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Abstract

Desmosomes are dynamic junctions between cells that maintain the structural integrity of skin and heart tissues
by withstanding shear forces. Mutations in component genes cause life-threatening conditions including
arrhythmogenic right ventricular cardiomyopathy, and desmosomal proteins are targeted by pathogenic
autoantibodies in skin blistering diseases such as pemphigus. Here, we review a set of newly discovered
pathogenic alterations and discuss the structural repercussions of debilitating mutations on desmosomal
proteins. The architectures of native desmosomal assemblies have been visualized by cryo-electronmicroscopy
and cryo-electron tomography, and the network of protein domain interactions is becoming apparent. Plakophilin
and desmoplakin mutations have been discovered to alter binding interfaces, structures, and stabilities of folded
domains that have been resolved by X-ray crystallography and NMR spectroscopy. The flexibility within
desmoplakin has been revealed by small-angle X-ray scattering and fluorescence assays, explaining how
mechanical stresses are accommodated. These studies have shown that the structural and functional
consequences of desmosomal mutations can now begin to be understood at multiple levels of spatial and
temporal resolution. This review discusses the recent structural insights and raises the possibility of using
modeling for mechanism-based diagnosis of how deleterious mutations alter the integrity of solid tissues.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
Introduction to Desmosomes

How cells form tissues fundamentally depends on
how they connect physically. The four major types of
connections are desmosomes, adherens, tight, and
gap junctions. Desmosomes are intercellular junctions
found in cardiac muscle, epithelia, and some other
tissues. They are located at the cell membrane where
they act as anchors for intermediate filaments of the cell
cytoskeleton. By linking intermediate filaments of
adjacent cells, desmosomes form a network of
adhesive bonds that radiates throughout a tissue,
providing mechanical strength. The desmosome–
intermediate filament complex (DIFC) [1] is essential
for maintaining the integrity of tissues. When desmo-
somal adhesion is compromised, as occurs in some
genetic and autoimmune diseases, cells lose cohe-
siveness, often with severe consequences for the
tissue as a whole. This is particularly true of those
tissues, suchas theheart andskin,whichare subjected
to mechanical stress.
atter © 2013 The Authors. Published by Else
In the DIFC, desmosomal cadherins provide the
coupling between adjacent cells. Seven desmosomal
cadherins are expressed by human cells, four
desmogleins (DSG1–DSG4) and three desmocollins
(DSC1–DSC3). Desmosomal cadherins interact with
other desmosomal cadherins produced by adjacent
cells in the intercellular space. Within the cell, four
members of the armadillo family of proteins are found
in association with desmogleins and desmocollins.
The armadillo proteins plakoglobin (γ-catenin) and
plakophilins 1–3 (PKP1–3), together with the plakin
protein desmoplakin, act as linkers between desmo-
somal cadherins at the membrane and intermediate
filaments in the DIFC. Desmoplakin interacts with a
variety of intermediate filaments including desmin in
cardiac muscle, keratin in epithelial tissues, and
vimentin in certain specialized tissues such as the
arachnoidal tissue of the brain meninges and the
dendritic reticulum of lymph node follicles.
Plakoglobin and desmoplakin are obligatory des-

mosomal components. Of the other proteins, at least
vier Ltd. All rights reserved. J. Mol. Biol. (2013) 425, 4006–4022
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one desmoglein, one desmocollin, and one plako-
philin are always present and required for normal
desmosomal adhesion. However, it should be noted
that desmocollins are dispensable for the efficient
formation of desmosomes in some experimental
situations [2]. Cardiomyocyte desmosomes contain
five proteins, namely, DSG2, DSC2, plakoglobin,
PKP2, and desmoplakin. The situation is more
complicated in other tissues such as the epidermis
where all seven desmosomal cadherins and all three
plakophilins, as well as plakoglobin and desmopla-
kin, are expressed. Desmosomes can contain more
than one desmocollin [3] and presumably more than
one desmoglein and more than one plakophilin, thus
yielding a diversity of intercellular networks within the
fabric of the epidermis. Further diversity may be
present in cardiac muscle as a unique type of
junction (the area composita) has been identified in
the intercalated disk connecting cardiomyocytes.
This novel junction is of unusually high molecular
complexity and contains a mixture of proteins that
are usually associated with either desmosomes or
adherens junctions [4,5].
Diseases Caused by Desmosomal
Dysfunction

Due to their central role in maintaining the integrity
of stressed solid tissues, the disruption of the
assembly or structure of desmosomes leads to
debilitating conditions including inherited, infectious,
and autoimmune diseases. The molecular conse-
quences include loss of adhesion between cells,
disorganization within cells, ineffectual cell commu-
nication and regulation, and misguided tissue
development. The pathological conditions that result
are diverse and include cardiomyopathies, epider-
molysis bullosa, epidermal and mucosal blistering,
ectodermal dysplasia, palmoplantar keratoderma,
keratosis, woolly hair, and alopecia. The disorders
reflect the tissue-specific expression of desmosomal
variants. For example, mutations in the genes of the
cardiomyocyte desmosome lead to arrhythmogenic
right ventricular cardiomyopathy (ARVC). The foun-
dation laid by many structural, cellular, and muta-
tional studies provides a basis for predicting the
effects of desmosomal mutations, which are found in
1 in 200 people of some populations [6] and may be
used for mechanism-based diagnosis.
The role for desmosomal components in cancer

progression is emerging but is as of yet poorly
understood. Colorectal and breast cancers show
decreases in DSC2 and DSC3 levels, respectively
[7,8], whereas DSG3 is overexpressed in squamous
cell carcinoma and head and neck cancer [9,10].
Altered DSG2 expression is found in melanoma,
squamous cell carcinomas and gastric cancers
[9,11–13], and alterations in plakophilin expression
are associated with lung and prostate cancer
[14,15]. Oropharyngeal tumors exhibit reduced
expression of desmoplakin [16]. Whereas some
studies have clearly shown increases or decreases
in desmosomal components in various epithelial
cancers [17], others have found no apparent
changes in desmosomal protein levels during
tumor progression [9]. Few cancer-linked mutations
have been found in desmosomal components with
the exception of the JUP gene that encodes
plakoglobin [18,19]. Although oncogenic roles have
been suggested, the weight of evidence infers that
desmosomes play tumor-suppressive functions
analogous to E-cadherin and underscore the need
for detailed genetic studies to define the contribu-
tions in cancer model systems.
Architecture of the Intact Desmosome

Desmosomes were first visualized by the Italian
pathologist Bizzozero in 1864 as 200- to
500-nm-wide “buttons” linking epithelial cells. One
hundred fifty years later, the molecular composition
of these junctions is being resolved in detail. Their
structural layers are apparent by atomic force
microscopy, cryo-electron tomography, and electron
microscopy [20–23], enabling detailed molecular
models of the overall architecture of the desmosome
to be produced (Fig. 1).
The center of the junction is composed of the

extracellular regions of cadherin family members,
and a dense midline of their interleaved N-termini
runs through this. Just inside the plasma mem-
brane is the outer dense plaque, which contains
plakoglobin and plakophilin. The intracellular do-
mains of the desmogleins and desmocollins con-
tribute to the outer dense plaque, as do plakoglobin
and plakophilin. Beyond this lies a translucent zone
and a further inner dense plaque that is composed
largely of desmoplakin. Together, these proteins
provide a highly organized supermolecular assem-
bly that mediates stable yet adaptable mechanical
coupling between points of cell–cell adhesion and
the cytoskeleton.
The zipper-like organization of desmosomal mol-

ecules that are arrayed perpendicular to the
membrane is becoming apparent [25,26]. This
array shows a periodic repeat pattern of 5.3 nm,
suggesting regular packing of straight cadherin
extracellular domains. Inside the cell, this is
reflected by a periodic spacing of around 6.6 nm
for the sets of protein chains that link to intermediate
filaments [21]. The determinants of the regular
spacing between the elongated protein complexes
that line the desmosome are unclear but presumably
stem from multimerization surfaces inside and
outside the cell. Desmosomal protein structures
can be accommodated within the density map of



Fig. 1. Architecture of the cardiac desmosome. The
approximate locations of the core proteins are shown,
including the structures of DSG2's EC1 domain (green
ribbon) and the arm repeat domains of plakoglobin (blue)
and PKP2 (purple). Also shown are crystal structures
of the first four SRs of the desmoplakin plakin domain
(SR3–6) and PRDs B and C. The unstructured DSC2 and
DSG2 C-termini are shown as wavy lines, as is the
protease-sensitive hinge between the long and short arms
of the desmoplakin plakin domain [24]. The N-termini of the
proteins are labeled and their respective binding sites are
juxtaposed. Both homophilic and heterophilic interactions
between desmosomal cadherins may take place in the
extracellular space, but for simplicity, only homophilic
interactions are shown.
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desmosomes, indicating the meshwork of possible
orientations within the intact junction. This model
infers that extracellular organization is dictated by
plakoglobin packing, with subsequent addition of
desmoplakin and plakophilin then reinforcing the
overall scaffold [27].
Desmoglein Structure and Alterations

In common with classical cadherins, desmogleins
and desmocollins are expressed with N-terminal
leader and pro-peptides that are cleaved during
maturation. The pro-peptides of the desmogleins
(~26 residues) are shorter than those of the
desmocollins (~108 residues), which are of a similar
length to that of E-cadherin. The mature proteins
span the membrane once with the extreme
N-termini of their extracellular domains interacting
in the intercellular space and their C-terminal tails
embedded in the cytoplasmic plaque. They share
a similar architecture, with approximately 30%
sequence identity being maintained across the
four desmogleins and three desmocollins that are
differentially expressed in solid tissues [28]. These
specialized cadherins contain five extracellular
cadherin domains (EC1–EC5) that are rigidified by
Ca2+ binding sites in their linkers [29], followed by a
transmembrane helix and disordered C-terminal
region.
The solution structure of the EC1 domain of human

DSG2 has been determined by Yokoyama et al.
(unpublished results) and contains the expected β
sandwich fold and a signature β helix [30,31] (Fig. 2).
Cadherin extracellular domains mediate two types of
protein interactions, as revealed by the crystal struc-
tures of C-, E-, and N-cadherin extracellular domains
[32–34].Trans-interactions between cells aremediated
by reciprocal exchange of an N-terminal strand and a
conserved Trp at the extreme N-terminus of EC1
(“Trp2”) in the mature classical or desmosomal
cadherins [35] while unique cis-interactions involve
contacts between EC1 and the EC2–EC3 linker within
the three classical cadherins. The two interaction
modes occur at almost perpendicular angles in these
molecules and are weak individually, with affinities of
20–100 μM and over 1 mM, respectively [36]. Togeth-
er, this formsazipper-like arrayof contacts to stably join
cells within an adherens junction. Extrapolation from
the individual sites and affinities allows the assembly of
the extracellular adhesive lattice to be modeled [37].
The resulting assembly shows how classical cadherins
could accumulate in contact zones, followed by the
synergistic trans-dimerization and lateral cis-associa-
tion to allow formation of stable junctions with a regular
molecular spacing that extends into the cell. This is
consistent with the related desmosomal architecture
resolved by cryo-electron tomography [21] in which β1
strands are also swapped at the adhesive interface.
However, the details of the packing of desmosomal
protomers appears to differ. The spacings between
adjacent cell membranes reported for desmosomes
are 320–350 Å [21,38], which is larger than those for
adherens junctions (150–300 Å) [38–41], despite the
fact that both are composed of cadherin ectodomains
of similar lengths. Exactly how desmosomal cadherin
packing in desmosomes differs from classical cadherin
packing in adherens junctions remains to be seen.
Since both extracellular domains are similar in length,
this difference involves distinct angles from which they
exit the plasma membrane, with cryo-electron micros-
copymapsshowingamoreperpendicular orientation in
desmosomes with only the EC1 domains bridging the
junction [21].



Fig. 2. Desmosomal cadherin structures. The DSG2 EC1 domain solution structure [Protein Data Bank (PDB) code:
2YQG] is shown as a ribbon, as is a homology-derived model of DSC2's EC1 (based on the crystal structure of the
corresponding region of the mouse N-cadherin extracellular domain) (PDB code: 3Q2W). Point mutations that are known
to be pathogenic are shown as copper (buried residues) or green (surface-exposed residues). Alignment of the EC1
sequences of DSG2, DSC2, and mouse N-cadherin indicates that mutated residues are all highly conserved, supporting
their critical functional or structural roles.
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The mechanism by which desmosomal cadherins
interact in the intercellular space is not yet clear.
Strong cell–cell adhesion may occur via both
homophilic and heterophilic interactions between
desmogleins and desmocollins that cross the divide
between cells [35,42]. It seems likely that upon
proteolytic activation, the desmosomal cadherins
interact via their EC1 domains in a Ca2+- and
“Trp2”-dependent manner [35,43], reminiscent of the
proposed C-cadherin cis-multimerization event
[32,34]. The loops and linkers within successive
cadherin domains typically coordinate three Ca2+ to
form a rigidified extracellular domain [29,44], al-
though a dramatically kinked, calcium-free linker in
DN-cadherin has also been resolved [45]. The
specific contributions of the interdomain contacts
and linkers to homophilic or heterophilic recognition
of desmosomal cadherins is unclear. However, it is
likely to vary from the heterodimeric structure of
tandem EC domains of two atypical cadherins, which
reveals a particularly extensive trans-interaction
responsible for linking hair cells to mediate mechan-
otransduction in the inner ear [46].
Of the 148 variants of the human DSG2 gene in the

ARVC database [47], 51 are likely to have pathogenic
effects including three novel mutations (P157L,
S194L, and F833I) which are reported here. Note
that here and in the following discussion of ARVC
mutations in the DSG2 and DSC2 genes, residue
numbers refer to the immature proteins, before
removal of N-terminal leader and pro-peptides. Most
DSG2 mutations map to the extracellular domain,
emphasizing its central role within the desmosome.
Here, we focus on clinically identifiedARVCmutations
that alter protein sequence, rather than those without
clear phenotypic consequences, or deletions or
premature stops which would abrogate surface
expression altogether. Defects in processing of the
DSG2 protein contribute to ARVC progression, as
exemplified by M1I, R46W, R46Q, and R49H muta-
tions, which are only found in the immature, non-
adhesive protein [48–50]. The functional integrity of
the EC1 domain that mediates trans- and cis-interac-
tions could be compromised structurally by I73V and
Y87C alterations, as well as exposed G100R and
R146H substitutions and the D154Emutant that alters
a calcium coordinating residue [49,51–54]. The EC2
domain that may also mediate lateral cis-interactions
is predicted to be compromised by D187G, P205L, or
E230G pathogenic mutations [52,54,55] based on
homology modeling. The N266S substitution alters
the second calcium coordination site responsible for
rigidification and cis-interactions of the extracellular
domain. Mice that express the corresponding DSG2
mutation show separated junctions and widened
intercellular spaces, suggesting defective adhesion,
and developed macroscopic lesions and ARVC
features including sudden death, spontaneous ven-
tricular arrhythmias, and cardiac dysfunction
[52,56,57]. The more dramatic deletion of the first

image of Fig.�2
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two EC domains of DSG2 also causes an ARVC-like
phenotype in mice. Their hearts develop differenti-
ated scar tissue in place of myofibril-rich cardio-
myocytes, which are seen to be disconnected by
transmission electron microscopy [58]. Their sarco-
mers are disrupted, and abnormal mitochondria and
autophagic vacuoles develop, suggesting removal
of dead cardiomyocytes and tissue remodeling. The
EC3 domain has the largest number of mutations
that are associated with ARVC, including K294E,
D297G, F321I, N326V, N330D, E331K, and T335A
[48,50,53,54,59,60]. Two ARVC-linked nonsense
mutations, Q461X and D419X [51,53], induce
premature stops and would have dramatic conse-
quences including nonsense-mediated RNA decay
(NMD).
Just inside the plasma membrane of the desmo-

some are the membrane proximal regions of
desmoglein and desmocollin proteins, which con-
tain an intracellular anchor (IA) region and an
intracellular cadherin-typical sequence (ICS).
ARVC-linked mutations in the DSG2 IA region
include short deletions due to frameshifts as well
as a G638R substitution next to the transmem-
brane domain, which could conceivably promote
binding to negatively charged lipids in the plasma
membrane [61]. The ICS region is required for
DSG1 binding to plakoglobin through a 1:1
complex, with key hydrophobic residues involved
having been mapped by alanine scanning muta-
genisis [62,63]. Missense mutations in the plako-
globin binding site including G812C, G812S, and
C813R are known to be pathogenic [50,64].
Surprisingly, these mutant DSG2 proteins display
localizations, stabilities, and plakoglobin binding
similar to the wild-type form and differ instead in
their abilities to be posttranslationally modified and
bind PKP2. The ARVC database includes a L831F
point mutation [47] and F833I, which is reported
here, both of which map to the DSG2 ICS region.
These point mutations are likely to affect plakoglo-
bin protein interactions, although determination of
their specific effects requires resolution of the
complexed structures.
The desmoglein-specific cytoplasmic region con-

tains a repeat unit domain, which is intrinsically
disordered and monomeric but contains inducible
structure [65]. This region can form multimers with
a globular head and a thin tail, as seen by electron
microscopy [66]. The DSG2 protein's desmoglein-
specific cytoplasmic region forms stable com-
plexes between tails that block internalization and
promotes strong cell–cell adhesion. An ARV-
C-linked frameshift deletion (V977fsX1006) that
disrupts this interaction leads to rapid DSG2
endocytosis in cardiac muscle cells [67], and
pathogenic mutations linked to ARVC include
P925S and Y1047R substitutions in the second
and fifth repeat unit domain motifs, respectively
[55,68,69]. This is consistent with a crucial role for
this region in mediating desmosomal protein in-
teractions, although the specific partners are yet to
be identified.
The formation of desmosomes involves several

stages. The component proteins are transported to
the plasma membrane in separate compartments.
These assemble into less adhesive desmosomes
that mature into hyperadhesive desmosomes that
cannot be dissociated by calcium depletion [70,71].
This transition fromcalcium-dependent to -independent
junctions involves protein kinase C-α activity [71].
Moreover, specific phosphorylation sites have been
identified experimentally at Ser680, Ser703, Ser968,
Tyr1013, and Ser1118 residues of DSG2 [72–74].
Reversion to a calcium-dependent junction occurs
upon wound formation, allowing cells to move as the
tissue heals [75], and similar processes may occur in
mitotically active basal cells and during tumor invasion.
Epidermal desmosomes found in the outer and

inner layers of the skin contain primarily DSG1 and
DSG3, respectively. Targeting of DSG1 by autoan-
tibodies leads to blistering in the outer layers of the
skin in the disease pemphigus foliaceus. By
contrast, in pemphigus vulgaris, targeting of DSG3
results in blistering deep within mucous mem-
branes, and targeting of both DSG3 and DSG1
leads to mucocutaneous blistering with blisters
appearing just above the basal cell layer of the
skin [76]. Pathogenic antibodies isolated from
mouse models recognize the first cadherin domain
of DSG3 that directly mediates trans-adhesion
between cells [77,78], and those isolated from
human patients also bind here [79]. The antibodies
are conformationally specific, binding preferentially
to the mature protein, which has been proteolyt-
ically cleaved to initiate cadherin strand dimer
formation [80]. The sites in the first and second
cadherin domains of DSG3 that may mediate
cis-adhesion are targeted by serum and pathogenic
antibodies of pemphigus patients [81]. Epitope
mapping reveals that the EC1 and EC2 domains
of desmogleins are most commonly recognized
by pathogenic antibodies from both pemphigus
foliaceus [82] and pemphigus vulgaris sera [83].
An endemic form of pemphigus foliaceus (fogo
selvagem) evolves from autoantibodies that rec-
ognize an epitope in desmoglein's EC5 domain
and progresses when anti-EC1:EC2 antibodies
develop [84]. The mechanism by which these
pathogenic antibodies result in a loss of inter-
cellular adhesion and blister formation remains
unclear. Pathogenic antibodies may block the
assembly of desmosome adhesion complexes
by occluding the sites that directly mediate trans
and cis contacts. Alternatively, binding of auto-
antibodies to desmogleins may trigger endocytosis
of desmogleins followed by desmosome disassem-
bly [85].
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Desmocollin mutations linked to ARVC

Both desmocollins and desmogleins are required
for normal desmosomal adhesion. Homophilic in-
teractions between desmocollins [86] and between
desmogleins [87,88] have been reported in solution.
However, it appears that desmocollins and desmo-
gleins can also engage in heterophilic interactions in
solution [86] and both homophilic and heterophilic
interactions in cultured cells [2,35,43]. The ARV-
C-associated mutations that could alter processing
of DSC2 include E2K, C32X, E102K, and R132C
substitutions in the signal and pro-sequences
[48,54,61,69,89,90]. The EC1 domain of DSC2
exhibits potentially destabilising ARVC-linked muta-
tions including G150A, R203C, R203H, G220R, and
I231T [64,68,69,89]. ARVC-linked pathogenic muta-
tions in the EC2 domain of DSC2 include T275M,
P292S, T340A, I342V, I345T, and D350Y, with the
latter mutation removing a Ca2+ coordinating group
that rigidifies the linkage to EC3 [52,54,64,89]. The
E102K and I345T mutant DSC2 proteins delocalize
from the plasma membrane to the cytosol [90],
inferring trafficking defects, while the R203C and
T275M mutants show impaired proteolytic proces-
sing [64]. A pair of NMD mutations, R375X and
Q554S, are found in the EC3 and EC4 domains,
respectively, as well as deletions due to frameshift
mutations [54]. The EC5 domain contains a single
pathogenic mutation, I603T [91], as well as frame-
shifts and deletions that would cause NMD. Like
desmogleins, desmocollins have cytoplasmic IA and
ICS domains. The ICS domain is truncated in
desmocollin “b” proteins, which are shorter than
desmocollin “a” proteins and arise as a result of
alternative splicing. The “b” proteins have a number of
amino acids (11 in DSC2b) at the extreme C-terminus
of the protein that are not found in the “a” proteins.
DSC2b retains the ability to bind PKP2 but is unable to
bind plakoglobin [92]. A pathogenic ARVCmutation at
S824L is found in both DSC2a and DSC2b isoforms
whereas another at G863R is found in DSC2a only,
along with a pathogenic nonsense mutation in PKP2.
The latter resides next to a potential phosphorylation
site at Ser864 [69,91,93]. Hence, the frequency and
types of mutations roughly mirrors those found in
DSG2, consistent with their similar roles and orienta-
tions in cardiac desmosomes.
Armadillo protein structure,
interactions, and mutations in ARVC

Plakoglobin is closely related to β-catenin, an
important component of adherens junctions and the
Wnt/β-catenin signaling pathway, which interacts
with the cytoplasmic domains of classical cadherins
such as E-cadherin. Both plakoglobin and β-catenin
have a central “armadillo” domain, consisting of 12
non-identical 42-amino-acid “arm” repeats, flanked
by N- and C-terminal “head” and “tail” regions. The
head and tail domains are sensitive to proteolysis
and may be flexible. The structures of plakoglobin
and β-catenin are similar; both are elongated
molecules with closely packed arm repeats, most
of which consist of three α-helices [94,95]. Their
superhelical structures offer a positively charged
groove where numerous β-catenin binding partners
engage. For example, E-cadherin's cytoplasmic tail
binds to this β-catenin site via an extended
conformation [94]. E-cadherin shows almost identi-
cal interactions with plakoglobin [95], explaining why
plakoglobin is interchangeable with β-catenin in
adherens junctions. Both plakoglobin and β-catenin
bind strongly to E-cadherin, whereas plakoglobin
interacts with DSG1 much more strongly than does
β-catenin, which is absent from desmosomes [95].
Alignment of desmoglein or desmocollin sequences

with those of E-cadherin shows that most of the
observed β-catenin/E-cadherin interactions are likely
to be conserved in plakoglobin/desmosomal cadherin
complexes [94]. Desmosomal cadherin binding sites
on plakoglobin overlap, with arm repeats 1–3 being
important for binding both desmoglein and desmocol-
lin. Residues Ile127, Ile165, and Leu231 within these
repeats are absolutely required for binding of either
desmogleins or desmocollins [62]. While repeats 1–3
may be sufficient for desmoglein binding, desmocollin
association requires both ends of the armadillo repeat
domain [96]. As well as interacting with desmosomal
cadherins, plakoglobin interactswithPKP2andPKP3,
but not PKP1, by immunoprecipitation [97,98]. The
arm domain of plakoglobin is responsible for the
interaction with PKP2 [98] and it also interacts with
desmoplakin [99]. Tyrosine phosphorylation of plako-
globin is important in regulating its interaction with
desmoplakin. In particular, the epidermal growth
factor receptor (EGFR) phosphorylates Tyr693,
Tyr724, and Tyr729 in the C-terminal tail of plakoglo-
bin, so abolishing its interaction with desmoplakin
[100]. Conversely, Src phosphorylates residueTyr643
in plakoglobin, increasing its interaction with desmo-
plakin, but decreasing its interaction with E-cadherin
and another adherens junction protein, α-catenin
[101].
A homozygous 2-bp deletion in the gene encoding

plakoglobin was the first genetic mutation in a
desmosomal gene to be associated with ARVC
[102]. The mutation results in a frameshift and
premature termination of the plakoglobin protein
(G680fsX690), causing the cardiocutaneous syn-
drome Naxos disease. As well as heart problems,
patients exhibit the skin disorder palmoplantar
keratoderma and have woolly hair. Recently, a
missense mutation in the central armadillo repeat
domain of plakoglobin (R256H) was reported,
causing ARVC with palmoplantar keratoderma and
alopecia [103]. Mutations in plakoglobin can result
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exclusively in skin disease. Thus, a homozygous
nonsense mutation in the JUP gene (Q539X), which
causes premature termination in the 10th arm repeat
and complete loss of plakoglobin expression in the
skin, has been described in a single patient [104].
The patient suffered from extreme skin fragility and
massive fluid loss causing early death, but showed
no signs of heart dysfunction [104]. Conversely,
mutations that result in ARVC alone, without
cutaneous manifestations, have been documented.
One such mutation leads to the insertion of a Ser
residue into the protease-sensitive head domain
(S39_K40insS). The mutation results in a marked
decrease in the amount of plakoglobin at the
intercalated disk [105], a common feature of ARVC
(see below). Similarly, a pathogenic missense
mutation in the protease-sensitive head domain
(T19I) is known to cause ARVC without skin disease
[59]. Mutations in the central armadillo repeat
domain (Fig. 3), including deletion of an Ile residue
from the first arm repeat (I131del) [54], and a variety
of missense mutations throughout the central do-
main (V159L, S225L, V407I, and V603L) [69,106],
also cause ARVC without skin disease, while a
Fig. 3. Plakoglobin structure and locationsofARVCmutations
3IFQ) (left) and electrostatic potential of surface-exposed resid
known to be pathogenic are shown as either copper (buried)
comparatively fewer pathogenic mutations than other desmosom
positions across the domain, with consequences on protein stabi
the electrostatic potential map, blue and red represent positively
shows the charged E-cadherin binding groove, which is also pr
acids proposed to mediate desmoglein and desmocollin binding
homozygous E301G mutation was also detected in
two patients with Naxos disease. It is not clear how
mutations in plakoglobin cause ARVC. A reduction in
ligand binding, leading to a decrease in desmosomal
adhesion, is one possibility, as is loss of plakoglobin
from the intercalated disk, leading to changes in
intracellular signaling (see below).
All three plakophilins contain a central armadillo

repeat domain containing nine arm repeats and
unstructured N- and C-terminal head and tail
domains. Two PKP1 and two PKP2 isoforms are
known. PKP1a and PKP1b are identical with the
exception of a 21-amino-acid insert between arm
repeats 3 and 4 and PKP2b is larger than PKP2a
because of the insertion of 44 amino acids between
arm repeats 2 and 3 [107,108]. The crystal structure
of the plakophilin 1a central domain [109] is similar to
that of plakoglobin [95], β-catenin [94], N458Y and
p120 catenin [110]. The nine arm repeats, each
consisting of three α-helices, pack together to form a
superhelical structure [109]. Overall, the domain is
sickle shaped, as a result of a long flexible insert
between arm repeats 5 and 6 that introduces the
bend into the structure. As well as interacting with
. Crystal structure of the plakoglobin armdomain (PDBcode:
ues (right). In the ribbon diagram, point mutations that are
or green (surface exposed). Although plakoglobin exhibits
al proteins, they are balanced between exposed and buried
lity and binding properties that require further examination. In
and negatively charged regions, respectively. The surface

oposed to bind to desmoglein and desmocollin [95]. Amino
are highlighted in purple [95].
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plakoglobin, plakophilins interact with desmosomal
cadherins, although some differences in affinity
between different plakophilins and desmogleins
may exist [97,98,111]. The unstructured plakophilin
head domain appears to be primarily responsible for
these interactions. All three plakophilins interact with
desmoplakin [97,98,111].
Mutations leading to human disease have been

described in both PKP1 and PKP2, but not PKP3.
Mutations in PKP1 result in ectodermal dysplasia/
skin fragility syndrome. In the first case reported, the
disease was caused by two recessively inherited
stop codons within DNA encoding the first and third
arm repeats and was characterized by skin fragility,
resulting in erosions, fissures, and keratoderma.
The patient also exhibited defective hair growth, nail
dystrophy, and a reduced ability to sweat [112].
Mutations in PKP2 are the most common cause of
ARVC [59]. A total of 131 pathogenic mutations that
occur throughout the PKP2 gene are listed in the
ARVC database [47]. Four pathogenic missense
mutations (Q59L, K112N, E137K, and P238L) are
located in the unstructured head domain and may
affect binding of other desmosomal proteins. Thus,
the Q59L mutation disrupts interaction with desmo-
plakin in in vitro binding assays [113]. A large
number of pathogenic missense mutations have
been documented in the PKP2 central armadillo
repeat domain (Fig. 4). To determine the effect of
mutations in this domain, Kirchner et al. expressed
wild-type PKP2, as well as three proteins containing
single pathogenic missense mutations (C796R,
S615F, and K654Q), a truncated protein containing
a pathogenic frameshift mutation (C693fsX741) and
two proteins containing amino acid changes of
Fig. 4. Plakophilin 2 structure and locations of ARVCmutations
domain is shownbased on a fragment of thePKP2armdomain (P
code 1XM9) [109] as calculated by the PHYRE server [115]. Po
either copper (buried) or green (surface exposed). PKP2exhibits t
any desmosomal protein. This includes a mutation “hotspot” invo
L611R and L614P mutations that are linked to ARVC and are clu
unknown significance (I531S and V587I) in cultured
cardiac-derived HL-1 cells. Expression levels of the
proteins containing pathogenic mutations were re-
duced, whereas those of the I531S and V587I proteins
were not significantly changed when compared to the
wild-type protein. Furthermore, the pathogenic mutant
proteins exhibited a cytoplasmic localization, whereas
the other two were localized at the membrane as
expected. The most likely explanation for the results is
that the pathogenic mutations adversely affect protein
stability, with the unstable proteins being targeted for
degradation, perhaps by calpain proteases [114]. One
further pathogenic missensemutation, L847P, is found
in the last arm repeat of PKP2 but its functional effects
are not known. In addition to its role in intercellular
adhesion, PKP2 interactswith protein kinaseC-α [116],
β-catenin [98], and RNA polymerase III [117], and may
have additional roles in intercellular signaling and gene
transcription.Whether thesepotential roles are affected
by ARVC mutations remains to be determined.
Desmoplakin Structure and Function

Desmoplakin is an obligatory component of the
desmosomal complex. Like other plakin family mem-
bers, it has a tripartite structure and includes a globular
N-terminal plakin domain, a central coiled-coil domain
and a C-terminal tail domain. The latter consists of
three plakin repeat domains (PRDs) designated A, B,
andC,with a conserved linker joiningPRDsBandC. A
short glycine–serine–arginine (GSR)-rich element is
found at the extremeC-terminal end of the protein. The
plakin domain, together with a short region at the
N-terminal end of the protein, which is predicted to be
. A sequence homology-basedmodel of the entire PKP2arm
DBcode: 3TT9) [114] and thePKP1arm repeat domain (PDB
int mutations that are known to be pathogenic are shown as
hemost numerous anddiverse pathogenicmutations found in
lving residues N613 and S615 as well as the newly identified
stered within the hydrophobic core of the PKP2 arm domain.

image of Fig.�4
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unstructured, is responsible for interacting with plako-
globin and plakophilin. The coiled-coil rod domain
facilitates homodimerization and the C-terminal tail
interacts with intermediate filament proteins [118,119].
Two isoforms created by alternative splicing are
known: DPI (~332 kDa) and DPII (~260 kDa). They
are identical except that DPII has a shorter rod domain.
DPI andDPII are expressed in comparable amounts in
most tissues except the heart, where DPII is detected
only at low levels.
The desmoplakin plakin domain consists of six

spectrin repeats (SRs) (SR3–8) and an Src homology
3 (SH3) domain [120]. The structure of a desmoplakin
plakin construct spanning the first four SRs reveals a
high level of structural homology to typical SR
structures [121]. The four repeats forma rigid elongated
structure with the SH3 domain located within a loop
between two helices of the third SR. The SH3 domain
extensively interacts with the preceding SR in a fashion
that rigidifies that part of the plakin domain. The
interdigitation between the SR4 and SH3 domains
suggests that theSH3domain is unlikely to interactwith
ligands [121]. Small-angle X-ray scattering studies of
the entire desmoplakin plakin domain with all six SRs
have shown that it is not a rigid rod but consists of two
arms of four and two SRs, respectively, which are able
to rotate about a protease-sensitive hinge. The
Fig. 5. Desmoplakin structures and locations of ARVC muta
code: 3R6N), (b) PRD-B (PDB code: 1LM7), and (c) PRD-C (
mutations that are known to be pathogenic are shown as eithe
and C, electrostatic potential maps are also shown with blue
groups, respectively. Both PRDs B and C possess a conse
intermediate filament binding sites [125]. Amino acid residu
indicated in purple. Also depicted are the newly identified and
desmoplakin plakin domain appears to alternate
between extended “I”- and jack-knifed “U”-shaped
conformers, while the plakin domains of its envoplakin
and periplakin relatives predominantly form “L” shapes
[24,122]. The recently elucidated plakin domain
flexibility may be important in desmosome assembly,
allowing the domain to “fish” for ligands, and the hinge
could extend when desmosomes are subjected to
mechanical force, so limiting SR unfolding and
preventing damage to the desmosome.
Desmoplakin's central coiled-coil region forms a

dimeric rod 130 nm in length [123,124], suggesting
that it spans much of the desmosomal plaque. The
crystal structures of desmoplakin PRDs B and C
domains have been solved, and consist of 4.5
repeats of a 38-amino-acid plakin repeat motif
[125]. The motif itself consists of a β-hairpin followed
by two antiparallel α-helices (Fig. 5). A negatively
charged residue at the fourth position of the first
β-strand of the β-hairpin contacts a positively
charged residue at position 19 of the first helix to
“fix” the β-hairpin into place. Multiple hydrophobic
contacts are used to stabilize the two antiparallel
α-helices [125]. Each PRD forms a compact globular
structure as a result of further hydrophobic contacts
between the motifs. A positively charged groove is
located on the surfaces of PRDs B and C between
tions. Crystal structures of desmoplakin (a) SRs 3-6 (PDB
PDB code: 1LM5) are depicted as ribbon diagrams. Point
r copper (buried) or green (surface exposed). For PRDs B
and red representing positively and negatively charged

rved basic groove, which it is speculated may represent
es that are proposed to interact with vimentin [125] are
as of yet unpublished mutations of R222L and H618P.
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each of their paired plakin repeat motifs. Intermediate
filaments possess many negatively charged patches
and may form electrostatic interactions within the
complementary groove. It appears that binding of
desmoplakin to intermediate filaments is predominant-
ly dependent on its PRDs. However, the linker domain
between PRDs B and C could contribute to efficient
binding, although by itself it only interacts weakly with
intermediate filaments [126,127]. Interestingly, phos-
phorylation of Ser2849 within the GSR element at the
extreme C-terminal end of desmoplakin is thought to
regulate its interaction with the cytoskeleton [128].
Mutations in desmoplakin result in diseases that

affect the heart, skin, and hair. Autosomal dominant
mutations in DSP, resulting in a null allele and
haploinsufficiency, cause striate palmoplantar kera-
toderma, which is characterized by thickened areas
of skin, particularly on the palms and soles
[129,130]. Carvajal syndrome is characterized by
cardiomyopathy, palmoplantar keratoderma, and
woolly hair. It is inherited in an autosomal recessive
fashion and is similar in many ways to Naxos
syndrome (caused by mutations in JUP; see
above), although in Carvajal syndrome, it is primarily
the left ventricle that is affected [131]. Carvajal
syndrome can occur as a result of a homozygous
one-base deletion leading to premature termination
and a truncated protein lacking the PRD-C and GSR
domains (S2542fsX2560). Skin fragility/woolly hair
syndrome is characterized by palmoplantar kerato-
derma and woolly hair, but with no apparent cardiac
involvement [132]. The syndrome has been de-
scribed in two unrelated individuals. Both were
compound heterozygotes, each with one nonsense
mutation resulting in haploinsufficiency, and each
with a missense mutation (either N287K in the second
SR of the plakin domain, or R2366C in PRD-B).
Compound heterozygosity for two DSP nonsense
mutations, leading to the production of two truncated
polypeptides lacking all three PRDs, can result in lethal
acantholytic epidermolysis bullosa [133]. In lethal
acantholytic epidermolysis bullosa, loss of intermediate
filament binding leads to severe skin blistering, cata-
strophic fluid loss, andearly neonatal death. In onecase,
a homozygous mutation (R1267X) that occurs in an
exon encoding part of the DPI-specific rod region has
been reported [134]. This mutation results in loss of
expression of DPI while that of DPII is retained. The
patient exhibited palmoplantar keratoderma, woolly hair,
and early-onset cardiomyopathy but survived until early
childhood (4 years), suggesting that DPII can compen-
sate, at least to some extent, for the absence of DPI.
Structural Implications of Desmoplakin
Mutations in ARVC

Mutations throughout the desmoplakin protein are
linked to ARVC. Two missense mutations (V30M
and Q90R) are located within the unstructured
N-terminal region of the protein. One of these
mutations adversely affects binding of plakoglobin
to desmoplakin, although binding of PKP2 is
unaffected [135]. Of the 25 pathogenic missense
mutations listed in the ARVC database [47], 14 are
located in the plakin domain, 6 are in the rod domain,
and 5 are in the tail domain. Six of the mutations in
the plakin domain are located within the SH3 domain
[121]. Pathogenic mutations at conserved SH3
positions including S299R, N375I, I445V, and
S507F are clustered near the SR4 binding site and
are predicted to disrupt core stability and interdo-
main contact or both. Another mutation, K470E,
occupies an exposed loop position and does not
cause significant destabilization of the domain
[121,122]. Other pathogenic mutations scattered
along the length of the SR3–6 rod include R222L,
D230N, N287K, N375I, E422K, S442F, I445V,
N458Y, Y494F, S507F, S597L, and H618P
(Fig. 5). Pathogenic R808H/C mutations within the
fifth SR reduce the stability of a construct consisting
of the last two SRs of the plakin domain, although the
overall folded structure is maintained [122]. Thus,
most of the pathogenic mutations in desmoplakin's
plakin domain appear to perturb its structural stability
and surface properties and hence could have severe
consequences for desmosome function.
The specific effects of the six pathogenic ARVC

mutations of the desmoplakin rod domain are
unknown but could conceivably affect its coiled-coil
structure, surface properties, and multimeric state. In
the C-terminal region, there are three mutations—
G2056R, G2375R, and R2639Q—that are found
within PRDs A, B, and C, respectively. The mutations
in PRDs B and C are not in the proposed filament
binding grooves [125]. The sharp bend formed by the
conserved Gly2375 could not be accommodated by
replacement with an Arg residue. A positively charged
residue is generally found at the position of Arg2639
and contacts a negatively charged amino acid
(Asp2624) to “lock” a β-hairpin and stabilize the fold
in a way that could be lost with the Gln substitution.
Thus, either ARVC-linked mutation would be pre-
dicted to directly destabilize the PRD fold and could
conceivably induce aggregation of the full-length
desmoplakin protein. Two other mutations are found
in the desmoplakin C-terminal tail. One (R2541K) is
found in the conserved linker, and another (T2595I) is
found in a 30-amino-acid region that is likely to be
flexible and that follows the linker and precedes
PRD-C. The effects of these mutations are unknown.
Intermediate Filament Structures and
ARVC Mutations in Desmin

Desmoplakin interacts with three types of interme-
diate filament protein: desmin, keratin, and vimentin.
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Of these, only desmin is expressed in cardiac
muscle. It is also expressed in skeletal and smooth
muscle cells, and mutations in the DES gene are
associated with a broad range of myopathies,
including myofibrillar myopathies and/or dilated
cardiomyopathy [136]. Desmin consists of a central
308-amino-acid α-helical rod domain that is flanked
by non-α-helical head and tail domains. The central
rod domain shows a seven-residue periodicity with
the first and fourth positions for themost part occupied
by apolar, hydrophobic amino acids. The heptad
repeat arrangement allows for the formation of a
homodimer, the elementary unit of desmin filaments.
The α-helical rod domain is interrupted by three 8- to
16-amino-acid “linkers” (L1, L12, and L2) that interrupt
the heptad periodicity and subdivide the domain into
four separate segments (1A, 1B, 2A, and 2B). During
formation of desmin intermediate filaments, homo-
dimerization of central rod domains occurs to form a
parallel coiled-coil dimer. Dimers then associate in a
half-staggered antiparallel manner to form tetramers
that associate laterally to form “unit-length filaments”.
The latter then anneal longitudinally to ultimately yield
long compacted intermediate filaments [137].
A number of mutations in the desmin gene

have been associated with ARVC Ref. [138]. In the
majority of cases, these are associated with muscle
pathologies. One mutation (N116S) has been
reported in a patient with ARVC and terminal heart
failure, and without signs of clinical myopathy
(although subclinical skeletal muscle disease was
reported) [139]. The mutation is located in segment
1A of the rod domain and disrupts desmin filament
formation and results in desmin immunoreactive
protein aggregates (aggresomes) in cardiac and
skeletal muscle. In a recent study, 91 ARVC index
patients were screened for mutations in the desmin
gene. Only two potential pathogenic missense
mutations were found, suggesting that the frequency
ofDESmutations in ARVC in the absence of skeletal
muscle involvement is low [138].
Potential Mechanisms for Fibrofatty
Replacement in ARVC

ARVC is characterized by gradual loss of cardio-
myocytes and their replacement by fibrous and fatty
tissue. A number of potential mechanisms could
explain the appearance of this fibrofatty tissue.
Cardiomyocyte death, inflammation, and regional
fibrosis could occur as a result of reductions in
desmosomal adhesion. However, the appearance of
adipocytes in the hearts of ARVC patients may be
the result of changes in intracellular signal transduc-
tion pathways, in particular the Wnt/β-catenin path-
way, in response to release of plakoglobin from
defective desmosomal junctions. In the canonical
Wnt/β-catenin pathway, cytoplasmic β-catenin is
degraded in the absence of a Wnt signal. In the
presence of Wnt, β-catenin is translocated to the
nucleus where it interacts with transcription factors of
the T-cell factor (Tcf)/lymphoid enhancer factor (Lef)
family and drives transcription of β-catenin-responsive
genes [140]. Plakoglobin interacts with many of the
same proteins as β-catenin, including Tcf/Lef transcrip-
tion factors. There is some evidence that suggests that
plakoglobin may not be as effective in activating
transcription of Tcf/Lef-dependent transcription as
β-catenin itself [141] and that, in the heart, plakoglobin
interferes with β-catenin transcriptional activity by
competing for binding to Tcf/Lef [142]. This is important
because loss of plakoglobin from the intercalated
disk appears to occur in the majority of ARVC
cases [143,144]. Wnt/β-catenin signaling enhances
myogenesis and inhibits adipogenic transcription fac-
tors such as CCAAT/enhancer-binding protein α and
peroxisome proliferator-activated receptor (PPAR) γ
[145,146] and it is not difficult to envisage amechanism
whereby suppression of Wnt/β-catenin signaling by
plakoglobin allows activation of adipogenic genes,
thereby accounting for the characteristic fibrofatty
replacement in the right ventricle of ARVC patients.
There is some experimental evidence that supports

such a tissue replacement mechanism. Cardiac-
specific deletion of one DSP allele in transgenic
mice leads to nuclear localization of plakoglobin,
reduced Wnt/β-catenin signaling, and increased
numbers of adipocytes and fibrosis in the myocardi-
um. Furthermore, cardiac dysfunction and ventricular
arrhythmias are observed in the animals, recapitulat-
ing the phenotype of ARVC in patients [147]. A similar
phenotype is seen in mice that are engineered to
overexpress plakoglobin [148], suggesting that re-
lease of plakoglobin from the membrane and subse-
quent nuclear localization could be important in the
etiology of ARVC. Interestingly, cardiac-specific
knockout of plakoglobin leads to loss of cardiomyo-
cytes, inflammation, fibrous tissue replacement, and
cardiac dysfunction, but no increase in adipocytes
[142,149]. An increase inWnt/β-catenin signaling was
reported in one such mouse model, so it may be that
nuclear localization of plakoglobin, as well as inhibi-
tion of Wnt/β-catenin signaling, is required for
adipogenesis in ARVC [142]. In a recent report
[150], induced pluripotent stem cells (iPSCs) were
generated from fibroblasts from a patient with ARVC
(as a result of a homozygous frameshift mutation in
PKP2).When the iPSCswere differentiated to beating
embryoid bodies (using a defined cardiogenic medi-
um), the mutant iPSC cardiomyocytes showed
abnormal nuclear localization of plakoglobin and
reduced Wnt/β-cateninin signaling. However, this
was insufficient to induce pathological features of
ARVC such as lipogenesis and apoptosis. Activation
of the adipogenic transcription factor PPARγ alone did
not induce ARVC pathologies, but when it was
co-activated with PPARα, pronounced lipogenesis
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and apoptosis were observed. Adult cardiomyocytes
producemost energy by fatty acid oxidation (regulated
by PPARα), whereas embryonic cardiomyocytes
utilize glycolysis so it may be that adult-like energy
utilization is required for the development of ARVC
[150].
The cellular origin of the excess adipocytes in

ARVC has been something of a mystery. Cardiac
progenitor cells isolated from mice overexpressing
plakoglobin show enhanced adipogenesis and
increased levels of adipogenic factors such as
CCAAT/enhancer-binding protein α. Significantly,
pharmacological activation of Wnt/β-catenin sig-
naling in these cells prevented adipogenesis, and
cardiac progenitor cells isolated from plakoglobin
null mice were resistant to adipogenesis [148].
The right ventricle and outflow tract are derived
from progenitor cells of the second heart field,
and recently, genetic fate mapping following
deletion of desmoplakin in different sets of cardiac
progenitor cells has established these cells as the
source of adipocytes in ARVC [148]. This then
may explain why ARVC is primarily a disease of
the right ventricle.
Future Directions

Structural analysis has now yielded models of
parts of each protein within the desmosome and,
together with binding studies, suggests how the
domains could assemble into the supramolecular
machines that mediate cell adhesion. The effects of
pathogenic mutations and antibodies include in-
complete assembly, loss of stability, and altered
sites of interaction and articulation, allowing more
accurate molecular phenotyping and diagnostics.
This has yielded many new questions that remain
unanswered. For example, most of the linkers,
intrinsically disordered, coiled-coil and transmem-
brane regions remain unresolved yet mediate
important molecular interactions. Although the
entire desmosomal machine has been visualized
at low resolution, it has yet to be modeled, either in
mutant, compressed, or extended states. The
unique mechanisms of each desmosomal protein
isoform and their mixed assemblies remain un-
known. How desmosomal cadherins mediate cis
and trans coupling in the extracellular space and
parallel dimerization and regular spacing inside the
cell is unclear and may differ significantly from the
classical cadherins in terms of architectural details.
The desmosome assembly and internalization
process is particularly opaque, yet is perhaps most
critical for understanding how mutants fail to
assemble correctly and are degraded. Finally
understanding the compensation mechanisms
whereby tissues tolerate apparently deleterious
mutations yet manage to adapt to preserve their
integrity remain a challenge, yet also presents
opportunities for intervention.
Although no therapy is yet available to prevent the

progression of ARVC, possible strategies are
emerging. The correlation of low plakoglobin ex-
pression levels with disease manifestation in in-
dividuals with desmosomal gene mutations
suggests that plakoglobin's loss from cell junctions
is crucial for ARVC causation. When stressed by
endurance exercise, plakoglobin deficiency could
lead to critical damage to the heart tissue. Conse-
quently, a combination of nitrates and diuretics that
reduce preload and right atrial pressure is under-
going trials to reduce the stress inflicted on
desmosomes of such individuals [151]. Another
therapeutic approach comes from the observation
that inhibition of EGFR signaling strengthens
adhesion between squamous carcinoma cells
[152]. EGFR inhibition leads to increased levels
(1.7- to 2.0-fold) of DSC2 and DSG2 protein within
the cells, accumulation of both desmosomal cad-
herins and desmoplakin at cell borders, and
recruitment of intermediate filaments to desmo-
somes. Inhibition of the EGFR kinase blocks
tyrosine phosphorylation of DSG2 and plakoglobin
and it is likely that the increases in adhesive
strength are as a result of increased desmosome
assembly. Treatment with EGFR inhibitors can also
be used to increase adhesive strength in p63-defi-
cient keratinocytes, which show reduced expression
of desmosomal cadherins and desmoplakin [153]. It
is tempting to speculate that similar treatments
could be developed to increase desmosome as-
sembly in ARVC mutant cardiomyocytes, and so
decrease the progression of the disease.
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