UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

Afferent visual manifestations of traumatic brain injury

Saliman, Noor Haziq; Belli, Antonio; Blanch, Richard

DOI: 10.1089/neu.2021.0182

License: None: All rights reserved

Document Version Peer reviewed version

Citation for published version (Harvard):

Saliman, NH, Belli, A & Blanch, R 2021, 'Afferent visual manifestations of traumatic brain injury', *Journal of Neurotrauma*, vol. 38, no. 20, pp. 2778-2789. https://doi.org/10.1089/neu.2021.0182

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Figure 1: Schematic representation of dynamic pupil response measured using automated pupilometer. Pupil diameter at pre- and post-stimulus for each parameter indicated by the open circles. The size of each circle corresponds to the size of pupil diameter. Pre-stimulus time is 0.5 second and the poststimulus time is 6.0 seconds.

Figure 2: This diagram shows a cross-sectional image of the retina scanned using OCT. The common two layers investigated in TBI studies are RNFL (green line) and ganglion cell layer (purple line). Some studies reported the GCC which comprises GCL and inner plexiform layer (blue line), because of the difficulty in segmenting these two layers. The bottom two lines indicate the retinal pigment epithelium (RPE) and Bruch's membrane (BM). The yellow arrow shows the interdigitation zone at the fovea centralis, where the outer segment of photoreceptors located.