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A well-known theorem due to Koksma states that for Lebesgue almost every x > 1 the

sequence (xn)∞n=1 is uniformly distributed modulo one. In this paper, we give sufficient

conditions for an analogue of this theorem to hold for a self-similar measure. Our

approach applies more generally to sequences of the form (fn(x))∞n=1 where (fn)∞n=1 is

a sequence of sufficiently smooth real-valued functions satisfying some nonlinearity

conditions. As a corollary of our main result, we show that if C is equal to the middle

3rd Cantor set and t ≥ 1, then with respect to the natural measure on C + t, for almost

every x, the sequence (xn)∞n=1 is uniformly distributed modulo one.

1 Introduction

A sequence (xn)∞n=1 of real numbers is said to be uniformly distributed modulo one if

for every pair of real numbers u, v with 0 ≤ u < v ≤ 1 we have

lim
N→∞

#{1 ≤ n ≤ N : xn mod 1 ∈ [u, v]}
N

= v − u. (1.1)

The study of uniformly distributed sequences has its origins in the pioneering work of

Weyl [30] from the early 20th century. From these beginnings, this topic has developed

into an important area of mathematics, with many deep connections to ergodic theory,

number theory, and probability theory. Generally speaking, it is a challenging problem

to determine whether a given sequence of real numbers is uniformly distributed modulo
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2 S. Baker

one. Often, the sequences one considers are of dynamical or number theoretic origins.

For an overview of this topic, we refer the reader to [6, 23] and the references therein.

In this paper, we are interested in the distribution of the sequence (xn)∞n=1

modulo one for x > 1. The study of these sequences dates back to the work of Hardy [15]

and Pisot [24, 25]. It is a difficult problem to describe the distribution of (xn)∞n=1 modulo

one for specific values of x. It is still unknown whether there exists a transcendental

x > 1 such that limn→∞ infm∈N |xn − m| = 0. For some further background and recent

results on the distribution of the sequence (xn)∞n=1, we refer the reader to [1–4, 6–8, 12]

and the references therein. The generic behaviour of the sequence (xn)∞n=1 modulo one

for x > 1 is described by a well-known theorem due to Koksma [22]. This theorem states

that for Lebesgue almost every x > 1 the sequence (xn)∞n=1 is uniformly distributed

modulo one. We are interested in determining whether analogues of Koksma’s theorem

hold for more general measures. More specifically, suppose μ is a Borel probability

measure supported on [1, ∞) that is defined “independently” from the family of maps

{fn(x) = xn}∞n=1, we are interested in determining whether for μ almost every x the

sequence (xn)∞n=1 is uniformly distributed modulo one. Of course, the important detail

here is what exactly it means for a Borel probability measure to be independent from the

family of maps {fn(x) = xn}∞n=1. A natural family of measures to consider here is the self-

similar measures generated by iterated function systems (defined in Section 3). For our

purposes, an iterated function system will consist of a finite collection of contracting

affine maps. Since for any n ≥ 2 the map fn(x) = xn is not affine, one could view the fact

that self-similar measures are defined using affine maps as some sort of independence.

As such the following conjecture seems plausible.

Conjecture 1.1. Let μ be a non-atomic self-similar measure with support contained

in [1, ∞). Then for μ almost every x, the sequence (xn)∞n=1 is uniformly distributed

modulo one.

In this paper, we do not prove Conjecture 1.1. Our main contribution in this

direction is Theorem 2.1, which lends significant weight to its validity. We conclude this

introductory section by giving an overview of a number of related results that motivated

the present work.

One of the most well-known results from uniform distribution theory states

that for any integer b ≥ 2, for Lebesgue almost every x ∈ R the sequence (bnx)∞n=1 is

uniformly distributed modulo one (see [6, 23]). In what follows, we say that x is b-normal

if (bnx)∞n=1 is uniformly distributed modulo one. For an arbitrary Borel probability
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Equidistribution Results for Self-Similar Measures 3

measure μ supported on R, which is defined “independently” from the dynamical system

x → bx mod 1, it is natural to wonder whether x is b-normal for μ almost every x. Just as

above, the important detail here is what it means for a Borel probability measure to be

independent from the dynamical system x → bx mod 1. The following metaconjecture

encapsulates many important results in this direction.

Conjecture 1.2. Suppose μ is a Borel probability measure that is “independent” from

the dynamical system x → bx mod 1. Then μ almost every x is b-normal.

The 1st instances of this metaconjecture being verified are found in the papers

of Cassels [9] and Schmidt [28]. These authors were motivated by a question of Steinhaus

as to whether there exists an x that is b-normal for infinitely many b but not all b. They

answered this question in the affirmative by proving that with respect to the natural

measure on the middle 3rd Cantor set, almost every x is b-normal if b is not a power of

three. The underlying independence here comes from the middle 3rd Cantor set being

defined by similarities with contraction ratios equal to 1/3 and b having a prime factor

not equal to 3. The current state of the art in this area is the following two theorems

due to Hochman and Shmerkin [17] and Dayan et al. [10].

Theorem 1.3. [17, Theorem 1.4] Let {ϕi(x) = rix + ti}i∈A be an iterated function system

satisfying the open set condition. Suppose b ≥ 2 is such that log |ri|
log b /∈ Q for some i ∈ A,

then for every fully supported (we say that a self-similar measure is fully supported if

the corresponding probability vector (pi)i∈A satisfies pi > 0 for all i ∈ A) non-atomic

self-similar measure μ, μ almost every x is b-normal.

Theorem 1.4. [10, Theorem 4] Let {ϕi(x) = x
b + ti}i∈A be an iterated function system.

Suppose ti − tj /∈ Q for some i, j ∈ A, then for every fully supported non-atomic self-

similar measure μ, μ almost every x is b-normal.

Some other important contributions in this area include the papers by Kaufman

[20] and Queffélec and Ramaré [27], who constructed Borel probability measures

supported on subsets of the badly approximable numbers whose Fourier transform

converges to zero polynomially fast. Kaufman [21] has also shown that such measures

exist for the α-well approximable numbers. The results of Kaufman [20] and Queffélec

and Ramaré [27] were recently extended by Jordan and Sahlsten [19] to a more general

class of measures. Importantly, if the Fourier transform of a Borel probability measure
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4 S. Baker

converges to zero sufficiently fast (polynomial speed is sufficient), then it can be shown

that almost every point with respect to this measure is b-normal for any b ≥ 2. In fact,

by a recent result of Pollington et al. [26], if the Fourier transform of a Borel probability

measure converges to zero sufficiently fast, then for almost every x, (1.1) holds for the

sequence (bnx)∞n=1 with an explicit error term.

Another related result was recently proved by Simmons and Weiss [29]. They

proved that if X ⊂ R is a self-similar set satisfying the open set condition, then with

respect to the natural measure on X, the orbit under the Gauss map (x → 1/x mod 1) of

almost every x equidistributes with respect to the Gauss measure. Here the important

point is that the natural measure on X is defined independently from the dynamics of

the Gauss map.

One of the challenges faced when addressing Conjecture 1.1 is that, at least to

the best of the author’s knowledge, there is no dynamical system that effectively cap-

tures the distribution of (xn)∞n=1 modulo one. As such one cannot rely upon techniques

from ergodic theory to prove this conjecture. Techniques from ergodic theory were

previously applied with great success in the proofs of Theorems 1.3 and 1.4. Instead

of using these techniques, our approach will exploit the fact that the maps fn(x) = xn

are not affine for n ≥ 2 and the fact that self-similar measures are defined using

affine maps.

2 Statement of Results

Our main contribution in the direction of Conjecture 1.1 is the following theorem.

Theorem 2.1. Let {ϕi(x) = rx + ti}i∈A be an equicontractive iterated function system

satisfying the convex strong separation condition with self-similar set X contained in

[1, ∞). Moreover, let (pi)i∈A be a probability vector satisfying

1

2
<

−∑
i∈A pi log pi

− log |r| .

Then with respect to the self-similar measure μ corresponding to (pi)i∈A, for μ almost

every x the sequence (xn)∞n=1 is uniformly distributed modulo one.

We define what we mean by iterated function system, self-similar set, and what

it means for an iterated function system to be equicontractive and to satisfy the convex

strong separation condition in Section 3. Importantly, both of these conditions are

satisfied by the iterated function system {φ1(x) = x+2t
3 , φ2(x) = x+2+2t

3 } for any t ∈ R. The
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Equidistribution Results for Self-Similar Measures 5

self-similar set for this iterated function system is C+t where C is the middle 3rd Cantor

set. Using the fact that the restriction of the log 2
log 3 -dimensional Hausdorff measure

on C + t coincides with the self-similar measure corresponding to the probability

vector (pi)
2
i=1 = (1/2, 1/2), we see that Theorem 2.1 immediately implies the following

corollary. (The restriction of the log 2
log 3-dimensional Hausdorff measure on C + t is given

by μ(A) = H
log 2
log 3 (A ∩ (C + t)). Here H

log 2
log 3 is the log 2

log 3 -dimensional Hausdorff measure. For

more on Hausdorff measure, see [13]. The restriction of the log 2
log 3 -dimensional Hausdorff

measure on C + t can be thought of as the natural measure on C + t.)

Corollary 2.2. Let C be the middle 3rd Cantor set. Then for any t ≥ 1, with respect to

the restriction of the log 2
log 3 -dimensional Hausdorff measure on C + t, for almost every x

the sequence (xn)∞n=1 is uniformly distributed modulo one.

Theorem 2.1 is implied by the following more general theorem, which applies to

a general class of functions.

Theorem 2.3. Let {ϕi(x) = rx + ti}i∈A be an equicontractive iterated function system

satisfying the convex strong separation condition with self-similar set X contained in

[1, ∞). Let (fn)∞n=1 be a sequence of functions satisfying the following properties:

A. fn ∈ C3(conv(X),R) for each n. (Here conv(X) denotes the convex hull of X

and C3(conv(X),R) denotes the set of three times differentiable functions

from conv(X) to R.)

B. There exists C1, C2 > 0 such that for any m, n with m < n we have the

following:

|f ′
n(x) − f ′

m(x)| ≤ C1nC2xn−1

for all x ∈ conv(X).

C. There exists C3 > 0 such that for all n sufficiently large, for any m < n, we

have the following:

|f ′′
n(x) − f ′′

m(x)| ≥ C3xn−2

for all x ∈ conv(X).

D. For any m, n with m < n we have either

f ′′′
n (x) − f ′′′

m(x) ≥ 0
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6 S. Baker

for all x ∈ conv(X) or

f ′′′
n (x) − f ′′′

m(x) ≤ 0

for all x ∈ conv(X).

Moreover, let (pi)i∈A be a probability vector satisfying

1

2
<

−∑
i∈A pi log pi

− log |r| .

Then with respect to the self-similar measure μ corresponding to (pi)i∈A, for μ almost

every x the sequence (fn(x))∞n=1 is uniformly distributed modulo one.

Remark 2.4. To see how Theorem 2.1 follows from Theorem 2.3, let fn(x) = xn for all

n ≥ 1. Then for any m, n with m < n and x ≥ 1 we have

|f ′
n(x) − f ′

m(x)| = nxn−1 − mxm−1 ≤ 2nxn−1

and

f ′′′
n (x) − f ′′′

m(x) = n(n − 1)(n − 2)xn−3 − m(m − 1)(m − 2)xm−3 ≥ 0.

Moreover, if n also satisfies n ≥ 2, then

|f ′′
n(x) − f ′′

m(x)| = n(n − 1)xn−2 − m(m − 1)xm−1 ≥ (n(n − 1) − m(m − 1))xn−2 ≥ xn−2.

Therefore, properties B, C, and D of Theorem 2.3 are satisfied by the sequence of

functions (fn(x) = xn)∞n=1. Property A of Theorem 2.3 is obviously satisfied by this

sequence of functions. Therefore, Theorem 2.1 follows from Theorem 2.3.

Remark 2.5. Note that we have deliberately phrased Theorem 2.3 with its application

in the proof of Theorem 2.1 in mind. Theorem 2.3 still holds if the inequalities in

property B and property C are replaced with the perhaps more natural inequalities:

|f ′
n(x) − f ′

m(x)| ≤ C1nC2xn
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Equidistribution Results for Self-Similar Measures 7

and

|f ′′
n(x) − f ′′

m(x)| ≥ C3xn.

These inequalities can be shown to be equivalent to those stated in property B and

property C by altering the constants C1 and C3 appropriately. In particular, because

conv(X) is a compact subset of [1, ∞), the extra powers of x can be reconciled by altering

the leading constant term.

Remark 2.6. The hypotheses of Theorem 2.3 are satisfied by many sequences of

functions. For instance, we could take fn(x) = xn+xn−1+· · ·+x+1 for all n. Alternatively,

we could fix a polynomial g with strictly positive coefficients and let fn(x) = g(x)xn for

all n, or fn(x) = g(n)xn for all n. Each of these sequences of functions satisfies the

hypotheses of Theorem 2.3.

We can build further examples by taking a sequence of functions (fn)∞n=1, which

satisfies the hypotheses of Theorem 2.3, and a sequence of functions (gn)∞n=1 whose 1st

and 2nd derivatives grow subexponentially in n and which also satisfies property D

with the same sign as (fn)∞n=1. The sequence (fn + gn)∞n=1 would then satisfy the

hypotheses of Theorem 2.3. To be more precise, we could take (fn)∞n=1 to be any sequence

of functions satisfying the hypotheses of Theorem 2.3 where property D is satisfied with

positive sign; we then define a new sequence of functions (hn(x) = fn(x) + n log x)∞n=1.

The sequence (hn)∞n=1 then satisfies the hypotheses of Theorem 2.3 if conv(X) ⊂ (1, ∞).

The rest of this paper is organised as follows. In Section 3, we recall the

necessary preliminaries from fractal geometry and the theory of uniform distribution.

In Section 4, we prove Theorem 2.3.

3 Preliminaries

3.1 Fractal geometry

We call a map ϕ : R → R a similarity if it is of the form ϕ(x) = rx+t for some r ∈ (−1, 0)∪
(0, 1) and t ∈ R. We call a finite set of similarities {ϕi}i∈A an iterated function systems

or IFS for short. Here and throughout, A denotes an arbitrary finite set. Given an IFS

{ϕi(x) = rix + ti}i∈A, we say that it is equicontractive if there exists r ∈ (−1, 0) ∪ (0, 1)

such that ri = r for all i ∈ A. Throughout this paper, we will assume that if {ϕi}i∈A is an

equicontractive IFS then r ∈ (0, 1). For each of our theorems, there is no loss of generality

in making this assumption. This is because if {ϕi}i∈A is an equicontractive IFS satisfying
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8 S. Baker

the convex strong separation condition, then {ϕi ◦ϕj}(i,j)∈A2 is also an equicontractive IFS

satisfying the convex strong separation condition and the contraction ratio is positive.

Moreover, any self-similar measure for {ϕi}i∈A can be realised as a self-similar measure

for {ϕi ◦ ϕj}(i,j)∈A2 .

An important result due to Hutchinson [18] states that for any IFS {ϕi}i∈A, there

exists a unique non-empty compact set X satisfying

X =
⋃
i∈A

ϕi(X).

X is called the self-similar set of {ϕi}i∈A. The middle 3rd Cantor set and the

von-Koch curve are well-known examples of self-similar sets. Given a finite word

a = (a1, . . . , aM) ∈ ⋃∞
k=1 Ak, we let

ϕa := ϕa1
◦ · · · ◦ ϕaM

and Xa := ϕa(X).

For distinct a, b ∈ AM we let

|a ∧ b| := inf
{
1 ≤ k ≤ M : ak �= bk

}
.

Given an IFS {ϕi}i∈A and a probability vector p := (pi)i∈A, there exists a unique Borel

probability measure μp satisfying

μp =
∑
i∈A

pi · μp ◦ ϕ−1
i . (3.1)

We call μp the self-similar measure corresponding to {ϕi}i∈A and p. When the choice of p

is implicit, we simply denote μp by μ. For our purposes, it is important that the relation

(3.1) can be iterated and for any M ∈ N the self-similar measure μp satisfies

μp =
∑

a∈AM

pa · μp ◦ ϕ−1
a , (3.2)

where pa = ∏M
k=1 pak

for a = (a1, . . . , aM). Given a probability vector p, we define the

entropy of p to equal

h(p) := −
∑
i∈A

pi log pi.

We emphasise that this quantity appears in the hypotheses of Theorems 2.1 and 2.3.
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Equidistribution Results for Self-Similar Measures 9

Many results in the study of self-similar sets require additional separation

conditions on the IFS. Often, one restricts to the case when the IFS satisfies the strong

separation condition or the open set condition (see [13, 14]). In this paper, we will

require a slightly stronger separation condition that is still satisfied by many well-

known self-similar sets. Given an IFS {ϕi}i∈A, we say that {ϕi}i∈A satisfies the convex

strong separation condition if the convex hull of X satisfies the following:

ϕi(conv(X)) ∩ ϕj(conv(X)) = ∅ ∀i �= j.

Iterated function systems satisfying the convex strong separation condition were also

studied by Boore and Falconer [5]. It is easy to construct iterated function systems

satisfying the convex strong separation condition. For example, if we fix r ∈ (0, 1) and

{ti}n
i=1 a finite set of real numbers satisfying t1 < t2 < · · · < tn, 1 − r ≤ t1, r < ti+1 − ti,

and tn ≤ t1 + 1 − r, then {ϕi(x) = rx + ti}n
i=1 is an IFS, which satisfies the convex strong

separation condition and whose self-similar set is contained in [1, ∞).

To help with our exposition, we state here an identity that will be used several

times in our proof of Theorem 2.3. Suppose {ϕi}i∈A is an equicontractive IFS and

f ∈ C1(conv(I),R). Then for any a ∈ AM , it follows from the chain rule that the following

equality holds

(f ◦ ϕa)′(x) = rMf ′(ϕa(x)). (3.3)

3.2 Uniform distribution

To prove Theorem 2.3, we will make use of a well-known criterion due to Weyl for

uniform distribution in terms of exponential sums (see [6, Theorem 1.2] and [30]) and

a result due to Davenport et al. (see [6, Lemma 1.8] and [11]). Combining these results,

we may deduce the following statement.

Proposition 3.1. Let μ be a Borel probability measure on R and (fn)∞n=1 be a sequence

of continuous real-valued functions. If for any l ∈ Z \ {0}, the series

∞∑
N=1

1

N

∫ ∣∣∣∣∣ 1

N

N∑
n=1

e2π ilfn(x)

∣∣∣∣∣
2

dμ

converges, then for μ almost every x the sequence (fn(x))∞n=1 is uniformly distributed

modulo one.
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10 S. Baker

Proposition 3.1 is the tool that enables us to prove Theorem 2.3. We will also

rely on the following technical lemma due to van der Corput; for a proof of this lemma,

see [23, Lemma 2.1].

Lemma 3.2 (van der Corput lemma). Let φ : [a, b] → R be differentiable. Assume that

|φ′(x)| ≥ γ for all x ∈ [a, b], and φ′ is monotonic on [a, b]. Then∣∣∣∣∣
∫ b

a
e2π iφ(x) dx

∣∣∣∣∣ ≤ γ −1.

Notation. Throughout this paper, we will use exp(x) to denote e2π ix. Given two complex

valued functions f and g, we write f = O(g) if there exists C > 0 such that |f (x)| ≤ C|g(x)|
for all x. If the underlying constant depends upon some parameter s, and we want to

emphasise this dependence, we write f = Os(g). Given an interval I, we let |I| denote the

Lebesgue measure of I.

4 Proof of Theorem 2.3

Let us now fix an IFS {ϕi}i∈A, a probability vector p, and a sequence of functions (fn)∞n=1

so that the hypotheses of Theorem 2.3 are satisfied. We let μ denote the self-similar

measure corresponding to p. Recall that r denotes the contraction ratio of the elements

of {ϕi}i∈A, and X denotes the corresponding self-similar set. In what follows, we let

I := conv(X).

Moreover, given a word a ∈ ∪∞
k=1Ak, we let Ia := ϕa(I).

Recall that X ⊂ [1, ∞). For technical reasons, it is useful to restrict our

arguments to subsets of X that are a uniform distance away from 1. With this in mind,

we let the parameter κ > 0 denote any small real number such that 1 + κ /∈ X. It

follows from the convex strong separation condition that κ exists and can be taken

to be arbitrarily small. Given such a κ > 0, we fix δκ > 0 to be any sufficiently small real

number so that if we let

	κ := max
{

rδκ ,
1

r2δκ

(
e2(−h(p)+δκ )

r

) log(1+κ)
−2 log r

,
1 + δκ

r3δκ

(
e2(−h(p)+δκ )

r

) log(1+κ)
−2 log r

,

1 + δκ

r3δκ

(
e−h(p)+δκ

rδκ

) log(1+κ)
−2 log r }

,
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Equidistribution Results for Self-Similar Measures 11

then

	κ < 1.

Such a δκ > 0 exists because of our underlying assumption

1

2
<

h(p)

− log r
,

which is equivalent to

e−2h(p)

r
< 1.

Moreover, given such a κ, and δκ chosen to be sufficiently small so that the above is

satisfied, we fix Nκ to be any sufficiently large natural number so that

max
a∈ANκ

sup
x,y∈Ia

x

y
< 1 + δκ ,

and for any a ∈ ANκ we have either

sup Ia < 1 + κ or inf Ia > 1 + κ.

Such an Nκ exists because 1 + κ /∈ X and X is compact.

Given a word c ∈ ∪∞
k=1Ak, we let

μ̃c := μ|Xc

μ(Xc)
.

It is a consequence of the convex strong separation condition that μ̃c = μ ◦ ϕ−1
c . We will

use this equality during our proof of Theorem 2.3.

It is a consequence of the following proposition that we can use Proposition 3.1

to prove Theorem 2.3.

Proposition 4.1. Assume that {ϕi}i∈A, p, and (fn)∞n=1 satisfy the hypotheses of Theorem

2.3. Then for any κ > 0 such that 1 + κ /∈ X, there exists γ := γ (κ, p) ∈ (0, 1) such that for

any l ∈ Z \ {0}, n > m, and c ∈ ANκ satisfying inf Ic > 1 + κ, we have

∫
exp(l(fn(x) − fm(x))) dμ̃c = Oκ,l(γ

n).
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12 S. Baker

We now include the short argument explaining how Theorem 2.3 follows from

Proposition 4.1.

Proof of Theorem 2.3. It will be shown below that Proposition 4.1 implies that for any

κ > 0 such that 1 + κ /∈ X, if c ∈ ANκ is such that inf Ic > 1 + κ, then for μ̃c almost every

x the sequence (fn(x))∞n=1 is uniformly distributed modulo one. It then follows from the

definition of Nκ and the self-similarity of μ (i.e., (3.2)), that this statement implies that

for μ almost every x > 1 + κ the sequence (fn(x))∞n=1 is uniformly distributed modulo

one. Since there exists arbitrarily small κ > 0 satisfying 1+κ /∈ X, we may conclude that

for μ almost every x > 1 the sequence (fn(x))∞n=1 is uniformly distributed modulo one.

Since μ({1}) = 0, Theorem 2.3 follows. To complete our proof of Theorem 2.3, it suffices

to show that our initial statement is true.

Let us now fix κ > 0 such that 1 + κ /∈ X and c ∈ ANκ such that inf Ic > 1 + κ. By

Proposition 3.1, to prove that for μ̃c almost every x the sequence (fn(x))∞n=1 is uniformly

distributed modulo one, it suffices to show that for any l ∈ Z \ {0} we have

∞∑
N=1

1

N

∫ ∣∣∣∣∣ 1

N

N∑
n=1

exp(lfn(x))

∣∣∣∣∣
2

dμ̃c(x) < ∞. (4.1)

Expanding this expression, we obtain

∞∑
N=1

1

N

∫ ∣∣∣∣∣ 1

N

N∑
n=1

exp(lfn(x))

∣∣∣∣∣
2

dμ̃c(x)

=
∞∑

N=1

⎛
⎜⎜⎝ 1

N2 + 1

N3

∑
1≤n,m≤N

n�=m

∫
exp(l(fn(x) − fm(x))) dμ̃c

⎞
⎟⎟⎠ . (4.2)

The 1/N2 term appearing in (4.2) does not affect the convergence properties of this

series. As such it suffices to consider the remaining terms, which we can rewrite as

∞∑
N=1

1

N3

∑
1≤n,m≤N

n�=m

∫
exp(l(fn(x) − fm(x))) dμ̃c =

∞∑
N=1

1

N3

N∑
n=2

n−1∑
m=1

∫
exp(l(fn(x) − fm(x))) dμ̃c

(4.3)

+
∞∑

N=1

1

N3

N∑
n=2

n−1∑
m=1

∫
exp(l(fn(x) − fm(x))) dμ̃c.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab056/6246797 by Ian N

orthover on 19 O
ctober 2021



Equidistribution Results for Self-Similar Measures 13

Substituting the bound provided by Proposition 4.1 into (4.3), we obtain

∣∣∣∣∣∣∣∣
∞∑

N=1

1

N3

∑
1≤n,m≤N

n�=m

∫
exp(l(fn(x) − fm(x))) dμ̃c

∣∣∣∣∣∣∣∣ = Oκ,l

( ∞∑
N=1

1

N3

N∑
n=2

n−1∑
m=1

γ n

)

= Oκ,l

( ∞∑
N=1

1

N3

N∑
n=2

nγ n

)

= Oκ,l

( ∞∑
N=1

1

N3

)

< ∞.

In the penultimate line in the above, we have used the fact that
∑N

n=2 nγ n can be

bounded above by a constant independent of N. We see that (4.1) now holds for any

l ∈ Z \ {0} and our proof is complete. �

4.1 Proof of Proposition 4.1

Throughout the rest of this section, the parameter κ is fixed. We assume that δk and Nκ

have been chosen so that the properties stated at the start of this section are satisfied.

We also fix a word c ∈ ANκ satisfying inf Xc > 1+κ. We start our proof of Proposition 4.1

by defining several objects and collecting some useful estimates.

We let x0 and x1 be such that

Ic = [x0, x1].

Recall that by the definition of Nκ we have

x1

x0
< 1 + δκ . (4.4)

Given l ∈ Z \ {0} and n ∈ N, we define

M = M(c, l, κ, n) :=
⌊

1 + log 2πC1|l||I| + C2 log n + (n − 1) log x1

−2 log r

⌋
+ δkn.

Importantly, M has the property that

rδκn+Nκ+2 ≤ 2πC1|l||I|nC2xn−1
1 rNκ+2M ≤ rδκn+Nκ . (4.5)
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14 S. Baker

Given k ∈ N, we let

B(k) :=
{
a ∈ Ak : pa ≥ ek(−h(p)+δκ )

}
.

It follows from a well-known large deviation result due to Hoeffding [16] that for any

k ∈ N there exists η := η(κ, p) > 0 such that

∑
a∈B(k)

pa ≤ e−ηk. (4.6)

For M as above, we define

GM :=
{
a ∈ AM : (a1, . . . ak) /∈ B(k), ∀�δκM� ≤ k ≤ M

}
.

It follows from (4.6) and properties of geometric series that

∑
a∈AM

a/∈GM

pa = Oκ(e−ηδκM). (4.7)

Given m < n, we define the function

WM(x) :=
∑

a∈GM

pa exp(l(fn(ϕca(x)) − fm(ϕca(x)))).

The proof of the following lemma is inspired by the proof of [19, Lemma 6.1]. This lemma

essentially allows us to bound from above the integral appearing in Proposition 4.1 by

the L2 norm of WM multiplied by a term that grows exponentially with n.

Lemma 4.2. Let m < n and l ∈ Z \ {0}. For M as defined above, we have

∣∣∣∣
∫

exp(l(fn(x) − fm(x))) dμ̃c

∣∣∣∣ ≤ eM(−h(p)+δκ )

|I| · rM+2δκn

∫
I
|WM(x)|2 dx + Oκ(rδκn + e−ηδκM).

Proof. Using first of all the relation μ̃c = μ◦ϕ−1
c , then (3.2), we can rewrite our integral

as follows:

∫
exp(l(fn(x) − fm(x))) dμ̃c =

∫
exp(l(fn(ϕc(x)) − fm(ϕc(x)))) dμ

=
∫ ∑

a∈AM

pa exp(l(fn(ϕca(x)) − fm(ϕca(x)))) dμ.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab056/6246797 by Ian N

orthover on 19 O
ctober 2021



Equidistribution Results for Self-Similar Measures 15

Therefore, it suffices to show that the latter integral satisfies the required bounds. By

(4.7), we see that

∫ ∑
a∈AM

pa exp(l(fn(ϕca(x)) − fm(ϕca(x)))) dμ =
∫

WM(x) dμ + Oκ(e−ηδκM). (4.8)

Let

RM := {
a ∈ GM : sup

x∈Xa

|WM(x)| ≥ 2rδκn}.

If a′ ∈ RM , then by the mean value theorem, (3.3), property B for the sequence of

functions (fn)∞n=1, and (4.5), for all x ∈ Ia′ we have the following:

|WM(x)|
M.V.T.≥ 2rδκn − sup

y∈Ia′
|W ′

M(y)| · |Ia′ |

(3.3)= 2rδκn − sup
y∈Ia′

∣∣∣ ∑
a∈GM

pa · 2π ilrNκ+M(f ′
n(ϕca(y))−f ′

m(ϕca(y))) exp(l(fn(ϕca(y))−fm(ϕca(y))))

∣∣∣
· rM |I|

PropertyB≥ 2rδκn − sup
y∈Ia′

( ∑
a∈GM

pa · 2π |l|rNκ+MC1nC2ϕca(y)n−1
)

· rM |I|

≥ 2rδκn −
( ∑

a∈GM

pa · 2π |l|rNκ+MC1nC2xn−1
1

)
· rM |I|

≥ 2rδκn − 2πC1|l||I|nC2xn−1
1 rNκ+2M

(4.5)≥ 2rδκn − rδκn+Nκ

≥ rδκn.

We have shown that

|WM(x)| ≥ rδκn (4.9)

for all x ∈ Ia′ for any a′ ∈ RM . Now notice that for any a ∈ RM we have

∫
Xa

|WM(x)| dμ ≤ pa and pa ≤ eM(−h(p)+δκ ).
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16 S. Baker

It follows that

∑
a∈RM

∫
Xa

|WM(x)| dμ ≤
∑

a∈RM

pa ≤
∑

a∈RM

eM(−h(p)+δκ ).

Combining this upper bound with (4.9), we obtain

∑
a∈RM

∫
Xa

|WM(x)| dμ ≤
∑

a∈RM

eM(−h(p)+δκ )

= eM(−h(p)+δκ )

|I| · rM+2δκn

∑
a∈RM

rM |I| · r2δκn

≤ eM(−h(p)+δκ )

|I| · rM+2δκn

∑
a∈RM

∫
Ia

|WM(x)|2 dx

≤ eM(−h(p)+δκ )

|I| · rM+2δκn

∫
I
|WM(x)|2 dx.

In the last line, we used that for distinct a, b ∈ AM the intervals Ia and Ib are disjoint.

Using this upper bound, together with (4.7) and the definition of RM , we obtain

∣∣∣∣
∫

WM(x) dμ

∣∣∣∣ ≤
∫

|WM(x)| dμ =
∑

a∈GM

∫
Xa

|WM(x)| dμ +
∑

a∈AM

a/∈GM

∫
Xa

|WM(x)| dμ

≤
∑

a∈GM

∫
Xa

|WM(x)| dμ +
∑

a∈AM
a/∈GM

pa

≤
∑

a∈RM

∫
Xa

|WM(x)| dμ+
∑

a∈GM\RM

∫
Xa

|WM(x)| dμ+Oκ (e−ηδκM)

≤
∑

a∈RM

∫
Xa

|WM(x)| dμ +
∑

a∈GM\RM

pa · 2rδκn + Oκ(e−ηδκM)

≤
∑

a∈RM

∫
Xa

|WM(x)| dμ + 2rδκn + Oκ(e−ηδκM)

≤ eM(−h(p)+δκ )

|I| · rM+2δκn

∫
I
|WM(x)|2 dx + Oκ(rδκn + e−ηδκM).
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Equidistribution Results for Self-Similar Measures 17

Substituting this bound into (4.8), we obtain∣∣∣∣∣∣
∫ ∑

a∈AM

pa exp(l(fn(ϕca(x))−fm(ϕca(x)))) dμ

∣∣∣∣∣∣≤
eM(−h(p)+δκ )

|I| · rM+2δκn

∫
I
|WM(x)|2 dx+Oκ (rδκn+e−ηδκM)

as required. �

To complete our proof of Proposition 4.1, it is necessary to obtain good upper

bounds for
∫

I |WM(x)|2 dx. These bounds are provided by the following lemma.

Lemma 4.3. Let m < n and l ∈ Z \ {0}. For M as defined above, we have

∫
I
|WM(x)|2 dx = |I| · eM(−h(p)+δκ ) + Oκ,l

(
1

rM+�δκM�xn
0

+ eM(−h(p)+δκ )

r2Mxn
0

)
.

Proof. We start by expanding
∫

I |WM(x)|2 dx:

∫
I
|WM(x)|2 dx

=|I|
∑

a∈GM

p2
a +

∑
a,b∈GM
a �=b

pa · pb

∫
I
exp(l(fn(ϕca(x)) − fm(ϕca(x)) − fn(ϕcb(x)) + fm(ϕcb(x)))) dx

≤|I| · eM(−h(p)+δκ ) +
∑

a,b∈GM
a �=b

pa · pb

∫
I
exp(l(fn(ϕca(x))−fm(ϕca(x))−fn(ϕcb(x))+ fm(ϕcb(x))) dx.

(4.10)

To bound the integral appearing in the summation in (4.10) we will use Lemma 3.2.

Before doing this, we demonstrate below that the hypotheses of this lemma are satisfied.

Verifying the hypotheses of Lemma 3.2. Fix a, b ∈ GM such that a �= b. Let

φ(x) := l
(
fn(ϕca(x)) − fm(ϕca(x)) − fn(ϕcb(x)) + fm(ϕcb(x))

)
.

By (3.3), we have

φ′(x) = rNκ+Ml
(
f ′
n(ϕca(x)) − f ′

m(ϕca(x)) − f ′
n(ϕcb(x)) + f ′

m(ϕcb(x))
)

.

Define

hn,m(x) := f ′
n(x) − f ′

m(x).
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18 S. Baker

Then

φ′(x) = rNκ+Ml
(
hn,m(ϕca(x)) − hn,m(ϕcb(x))

)
.

Applying the mean value theorem to the function hn,m, we see that there exists z ∈ Ic
such that

φ′(x) = rNκ+Ml
(
ϕca(x) − ϕcb(x)

) (
f ′′
n(z) − f ′′

m(z)
)

. (4.11)

It follows from the convex strong separation condition that there exists c0 > 0

depending only on our underlying IFS such that

|ϕca(x) − ϕcb(x)| ≥ c0rNκ+|a∧b| (4.12)

for all x ∈ I. Using property C for our sequence of functions (fn)∞n=1, and the fact z ∈ Ic
so z ≥ x0, it follows that

|f ′′
n(z) − f ′′

m(z)| ≥ C3zn−2 ≥ C3xn−2
0 . (4.13)

Substituting (4.12) and (4.13) into (4.11), we see that for all x ∈ I we have

|φ′(x)| ≥ c0C3lr2Nκ+M+|a∧b|xn−2
0 . (4.14)

The right-hand side of (4.14) is the value of γ we will use in our application of Lemma

3.2. It remains to check that φ′ satisfies the monotonicity hypothesis of Lemma 3.2.

Differentiating φ′ and applying (3.3), we have

φ′′(x) = r2(Nκ+M)l
(
f ′′
n(ϕca(x)) − f ′′

m(ϕca(x)) − f ′′
n(ϕcb(x)) + f ′′

m(ϕcb(x))
)

.

Applying the mean value theorem as above, this time to the function f ′′
n(x) − f ′′

m(x), we

may deduce that there exists z ∈ Ic such that

φ′′(x) = r2(Nκ+M)l(ϕca(x) − ϕcb(x))(f ′′′
n (z) − f ′′′

m(z)).

By property D, for our sequence of functions (fn)∞n=1, we know that f ′′′
n (z) − f ′′′

m(z) ≥ 0 for

all z ∈ Ic or f ′′′
n (z) − f ′′′

m(z) ≤ 0 for all z ∈ Ic. What is more, it follows from the convex

strong separation condition that the sign of ϕca(x) − ϕcb(x) is independent of x and
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Equidistribution Results for Self-Similar Measures 19

depends solely upon a and b. Therefore, we must have φ′′(x) ≤ 0 for all x ∈ I or φ′′ ≥ 0

for all x ∈ I. In either case, φ′ is monotonic, and we have shown that the monotonicity

condition of Lemma 3.2 is satisfied.

Return to the proof of Lemma 4.3. Taking the right-hand side of (4.14) as our value of

γ in Lemma 3.2, we obtain

∫
I
exp(l(fn(ϕca(x)) − fm(ϕca(x)) − fn(ϕcb(x)) + fm(ϕcb(x)))) dx = Oκ,l

(
1

rM+|a∧b|xn
0

)
.

(4.15)

Substituting (4.15) into the summation appearing in (4.10), and using the definition of

GM , we see that the following holds:

∑
a,b∈GM
a �=b

pa · pb

∫
I
exp(l(fn(ϕca(x)) − fm(ϕca(x)) − fn(ϕcb(x)) + fm(ϕcb(x)))) dx

=Oκ,l

⎛
⎜⎜⎝ ∑

a∈GM

∑
b∈GM
a�=b

pa · pb

rM+|a∧b|xn
0

⎞
⎟⎟⎠

=Oκ,l

⎛
⎜⎜⎝ 1

rMxn
0

∑
a∈GM

pa

M∑
k=1

∑
b∈GM|a∧b|=k

pb

rk

⎞
⎟⎟⎠

=Oκ,l

⎛
⎝ 1

rMxn
0

∑
a∈GM

pa

M∑
k=1

∏k
j=1 paj

rk

⎞
⎠

=Oκ,l

⎛
⎝ 1

rMxn
0

∑
a∈GM

pa

⎛
⎝�δκM�−1∑

k=1

∏k
j=1 paj

rk
+

M∑
k=�δκM�

∏k
j=1 paj

rk

⎞
⎠
⎞
⎠

=Oκ,l

⎛
⎝ 1

rMxn
0

∑
a∈GM

pa

⎛
⎝�δκM�−1∑

k=1

1

rk
+

M∑
k=�δκM�

ek(−h(p)+δκ )

rk

⎞
⎠
⎞
⎠

=Oκ,l

⎛
⎝ 1

rMxn
0

∑
a∈GM

pa

(
1

r�δκM� + eM(−h(p)+δκ )

rM

)⎞
⎠

=Oκ,l

(
1

rM+�δκM�xn
0

+ eM(−h(p)+δκ )

r2Mxn
0

)
.
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20 S. Baker

Substituting this bound into (4.10), we obtain

∫
I
|WM(x)|2 dx = |I| · eM(−h(p)+δκ ) + Oκ,l

(
1

rM+�δκM�xn
0

+ eM(−h(p)+δκ )

r2Mxn
0

)

as required. �

We are now in a position to prove Proposition 4.1 and in doing so complete our

proof of Theorem 2.3.

Proof of Proposition 4.1. Assume that m < n. Combining Lemmas 4.2 and 4.3, we

obtain

∣∣∣∣
∫

exp(l(fn(x) − fm(x))) dμ̃c

∣∣∣∣

≤ e2M(−h(p)+δκ )

rM+2δκn︸ ︷︷ ︸
(1)

+Oκ,l

⎛
⎜⎜⎜⎝ eM(−h(p)+δκ )

r2M+2δκn+�δκM�xn
0︸ ︷︷ ︸

(2)

+ e2M(−h(p)+δκ )

r3M+2δκnxn
0︸ ︷︷ ︸

(3)

+ rδκn︸︷︷︸
(4)

+ e−ηδκM︸ ︷︷ ︸
(5)

⎞
⎟⎟⎟⎠ . (4.16)

It remains to show that the terms (1)–(5) decay to zero exponentially fast with respect to

n. To do this, it is useful to recall the definition of 	κ and recall that we chose δκ in such

a way that 	κ < 1:

	κ := max
{

rδκ ,
1

r2δκ

(
e2(−h(p)+δκ )

r

) log(1+κ)
−2 log r

,
1 + δκ

r3δκ

(
e2(−h(p)+δκ )

r

) log(1+κ)
−2 log r

,

1 + δκ

r3δκ

(
e−h(p)+δκ

rδκ

) log(1+κ)
−2 log r }

.

As we will see, most of the terms in (4.16) can be bounded in terms of 	κ . To help with

our exposition, we treat each of the five terms described above individually.

Bounding (1). A useful inequality that follows from the definition of M is that for n

sufficiently large we have

M ≥ n · log x1

−2 log r
. (4.17)
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Equidistribution Results for Self-Similar Measures 21

This inequality follows upon noticing that the floor term appearing in the definition

of M can be bounded below by (n−1) log x1
−2 log r for n sufficiently large and then using the

additional δκn term. Applying (4.17), the fact x1 ≥ 1 + κ, and the definition of 	κ , we see

that the following holds for n sufficiently large:

e2M(−h(p)+δκ )

rM+2δκn = 1

r2δκn

(
e2(−h(p)+δκ )

r

)M
(4.17)≤

⎛
⎜⎝ 1

r2δκ

(
e2(−h(p)+δκ )

r

) log x1−2 log r

⎞
⎟⎠

n

≤
⎛
⎜⎝ 1

r2δκ

(
e2(−h(p)+δκ )

r

) log(1+κ)
−2 log r

⎞
⎟⎠

n

≤ 	n
κ . (4.18)

Bounding (2). Applying (4.4), (4.5), and (4.17), we have

eM(−h(p)+δκ )

r2M+2δκn+�δκM�xn
0

= eM(−h(p)+δκ )

r2M+2δκn+�δκM�xn
1

(
x1

x0

)n

(4.4)≤ eM(−h(p)+δκ )

r2M+2δκn+�δκM�xn
1

(1 + δκ)n

(4.5)= Oκ,l

(
nC2eM(−h(p)+δκ )

r3δκn+�δκM�
(
1 + δκ

)n

)

= Oκ,l

⎛
⎝nC2

(
1 + δκ

r3δκ

)n
(

e(−h(p)+δκ )

rδκ

)M
⎞
⎠

(4.17)= Oκ,l

⎛
⎜⎝nC2

⎛
⎜⎝1 + δκ

r3δκ

(
e(−h(p)+δκ )

rδκ

) log x1−2 log r

⎞
⎟⎠

n⎞⎟⎠

= Oκ,l

⎛
⎜⎝nC2

⎛
⎜⎝1 + δκ

r3δκ

(
e(−h(p)+δκ )

rδκ

) log(1+κ)
−2 log r

⎞
⎟⎠

n⎞⎟⎠
= Oκ,l

(
nC2	n

κ

)
= Oκ,l

(
	n/2

κ

)
. (4.19)
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Bounding (3). Repeating the argument used to bound (2), one can show that

e2M(−h(p)+δκ )

r3M+2δκnxn
0

= Oκ,l

(
	n/2

κ

)
. (4.20)

It is during this part of the proof that we use the fact that

1 + δκ

r3δκ

(
e2(−h(p)+δκ )

r

) log(1+κ)
−2 log r

≤ 	κ .

Bounding (4). It is immediate from the definition of 	κ that we have

rδκn ≤ 	n
κ . (4.21)

Bounding (5). Applying (4.17) and the inequality log x1 ≥ log(1 + κ), we see that the

following holds for n sufficiently large:

e−ηδκM (4.17)≤ e
ηδκ log x1

2 log r ·n ≤ e
ηδκ log(1+κ)

2 log r ·n (4.22)

We now let

γ = max{	1/2
κ , e

ηδκ log(1+κ)
2 log r }.

Notice that γ ∈ (0, 1). Substituting (4.18), (4.19), (4.20), (4.21), and (4.22) into (4.16), we

obtain

∣∣∣∣
∫

exp(l(fn(x) − fm(x))) dμ̃c

∣∣∣∣ = Oκ,l

(
γ n) .

This completes our proof. �
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