Memory and Nonlinear Mapping Tasks: This task [25]
is used to study two characteristics of the reservoir: memory
and the capacity of processing nonlinearities in the input time
series. The input signal s(t) is an uncorrelated uniform dis-
tribution over the range [−0.8, 0.8]. The task is to reconstruct
the delayed and nonlinear system as follows under the input
of s(t):

yp,d(t) = sign[β(t− d)] · |β(t− d)|p , (14)

where the delay (d > 0) controls the memory and the index
term (p > 0) controls the nonlinearity of the system. β(t− d)
is the product of two delayed successive inputs:

β(t− d) = s(t− d) · s(t− d− 1). (15)

We use 150 different readouts corresponding to different
combinations of d = 1, ..., 15 and p = 1, ..., 10. The training,
validation, testing sets and washout were selected as in the
system identification tasks.

5) Classification Task on Spoken Digit: In this task, we
applied an isolated spoken digit recognition data set obtained
from kaggle 2, which contains 1500 spoken isolated digits
from 0 to 9, and each digit is spoken 50 times by three
male speakers. Due to its limited number of items, 1350
items are used for training and 150 for testing, and 10-fold
cross validation was performed. The Mel-Frequency Cepstral
Coefficients (MFCC) is used for feature extraction in wave
signals.

1http://web.cecs.pdx.edu/ mcnames/DataSets/index.html
2https://www.kaggle.com/divyanshu99/spoken-digit-dataset

6) Classification Task on Chlorine Concentration Dataset:
It models the hydraulic and water quality behavior of water
distribution piping systems. The data set consists of 166 nodes
(pipe junctions) and measurement of the Chlorine concentra-
tion level at all these nodes during 15 days, which obtained
from UCR 3. We set 300 items for training, 600 items for
validation and 600 items for testing.

B. Experimental Setup

1) Quality Measures: Except for spoken digit recognition,
which is a classification task, we adopt the normalized mean
squared error (NMSE) as a measure of predictive performance
in our experiments [11]:

NMSE =

〈
‖ŷ(t)− y(t)‖2

〉
〈
‖y(t)− 〈y(t)〉‖2

〉 , (16)

where y(t) is the desired output (target), ŷ(t) is the readout
output, ‖.‖ denotes the Euclidean norm, and 〈.〉 denotes the
empirical mean. For spoken digit recognition, we use accuracy
(the fraction of correctly classified samples).

Short-term memory capacity is used to quantify the ability
of recurrent network architectures to encode past events in
their state space so that past items can be recovered. Given an
input signal s(t), for a delay k, we used the trained network to
conduct the task of outputting s(t−k) after observing s(t−k+
1), ..., s(t−1), s(t). The degree of the fitting is then measured
by:

MCk =
Cov2(s(t− k), y(t))
V ar(s(t))V ar(y(t))

, (17)

where y(t) is the observed network output, Cov denotes the
covariance and V ar denotes variance. The short-term memory
(STM) capacity is then given by [26]:

MC =

kmax∑
k=1

MCk. (18)

Due to the property of short-term memory of reservoirs, the
upper limit of the sum is set to kmax = 100 [27].

2) Reservoir Hyperparameter Selection: In the experiment,
the value of Win is randomly selected in [−0.1, 0.1]. By
applying Equation (8) and making hyperparameters α, β and
γ explicit as in [12], Equation (4) can be rewritten as:

ẋ(t) = −x(t)+sin(αx(t− τ) + βx(t− τ − τjump) + γI(t))

e(αx(t−τ)+βx(t−τ−τjump)+γI(t))
,

(19)
where α and β are hyperparameters indicating the trade-off
between the strength of self-feedback and jump-feedback, and
γ is a hyperparameter denoting the input gain. As in [12], the
input gain γ is set as 0.05 for time series prediction tasks and
0.5 for recognition tasks. In addition, we also investigate the
predictive performance and memory capacity of STDR with
different α and β values on each task in order to tune these
hyperparameter values.

3www.cs.ucr.edu/∼eamonn/time series data



We first checked which values of α and β led to better
NMSE values based on a grid search while fixing J = 103.
We then checked the MC values corresponding to the different
NMSE values (Fig. 5(a)) and chose the α and β values that
best matched the desired nonlinear order for the task in hand
whilst achieving good NMSE values. The value of J = 103
was chosen for leading to the best NMSE when using α =
β = 0.6 on 10th order NARMA (Fig. 5(b)), and J = 185, 179
for the 20th NARMA and Santa Fe Laser tasks, respectively.
Based on this procedure, the following values were adopted:
α = 0.6 and β = 0.6 for the 10th order NARMA, α = 0.1
and β = 0.9 for 20th order NARMA, α = 0.9 and β =
0.02 for the Santa Fe Laser tasks, and α = 0.6 and β = 0.6
for the memory and nonlinear mapping tasks. For each task,
TDR’s hyperparameters were tuned based on the procedure
recommended in the literature [12].

Fig. 5. (a) Memory capacity under different α and β; (b) NMSE under
different J for 10-th order Narma task; (c) NMSE under different J for 20-th
order Narma task; (d) NMSE under different J for Santa Fe.

We will present the average results across 20 runs for each
approach on each task using three different reservoir sizes (N
= 100, 200, and 300), except for the memory and nonlinear
mapping tasks, where N = 100 due to the large number of
experiments.

Fig. 6. NMSE obtained by TDR-MG, STDR-MG, TDR-EXP, and STDR-
EXP for the memory and nonlinear mapping tasks with different delay d and
nonlinear degree p.

Fig. 7. Differences between NMSE values of (a) TDR-EXP and TDR-MG,
(b) STDR-MG and TDR-MG for nonlinear mapping tasks with different delay
d and nonlinear degree p.

C. Experimental Results

In this section, we first give the validation of the benefits
of the proposed method compared with the standard TDR in
Section IV-C1. Furthermore, the comparison results with other
existing methods are also introduced Section IV-C2.

1) Validating the benefits of the proposed method over
standard TDR: In order to verify the benefits of our proposed
method over the standard TDR, the experiments of standard
TDR and STDR with classic nonlinear function (MG) and our
proposed one (EXP) are carried on, respectively. The tasks
mentioned in Section IV-A are all applied for the validation.
The average predictive performance for each task except the
memory and nonlinear mapping tasks is presented in Table I.
For the memory and nonlinear mapping tasks, the results are
presented in Fig. 6 and 7, as there are 150 tasks.

Table I indicates that STDR outperforms the standard TDR.
The results based on the proposed EXP nonlinear function
appear slightly better than those based on MG.

By examining Fig. 6 to compare the results of TDR and
STDR with the same nonlinear function, we can see that STDR
has larger area corresponding to better NMSE (NMSE< 1.0),
indicating that STDR has greater ability to fit wider ranges
of delay and nonlinearity. Fig. 7(b) further shows that STDR
also tends to generate better NMSE with increasing delay d
compared with TDR. Fig. 7(a) also shows that the differences
in NMSE obtained by TDR with EXP and MG are not so
large as the differences obtained between STDR and TDR in
Fig. 7(b).

In addition, we performed Mann–Whitney U tests with level
of significance 0.05 to compare the predictive performance
obtained by each methods across tasks, of which the results
are shown in the Table II. Based on the comparisons TDR-EXP
vs TDR-MG (p-value=0.04448), we can see that EXP provides
some help to improve predictive performance. Based on the
comparisons STDR-EXP vs TDR-EXP (p-value = 0.0002198)
and STDR-MG vs TDR-MG (p-value=0.0001230), we can
confirm that the proposed features of the STDR approach
designed to obtain better memory capacity are helpful to
improve predictive performance across tasks.

Therefore, the main feature of our proposed approach that



TABLE I
THE RESULTS OF TDR AND STDR WITH DIFFERENT NONLINEAR FUNCTION FOR DIFFERENT TASKS. THE BEST RESULT IS HIGHLIGHTED IN BOLD.

10-th order
Narma

20-th order
Narma

Santa Fe
Set-A

Santa Fe
Set-D

Nonlinear
Audio

Chlorine
Concentration

Spoken Digit
RecognitionNode size Methods NMSE Accuracy

TDR-MG 0.1239 0.6245 0.0158 0.0231 0.0461 0.8700 0.9033
TDR-EXP 0.1231 0.6245 0.0200 0.0232 0.0416 0.9025 0.9080
STDR-MG 0.0509 0.3908 0.0173 0.0299 0.0310 0.8956 0.9106100

STDR-EXP 0.0496 0.3897 0.0136 0.0229 0.03495 0.9280 0.9220
TDR-MG 0.0788 0.3480 0.0115 0.0171 0.0607 0.8979 0.9046
TDR-EXP 0.0774 0.3499 0.0124 0.0172 0.0476 0.9025 0.9106
STDR-MG 0.0145 0.1842 0.0139 0.0171 0.0185 0.9257 0.9126200

STDR-EXP 0.0143 0.1804 0.0110 0.0170 0.0156 0.9164 0.9233
TDR-MG 0.0674 0.3470 0.0119 0.0141 0.1483 0.9095 0.9073
TDR-EXP 0.0675 0.3441 0.0135 0.0151 0.3490 0.9025 0.9066
STDR-MG 0.0118 0.1600 0.0116 0.0136 0.0267 0.9234 0.9200300

STDR-EXP 0.0117 0.1596 0.0108 0.0132 0.0189 0.9241 0.9233

TABLE II
THE RESULTS OF MANN–WHITNEY U TESTS.

Comparsion pairs TDR-MG
TDR-EXP

TDR-MG
STDR-MG

TDR-MG
STDR-EXP

TDR-EXP
STDR-MG

TDR-EXP
STDR-EXP

P-value 0.04448 0.0001230 0.0001649 0.0002198 0.0002198

TABLE III
RESULTS COMPARISONS WITH EXISTING MODELS.THE BEST RESULT IS HIGHLIGHTED IN BOLD.

Methods
10-th order

Narma
20-th order

Narma
Santa Fe

Set-A
Santa Fe

Set-D
Nonlinear

Audio
Chlorine

Concentration
Spoken Digit
Recognition

M-W
U test

NMSE Accuracy P value
ESN 0.0762 0.6343 0.0579 0.0358 0.0538 0.6589 0.8133 3.527e-7

LSTM 0.1399 0.2759 0.0235 0.0241 0.0461 0.6880 0.9000 1.909e-7
RNN 0.1423 0.4292 0.0694 0.0287 0.0746 0.6312 0.8800 3.397e-8

mLSTM FIXD 0.2067 0.3752 0.0277 0.0303 0.0308 0.6239 0.9010 3.397e-8
mRNN FIXD 0.0189 0.2455 0.0098 0.0533 0.0454 0.6203 0.9000 0.0402
STDR-EXP 0.0143 0.1804 0.0110 0.0170 0.0156 0.9164 0.9233 -

improves predictive performance across tasks is STDR. EXP
provides some help to improve predictive performance, but its
main role is that of reducing the number of hyperparameters
that need to be tuned while at least maintaining the predictive
performance that would have been obtained with a tuned MG
function.

2) Results comparisons with existing models: Besides
the comparisons with standard TDR, we also compared
our method with other existing models, which are vanilla
ESN, vanilla LSTM, vanilla RNN, mLSTM FIXD and
mRNN FIXD. The comparison results are shown in Table III.
To make sure the fair comparison, the nodes size of our
proposed STDR-EXP is set as the same as the hidden size
of other models, which are 200 nodes.

In summary, our proposed method outperforms the existing
models on both of the artificial datasets and real-world datasets
for the prediction and classification tasks, except for the Santa
Fe Set-A, where the proposed approach performed closely
to mRNN FIXD. The Mann–Whitney U tests of the existing
models with STDR-EXP are conducted, of which P value are
given in Table III. The level of significance is 0.05, therefore,
we can confirm that our proposed STDR-EXP can improve the
predictive performance and classification accuracy compared
with the existing models.

V. CONCLUSION

In this paper, we have considered the problems of
limited predictive performance and memory capacity, and
hyperparameter-dependent oscillation function in standard
TDRs, analyzing these limitations and giving their correspond-
ing reasons. In order to address these limitations, a second-
order time delay reservoir is proposed, which makes the time
multiplexing of TDR more flexible to process time series. Spe-
cially, an oscillation function with exponential decay is applied
to design the novel reservoir by DDE model, decoupling the
dependency between related hyperparameter of reservoir and
nonlinearity of data sets. The results of our experiments with
multi-view data sets show that the second order time-delay
reservoir outperform the standard TDR and some existing
models on both of time series prediction and recognition tasks.

The proposed reservoir is limited to second order and even
higher orders may be necessary for certain problems. In the
future, we will study higher-order TDRs and make use of
evolutionary approaches to search for an optimal order of TDR
for different applied tasks. In addition, the computation cost
of higher-order TDR will also be further studied.



REFERENCES
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