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Abstract

Older adults’ skeletal muscle has shown to be less responsive to anabolic stimuli as compared to young both in vitro, in short and controlled 
in vivo settings and in long-term training studies. However, to translate controlled mechanistic findings to long-term adaptations intermediate 
measures allowing daily life routines with regard to activity and diet would be useful to evaluate physiological interventions. The purpose of 
this study was to investigate the exercise effect in young and older adults with 2 independent methods to measure muscle protein synthesis 
rate. Healthy young and old men were recruited to the study protocol where myofibrillar fractional synthesis rate was measured during 2 days 
allowing normal activities of daily living with D2O-labeled alanine and during 4 hours in the overnight fasted state with [13C6]phenylalanine 
infusion. During this period 1 leg completed an exercise session every day (exercise leg) while the contralateral leg was kept inactive (normal 
leg). Both legs were used for activities of daily living. Two-day myofibrillar fractional synthesis rate was significantly higher in the exercise leg 
in both young and old as compared to normal leg with no age difference. The 4-hour overnight fasted myofibrillar fractional synthesis rate 
showed that only young exercise leg was significantly higher than normal leg. The present findings support the notion that anabolic resistance 
exists in the skeletal muscle of healthy older men when evaluated in controlled settings. However, this response is not as clear when measured 
during daily life where variance is greater, which calls for further investigations in larger cohorts.

Keywords:  Alanine, Daily living, Deuterated water, Muscle protein synthesis, Phenylalanine

The state-of-the-art method to assess muscle protein turnover rates 
is by tracing stable isotope-labeled amino acids (AAs). Although 
the very first studies utilized deuterated water (D2O) (1), this ap-
proach was replaced by infusion of labeled essential AA (EAA), and 
the direct incorporation method for measuring the protein fractional 
synthesis rate (FSR) became widespread (2). Over the last decades 
numerous studies have been conducted applying a continuous in-
fusion protocol using D-, 13C-, or 15N-labeled EAA to determine the 
muscle FSR over hours (limited to <24 hours). The FSR measure-
ment is dependent on a continuous intravenous tracer infusion and 
requires rather controlled experimental conditions, which restricts 
the application of certain physiological interventions. Hence, this 
approach is valid to assess an acute response to simple and very con-

trolled interventions, but its strengths may be challenged by habitual 
daily living conditions.

The D2O has recently been reintroduced in the field of protein 
turnover due to its ability to label metabolites in vivo allowing the 
determination of turnover rates of a variety of substrates (3). AAs 
are de novo labeled and incorporated into proteins in a manner 
similar to the direct incorporation method (4–6). Due to the enor-
mous pool size of water and the fast equilibration of AA labeling 
from D2O, the precursor enrichment is easily controlled (4), and 
the D2O approach can be applied to measure the gross average 
tissue FSR across weeks in humans (7). More lately, the use of 
gas chromatography pyrolysis isotope ratio mass spectrometry 
(GC-P-IRMS) has allowed the detection of very low abundances 
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of D-labeled AA, which allows muscle FSR to be measured across 
days (8,9).

While the principles are comparable, the time resolution and 
experimental conditions for the 2 FSR approaches are distinct and 
hence can supplement one another and provide insight into dif-
ferent aspects of fluctuations and responses in FSR. This study aimed 
to compare normal and exercised muscle FSR in young and older 
healthy men when determined across 2 days during habitual daily 
life using the D2O approach and over 4 hours in the overnight fasted 
state using the [13C6]phenylalanine infusion approach.

Method

Participants and Baseline Measurements
Eight healthy young and 8 healthy old volunteers were recruited to 
participate in the study with the following age criteria 18–30 years 
(young), >65  years (old), body mass index 20–30  kg/m2, and not 
partaking in any habitual sports activity. Study purpose, design, and 
possible risks were explained to each participant before informed 
written consent to participate was given. The study protocol ad-
hered to the Declaration of Helsinki II and was approved by the 
local Ethics Committee of the Capital Region of Denmark (H-1-
2012-102). Of the recruited participants, 8 young and 7 old parti-
cipants completed all study protocol procedures and were included 
in the analyses. Participants had their anthropometrics determined 
including body composition with dual-energy X-ray absorptiometry 
(DPX-IQ software version 4.6c; Lunar, Madison, WI). One repeti-
tion maximum (1 RM) for leg press and leg extension exercises was 
also determined. Participant characteristics are displayed in Table 1.

Experimental Protocol
All participants underwent the experimental protocol as illustrated 
in Figure 1. D2O was provided on day 0 (10 am) with a background 
blood sample taken just before. The amount of D2O was adjusted to 
0.65% body water, which was based on measurements of lean body 
mass. Ninety-nine percent D2O (Cambridge Isotope Laboratories, 
Tewksbury, MA) was mixed with normal tap water to ~70%. 
A  second blood sample was taken 2 hours after the D2O intake. 
Thereafter, the first heavy resistance exercise session was performed, 
which consisted of unilateral leg press and leg extension exercises. 
Both exercises were performed as 4 sets of 8 repetitions at 70% of 
1 RM with 3 minutes of rest between the sets. The exercise leg was 
randomly assigned but balanced in groups with young and older 
men between dominant and nondominant legs.

On day 1 (10 am) a blood sample was taken and muscle bi-
opsies (in vastus lateralis) were taken in both legs. Thereafter, the 
second exercise session was performed. On day 2 (10 am) a blood 
sample was taken and the third exercise session performed. On day 
3 (10 am) participants arrived to the laboratory after an overnight 

fast and performed the fourth and final exercise session. Thereafter, 
antecubital venflons were inserted in both arms and a flood primed 
continuous infusion of L-[ring-13C6]phenylalanine and unlabeled 
phenylalanine (Cambridge Isotope Laboratories) was started (10), 
and blood samples were taken at 1, 2, 3 and 4 hours of infusion. 
Muscle biopsies were obtained from both legs after 4 hours of in-
fusion. All blood and muscle biopsies were treated and stored as 
previously described (10). This experimental design provided 2-day 
habitual and 4-hour fasted myofibrillar FSR.

Tracer Analyses
Venous plasma and muscle biopsies were prepared and analyzed as 
previously described (10–12). Plasma alanine and phenylalanine enrich-
ments were measured by gas chromatography tandem mass spectrom-
etry (GC-MS/MS, Thermo Scientific, TSQ Quantum, San Jose, CA). 
Myofibrillar protein [13C6]phenylalanine abundance was analyzed by 
GC combustion isotope ratio mass spectrometry (GC-C-IRMS, Finnigan 
Delta Plus, Bremen, Germany) and [D]alanine abundance was analyzed 
GC-P-IRMS (GC Combustion III, Delta Plus XL; Thermo Finnigan, 
Bremen, Germany). Details of these methods have been described pre-
viously (10–12). FSR was calculated as FSR (%/h) = [(ΔEprotein)/(Eprecursor 
× Δt)] × 100%, where ΔEprotein is the change in protein-bound labeled 
alanine or phenylalanine, Eprecursor is the mean alanine or phenylalanine 
enrichment in the incorporation periods defined by Δt.

Statistical Analyses
Participant characteristics were compared by unpaired t tests. 
Plasma alanine and phenylalanine enrichments and the myofibrillar 
FSR were compared by 2-factor ANOVA with time and exercise as 
repeated and group as nonrepeated measures. In case of main signifi-
cant effects, Student–Newman–Keuls post hoc tests were performed. 
All values are means ± SE except participant characteristics, which 
are means ± SD. Effects with p < .05 were considered statistically 
significant. Statistical analyses were performed in GraphPad Prism 
7.00 (GraphPad Software, Inc., La Jolla, CA).

Results

The D2O-labeled [D4]alanine (Figure 2A) and [13C6]phenylalanine 
(Figure 2B) precursor enrichment over the 2 different tracer incorp-
oration periods showed both a general effect of time (p < .001), but 
with no difference between young and old.

Table 1. Participant Characteristics

Young (n = 8) Old (n = 7)

Age (y) 23 ± 3 70 ± 4
Height (m) 1.79 ± 0.05 1.78 ± 0.06
Weight (kg) 77.5 ± 7.5 83.6 ± 5.9
Body mass index (kg/m2) 24.1 ± 2.5 26.5 ± 1.9
Lean body mass (kg) 59.4 ± 5.6 60.6 ± 3.8

Note: Participant characteristics (means ± SD), except for age, no significant 
differences were found between the groups.

Figure 1. Experimental protocol. The experimental protocol included the D2O 
intake on day 0 followed by 1-legged exercise sessions on day 0, 1, 2, and 
3. Venous blood samples were collected on day 0 before and 2 hours after 
the D2O intake and on day 1, 2 (not fasted) and on day 3 in the overnight 
fasted state before the 4-hour flood primed continuous infusion of L-[13C6]
phenylalanine and once every hours for 4 hours. Muscle biopsies were 
collected in both the normal and exercised legs on day 1 before the exercise 
session and on day 3 after the exercise session and following 4 hours of 
tracer infusion. FSR = fractional synthesis rate.
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The 2-day myofibrillar FSR was significantly higher in the 
exercise leg in both young (2.23 ± 0.18%/d [mean ± SE], 0.093 ± 
0.008%/h) and old (1.88 ± 0.11%/d, 0.078 ± 0.004%/h) as com-
pared to normal leg (young: 1.76 ± 0.15%/d, 0.073 ± 0.006%/h; 
old: 1.69 ± 0.07, 0.070 ± 0.003%/h, p < .01) with no age effect. The 
4-hour overnight fasted myofibrillar FSR showed that only in young 
males the exercised leg (0.057 ± 0.003%/h) was significantly higher 
than young normal leg (0.039 ± 0.003, p < .05), whereas old exercise 
leg (0.048 ± 0.002) and old normal leg (0.044 ± 0.004%/h) showed 
no difference. No significant differences were observed between 
young and old normal leg myofibrillar FSR irrespective of the meas-
urement period and method. The 2-day myofibrillar FSR (Figure 2C) 
and the 4-hour overnight fasted myofibrillar FSR (Figure 2D) are 
shown as individual values with mean and SE in %/h.

Discussion

The main findings in this study were that we verified a similar 
nonexercised myofibrillar FSR between ages independent of time 
frames of measurement (2-day daily living vs 4-hour fasting). 
However, older men only increased muscle FSR when measured 
across days in daily living conditions while both time frames de-
tected an increase in the young men. Therefore, the nature of the dif-
ferent and independent methods to estimate muscle protein synthesis 
warrants divergent interpretation of the results.

Daily Life Muscle Protein Synthesis
Normal daily life rates of myofibrillar FSR were equal in young and 
older adult men. This observation was irrespective of whether the 
measurement was performed over 2 days in a fully nourished muscle 
with normal activity of daily living (ADL), but with no strenuous 
physical requirements or performed over 4 hours in the overnight 
fasted state. It has previously been shown that the overnight fasting 
and resting muscle protein synthesis and turnover rate is not markedly 
changed with age (13,14), although also contrasting data are reported 

(15). However, despite being equal between young and old men, the 
normal rates are different when measured over 2 days during daily 
life with included factors as ADL, nutrition, and sleep than during 4 
hours in the overnight fasted and rested state. The 2-day FSR should 
be considered the “normal” condition, whereas the 4-hour overnight 
fasted and rested state should be considered the “basal” state. As 
expected, the FSR is lowest in the basal as compared to the normal 
state, suggesting that a balanced energy intake according to official re-
commendations as well as moderate ADL (walking, cycling, climbing 
stairs as well as sitting and laying) even when combined with periods 
of sleep elevates muscle protein synthesis rates above the overnight 
fasted, resting condition (16). The obvious explanation is that a 2-day 
period includes several intervals of elevated FSR rates due to habitual 
intake of meals and physical ADL, which add up to greater gross 
mean rates. One previous study (17) has compared the D2O-labeled 
alanine and [13C6]phenylalanine tracer approaches. The study used the 
D2O-labeled alanine method over few hours and hence, found values 
exactly comparable to the EAA approach, emphasizing that the tracer 
approaches are comparable and that the present divergence is ascribed 
to impact of normal daily living versus fasting, resting condition. As 
showed with this study, the advantage given with the D2O-labeled ala-
nine method is that it allows measurements of protein FSR over pro-
longed periods of time with normal daily living activities, such as meal 
intake, ADL, and sleep.

Muscle Protein Synthesis Response to Exercise
The muscle adapts with growth to prolonged resistance training in 
both young (18,19) and old age (20,21), and the mechanism at least 
in muscles of young individuals is a stimulation of the muscle protein 
synthesis in a period after completion of muscle contractions (22) 
and Figure 2D. In contrast, we could not detect an acute enhance-
ment in myofibrillar FSR in the older muscle. Such an abolished or 
impaired responsiveness to acute exercise in aging muscle has been 
shown previously (13,23,24). The existence of a diminished response 
is strengthened with our results by the fact that we preconditioned 
the muscle prior to determining the muscle FSR with 3 resistance 
exercise bouts performed daily prior to trial on experimental day 
3. Hence, not even repeated sessions of heavy load exercise sessions 
exhibit an increased muscle protein synthesis in older men.

Extending the muscle FSR measurement period is not common. 
In young people, 24-hour whole-body protein turnover rate was not 
affected by completion of 1-hour moderate-intensity cycling exercise 
(25). However, enhanced basal synthesis up to 48-hour postresistance 
exercise suggests a prolonged stimulatory effect in young muscle 
(22). Our results on the heavy resistance exercise myofibrillar FSR 
response during 2 days showed effect in both young and old men, 
but the exercise response variance appeared to be larger as compared 
to the measurements in the controlled 4-hour fasted setup.

Conclusion

The present findings support the notion that anabolic resistance 
exists in the skeletal muscle of healthy older men when evaluated 
over a short time frame in a controlled setting. However, this re-
sponse is not as clear when measured in a daily life setting and 
deserves further investigations possibly also to include protein 
breakdown rates to reveal clinical significance. The advantage of 
the D2O-labeled alanine method to assess muscle protein synthesis 
during periods of daily normal living activities can aid future studies 
to translate molecular mechanistic signaling findings to long-term 
adaptations in muscle mass and physical function.

Figure 2. Precursor enrichments and myofibrillar synthesis rates. Mean 
(± SE) venous plasma alanine (A) and phenylalanine (B) enrichment and 
myofibrillar FSR based on [D]alanine (C) and [13C6]phenylalanine (D). The 
plasma alanine and phenylalanine enrichments show a significant effect of 
time overall (p < .001), the 2-day myofibrillar FSR show a significant effect 
of state (p < .01; * exercised leg higher than normal leg [p < .05]), and the 
4-hour fasted myofibrillar FSR show a significant interaction (p < .05; # young 
exercised leg higher than young normal leg [p < .05]); FSR  =  fractional 
synthesis rate; TTR = tracer-to-tracee ratio.
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