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Abstract 10 

Air quality models include representations of pollutant emissions, which necessarily entail 11 

spatial averaging to reflect the model grid size; such averaging may result in significant 12 

uncertainties and/or systematic biases in the model output. This study investigates such 13 

uncertainties, considering ozone concentrations in idealised street canyons within the urban 14 

canopy.  A photochemical model with grid-averaged emissions of street canyons is compared 15 

with a multiple-box model considering each canyon independently. The results reveal that the 16 

averaged, „one-box‟ model may significantly underestimate true (independent canyon mean) 17 

ozone concentrations for typical urban areas, and that the performance of the averaged model 18 

is improved for more „green‟ and/or less trafficked areas. Our findings also suggest that the 19 

trends of 2005-2020 in emissions, in isolation, reduce the error inherent in the averaged-20 

emissions treatment. These new findings may be used to evaluate uncertainties in modelled 21 

urban ozone concentrations when grid-averaged emissions are adopted.  22 

Capsule:  23 

A grid-based urban air quality model, if adopting a grid-averaging scheme of emissions from 24 

segregated street canyons, may significantly underestimate the street-level ozone abundance. 25 

Keywords: Segregation effect; urban street canyon; emission heterogeneity; photochemical 26 

box model; urban ozone concentrations. 27 
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Nomenclature 

miC , : Concentration of i
th
 species in Box m (m=0,1,2) (ppb); 

mbiC , : Background concentration of i
th
 species for Box m (m=0,1,2) (ppb); 

:21, iC  Averaged concentration of Boxes 1 and 2  of the i
th
 species (ppb); 

miE , : Emission rate of the i
th
 species in Box m (m=0,1,2) (ppb s

-1
); 

mH : Height of the street canyon of Box m (m=0,1,2) (metre); 

)( BASI  : Intensity of segregation between species A and B; 

)( BAk  : Second-order rate constant for species A and B in a well-mixed box; 

  )( BAeffk : Effective second-order rate constant in the „two-box‟ model; 

RSL: Region Split Line; 

t : Time (s); 

mtw , : Exchange velocity between street canyon and background for Box m (m=0,1,2) (m s
-1

); 

miS , : Net chemical production rate of the  i
th
 species in Box m (m=0,1,2) (ppb s

-1
); 

 : Heterogeneity of emissions; 

i : Percentage of overestimation for the i
th
 species by the „one-box‟ model (%); 

 28 

1 Introduction 29 

Atmospheric chemical and physical processes are tightly coupled in air quality simulations 30 

(Karamchandani et al., 2012). A general operating hypothesis of most urban air quality grid-31 

based models is that primary air pollutants emitted from vehicles, industry or other sources 32 

are instantaneously well-mixed or distributed within the entire model grid-cell which contains 33 

the emissions (Auger and Legras, 2007). The grid-averaged emission rates of primary air 34 

pollutants are normally used as an input representing the mean gridded emissions (Denby et 35 

al., 2011) in atmospheric chemical models and the concentration in the canopy layer is 36 

modelled as one box representing the canopy layer for the entire grid cell. However, in reality 37 

these surface emissions vary, and exhibit a high temporal and spatial heterogeneous 38 

distribution at the sub-grid scale, referred to as surface sub-grid emission heterogeneity 39 

(Galmarini et al., 2008). This leads to segregation effects due to incomplete mixing. In the 40 

grid-averaging procedure, all sub-grid scale processes and features (Ching et al., 2006) are 41 
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lost and secondary pollutants (e.g. O3) may therefore be systematically under- or over-42 

estimated.  43 

Several model approaches have been suggested to account for the impacts of sub-grid 44 

emission heterogeneity. Nested-grid or high-resolution modelling is a simple approach to 45 

resolve sub-grid scale variablity. Examples of such approach can be seen from the 46 

Community Multiscale Air Quality (CMAQ) model (Sokhi et al., 2006; Shrestha et al., 2009), 47 

the Weather Research and Forecasting/Chemistry (WRF/Chem) model (Grell et al., 2005), 48 

and the Comprehensive Air Quality Model with extensions (CAMx) (Shen et al., 2011). A 49 

shortage of this approach is that it is only effective locally to a fixed area where the finer 50 

resolution grid is located. In order to overcome the limitation, adaptive grid modelling 51 

(Srivastava et al., 2000; Constantinescu et al., 2008; Garcia-Menendez et al., 2010) was 52 

developed to allow dynamic change of the grid system during a simulation. Garcia-Menendez 53 

and Odman (2011) discussed the details and reviewed the advances of the adaptive grid 54 

modeling. Another approach to incorporate sub-grid emission heterogeneity is hydrid 55 

modeling, which combines a regional grid-based model with a local Guassian dispersion 56 

model (e.g. ADMS (Arciszewska and McClatchey, 2001) and AERMOD (Zou et al,2010)). 57 

This approch has been extensively implemented, such as the CMAQ-ADMS model (Chemel 58 

et al., 2011; Beevers et al., 2012; Stocker et al., 2012), the CMAQ-AERMOD model (Stein et 59 

al., 2007; Isakov et al., 2009; Johnson et al., 2010) and the WRF-AERMOD model (Kesarkar 60 

et al., 2007). A more promising approach is the plume-in-grid (PinG) modelling 61 

(Karamchandani et al., 2002), which imbeds a non-steady-state plume model inside the grid. 62 

Vijayaraghavan et al. (2006) implemented the plume-in-grid (PinG) modelling approach in 63 

the CMAQ-APT model to reduce sub-grid scale variability in a simulation of central 64 

California. They found that the sub-grid treatment can lead to up to 10 ppb less O3 under the 65 

condition of O3 formation and up to 6 ppb more O3 under other conditions, compared with a 66 

base simulation without the PinG treatment. The approach offers a more realistic 67 

representation of the elevated point emission sources and their atmospheric fate. Galmarini et 68 

al. (2008) developed a Reynolds-average model to parameterize sub-grid emission 69 

heterogeneity in the meso- and global scale. Their study built upon the assumption that 70 

concentrations can be divided into a mean part, depending upon the average emissions, and a 71 

fluctuation component which depends on the variabilty of emissions, respectively. 72 

Alternatively, Cassiani et al. (2010) developed a stochastic fields method to address surface 73 

sub-grid emission heterogeneity in a mesoscale dispersion model. The advantage of this 74 
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method is that the sub-grid scale emission variability is well-represented by the probability 75 

density functions. Some of the above approaches to address sub-grid scale errors are also 76 

reviewed and discussed in details by Touma et al. (2006) and Karamchandani et al. (2011).  77 

Currently, strategies to address sub-grid emission heterogeneity are mostly focussed upon 78 

large scale grid-based models. However, for the small scale, there is little research focusing 79 

on the effects of sub-grid emission heterogeneity.  80 

Here, we extend consideration of emissions heterogeneity to the small scale, i.e. the canyon 81 

scale. The canopy layer is a major source for emissions into the overlying atmosphere / 82 

boundary layer and is normally within the lowest grid-cell of a grid-based model. From the 83 

canopy layer perspective, urban street canyons are typical sub-grid scale features seperated 84 

by rows of buildings. These emissions into the canyon layer may be pre-processed within 85 

urban street canyons before they enter to the entire grid-cell in the lowest part of the grid-86 

based model (Fisher et al., 2006). Urban street canyons, where human exposure takes place, 87 

are the area of interest in this paper. The additional information between the grid-averaging 88 

implementation and the sub-grid calculation taking the emission heterogeneity into 89 

consideration may be of importance in terms of accurately calculating air pollutant abundance 90 

and their associated adverse health effects.  91 

The aim of this study is to investigate segregation effects of heterogeneous emissions on O3 92 

levels in idealised urban street canyons, and to identify how segregation effects are 93 

influenced by the balance between chemistry and dynamics. The paper is structured as 94 

follows. In Section 2, the methodology based on photochemical box models is described in 95 

details, as well as the corresponding concept of intensity of segregation and the model 96 

scenarios. In the following sections, the results for prediction of ozone levels and the intensity 97 

of segregation are discussed. 98 

2 Methodology 99 

There are a large number of possible arrangements of street canyons in the urban canopy 100 

layer. In this study, we select two typical idealised urban street canyons as a representation. 101 

One large photochemical box model (hereafter referred to as the „one-box‟ model) with 102 

averaged emissions of the two street canyons is used to represent the deterministic calculation 103 

based on the grid-average process; alternatively two small photochemical boxes (hereafter 104 

referred to as the „two-box‟ model) are combined to represent two segregated street canyons 105 

with their own respective emissions. The photochemical box models (which assume that 106 
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chemical species inside each box are well-mixed) can be simply applied and computationally 107 

inexpensive simulated. The model is written in FORTRAN77 language and run using 108 

FACSIMILE 4 integrator (Curtis and Sweetenham, 1987). A reduced chemical scheme 109 

(RCS), developed by Bright et al. (2013), is used as the chemical mechanism within the 110 

photochemical box models. The detailed model configuration is described as follows.  111 

2.1 Model Setup 112 

Figure 1 illustrates the overview of the box model configuration. It is assumed that in a cell of 113 

an urban air quality model, there are two street canyons with heterogeneous emissions 114 

represented by Box 1 and Box 2 with the same volume of air as indicated in the right panel 115 

(i.e. „Two-box model‟) of Figure 1. There is no exchange between the two boxes, i.e. total 116 

segregation is assumed; we only consider exchange between the within-canyon air and the 117 

background air above the canopy layer. It is also assumed that the „two-box‟ model 118 

represents the reality and the mean concentration,  119 

2/)( 2,1,21, iii CCC   (1) 120 

represents the „true‟ concentration of the i
th

 species in the canopy layer corresponding to this 121 

cell, with the concentrations in the „one-box‟ model departing from this truth due to 122 

segregation effects.  If a simplified approach of one single box (Box 0 indicated in the left 123 

panel of Figure 1) is adopted in which the volume of Box 0 is the sum of the volumes of Box 124 

1 and Box 2 (indicated in the right panel of Figure 1) and Ci,0 is the modelled concentration 125 

from the „one-box‟ model (Box 0 in Figure 1), there would be an error for Ci,0 (either an 126 

overestimation or an underestimation) in comparison with the „true‟ mean concentration Ci,1+2 127 

derived from the „two-box‟ model (Box 1 and Box 2 in Figure 1). This error is expressed as 128 

21,0,  iii CCC  (2) 129 

We may also interpret iC  as the concentration difference due to heterogeneity of emissions, 130 

or the overestimated concentration by Box 0. For individual reactive species in the „one-box‟ 131 

model (Box 0), the mass transport can be described as the following equation (Liu and 132 

Leung, 2008):  133 

0,0,0,

0

0,

0,0, )()( ibii

t

ii SCC
H

w
EtC

dt

d
  (3) 134 
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Where, Ci,0  (ppb) is the concentration of  i
th

 species by volume in Box 0, t (s) is the time, Ei,0  135 

(ppb s
-1

) is the emission rate of  i
th

 species by volume in Box 0, wt,0  (m s
-1

) is the exchange 136 

velocity between the street canyon and background for Box 0, H0 (m) is the height of the 137 

street canyon of Box 0, Cbi,0  (ppb) is the background concentration of  i
th

 species of Box 0 138 

and ΔSi,0  (ppb s
-1

) is the net production rate of  i
th

 species due to chemical reactions in Box 0.   139 

Similarly, the system of equations in the „two-box‟ model (Box 1 and Box 2) can be 140 

expressed as follows: 141 

1,1,1,

1

1,

1,1, )()( ibii

t

ii SCC
H

w
EtC

dt

d
  (4) 142 

2,2,2,

2

2,

2,2, )()( ibii

t

ii SCC
H

w
EtC

dt

d
  (5) 143 

In Equations (4) and (5), all symbols are as those in Equation (3) but for Box 1 and Box 2, 144 

respectively. In our model, we assume that 2,1,0, ttt www  , 2,1,0, btbtbt CCC  , 145 

)1(0,1,  ii EE  and )1(0,2,  ii EE , where  is the heterogeneity of emissions for the two-146 

box model (e.g. 0 : homogeneous emissions for the two boxes; 1 : all emissions into 147 

Box 1 and no emissions into Box 2). When the systems reach the steady state (or a quasi-148 

steady state) as stt  , then 0)(, tC
dt

d
mi  (m=0,1,2), and Equations (3)-(5) yield: 149 

0,0,0,

0,

0
0, )]([)( bisii

t

si CtSE
w

H
tC   (6) 150 

1,1,1,

1,

1
1, )]([)( bisii

t

si CtSE
w

H
tC   (7) 151 

2,2,2,

2,

2
2, )]([)( bisii

t

si CtSE
w

H
tC   (8) 152 

2/)]()([)( 2,1,21, sisisi tCtCtC   (9) 153 

Thus the concentrations Ci,m and the chemical production rate miS , , for m=0,1,2, are related 154 

by above respective equations. The relationships are a function of the corresponding emission 155 

rates and background conditions, respectively.  It is noted that, from (2), (6)-(9), we have 156 
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]
2

)()(
)([)( 2,1,

0,

0,

0 sisi

si

t

si

tStS
tS

w

H
tC


  (10) 157 

If the emission is a passive scalar (i.e. a species which does not undergo chemical reaction), 158 

then the difference )( si tC  is zero. For reactive species, the differences depend on the 159 

heterogeneity of emissions and the nonlinear nature of photochemical reactions, together with 160 

the exchange velocity caused by dynamic effects. Therefore the characteristics of )( si tC  161 

can be complex and will be examined in depth in the following sections. 162 

 163 

Finally, we define the percentage of overestimation by the „one-box‟ model (Box 0) for the i
th

 164 

species as: 165 

%100
)(

)(
)(

21,





 tC

tC
t

i

i
i   (11) 166 

)(ti  may also be interpreted as the overestimated concentration by the the „one-box‟ model 167 

relative to the „true‟ concentration by the „two-box‟ model. If %0)( ti , it means that the 168 

„one-box‟ model provides the true answer; if %10)( ti   or -10%, it means that Box 0 over- 169 

or under-estimates the concentration by 10%, respectively.   170 

2.2 Intensity of segregation 171 

In order to characterise the sub-grid scale variability due to incomplete mixing, a widely used 172 

dimensionless number, the intensity of segregation (Krol et al., 2000) between two chemical 173 

species A and B, )( BASI  , is introduced and defined as  174 

BA

BA
I BAS

''

)(   (12) 175 

where the angle brackets represent the volume average, the prime denotes the local deviation 176 

from the volume-averaged concentration, and
''BA  stands for the covariance between A and 177 

B. For any species A in the „two-box‟ model of this study,  21
2

1
AAA   is A‟s mean 178 

concentration of the two boxes, 1A  and 2A  are A‟s concentrations in Box 1 and Box 2, 179 

respectively, AAA  1

'

1 , AAA  2

'

2  and  '

2

'

2

'

1

'

1

''

2

1
BABABA  . The intensity of 180 
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segregation between A and B is a proper measure of the effect of segregation on nonlinear 181 

chemical processes (Hilst, 1998). For a second-order reaction A+B  C in a heterogeneously 182 

system (i.e. the „two-box‟ model in this study), the formation of C (Vinuesa and de Arellano, 183 

2005) can be described as follows, 184 

  BAk
dt

Cd
BAeff )(  (13) 185 

where   )( BAeffk  is the effective second-order rate constant for formation of C in the „two-186 

box‟ model which can be represented by  187 

)1( )()()( BASBABAeff Ikk    (14) 188 

where )( BAk  is the original rate constant of the reaction in the well-mixed „one-box‟ model. 189 

Such a constant is normally obtained from laboratory experiments in a well-mixed chamber. 190 

If 0)( BASI  , it means that species A and B can be regarded as well-mixed; If 0)( BASI  or 191 

0)( BASI , it implies that   )( BAeffk  in the „two-box‟ model is larger or smaller than )( BAk   in 192 

the „one-box‟ model due to the effect of segregation.  193 

2.3 Model Scenarios  194 

2.3.1 Initial and background conditions 195 

The initial conditions of the box models in this study were taken from those used in Bright et 196 

al. (2013) which in turn were based upon atmospheric field data from the Tropospheric 197 

Organic CHemistry (TORCH) experiment (Lee et al., 2006). The photochemical box model 198 

is run without emissions for the first 30 minutes in order to spin up the model, which allows 199 

concentrations of intermediate species to be calculated. Then the concentrations of all species 200 

at 30 min are used as the background conditions in the boundary layer for exchange with the 201 

inside canyon environment for all the simulations. 202 

2.3.2 Emissions and case settings 203 

Drawing upon the UK Road Vehicle Emission Factors (Boulter et al., 2009), emission rates 204 

for NOx, VOCs and CO of 620, 128 and 1356 g km
-1

 hr
-1

 were used respectively, which 205 

represent an urban continuous road traffic of 1500 vehicles hr
-1

 with an average speed of 30 206 
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mph for the year of 2010 (Bright et al., 2013). The emission rates into a volume of urban 207 

street canyons (18 m×18 m×1 m) are equivalent to ENOx=0.28, EVOCs=0.22 and ECO=1.0 ppb 208 

s
-1

 (here referred to a „Typical Real-world Emission Scenario‟, TRES) for the NOx, VOCs 209 

and CO, respectively. This canyon geometry was used by Bright et al. (2013) for their large-210 

eddy simulations. In this study, ECO is set as 1.0 ppb s
-1

 for all the scenarios, and the 211 

representative ENOx and EVOCs are scaled by different factors between 0.1 and 2 in order to 212 

characterize a wide range of real scenarios, i.e. ENOx varies from 0.028 to 0.56 ppb s
-1

 in steps 213 

of 0.028 ppb s
-1

, while EVOCs varies from 0.022 to 0.44 ppb s
-1

 in steps of 0.022 ppb s
-1

. The 214 

ratio of primary NO to NO2 emission rate is 9:1, while the relative fractional VOCs emission 215 

rates are 44% for C2H4, 19% for C3H6, 25% for HCHO and 12% for CH3CHO (as mixing 216 

ratio by volume) for all the scenarios.  217 

In this study we focus on the effects of two parameters,  (heterogeneity of emissions) and wt 218 

(exchange velocity), on i  and other characteristics. Table 1 gives an overview of the two 219 

parameters for all cases. For each case, the corresponding one photochemical box model (i.e. 220 

the „one-box‟ model, Box 0) and two segregated photochemical box models (i.e. the „two-221 

box‟ model, Box 1 and Box 2) were run. The heterogeneity of emissions () is set at a value 222 

of 0.5 and the exchange velocity (wt) is set as 0.02 m s
-1

 in the base case, „BASE‟. The value 223 

of =0.5 implies that the emissions into Box 1 (or Box 2) is 50% higher (or lower) than the 224 

averaged emissions parameterized into Box 0. In reality, this is often the case; within an 225 

Eulerian cell of an urban air quality model, some streets may have a much higher level of 226 

traffic than others. The value of wt=0.02 m s
-1

 is adopted based on the result from a large-227 

eddy simulation for a street canyon with a 18 m×18 m cross-section under a neutral 228 

condition if the reference wind speed is about 2 m s
-1 

(Cai, 2012).  229 

In order to account for the segregation effect due to variations of  and wt, we examine in 230 

detail the cases in which  and wt are perturbed by 40%, respectively. Case HE-L and HE-H 231 

(see Table 1 for definitions) have been configured for 40% lower and higher , respectively, 232 

than 0.5, while keeping the same wt as that of Case BASE. To consider the effect of exchange 233 

velocity (wt), we set up the cases of EX-L and EX-H for 40% lower and higher wt, 234 

respectively, than 0.02 m s
-1

, while keeping the same  as that of Case BASE. The range of 235 

values of wt from 0.012 m s
-1 

to 0.028 m s
-1

 is justified based on previous findings that wt 236 

varies when the canyon aspect ratio (H/W, where H is the building height and W is the street 237 
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width) is altered from 1 to a higher or lower value (e.g. Chung and Liu, 2013) and that urban 238 

surface heating may enhance wt significantly (e.g. Cai, 2012).  239 

3 Results and discussion 240 

3.1 Overestimation of ozone levels 241 

Figure 2 depicts 21,3 OC  (ppb), i.e. the „true‟ concentration derived from the „two-box‟ model, 242 

for all cases listed in Table 1 as a function of ENOx and EVOCs, once the simulations had 243 

reached a quasi-steady state (here defined as at t =4 hr). The ranges of 21,3 OC  for all cases are 244 

listed in Table 2, which reveals that the range of 21,3 OC  strongly depends on the variation of 245 

wt (indicated in Figure 2(d) and Figure 2(e)) rather than the variation of  (indicated in Figure 246 

2(b) and Figure 2(c)) and that the maximum range of 21,3 OC  is (5.62, 160.82) ppb for Case 247 

EX-L with the lowest exchange velocity (0.12 m s
-1

). In this study, the background O3 248 

concentration is approximately 43.61 ppb and by using a Region Split Line (RSL) we divide 249 

the plot area into 2 regions, i.e. Region I (with the ratio of EVOCs to ENOx lower than the slope 250 

of RSL) for which 21,3 OC  is lower than 43.61 ppb and Region II (with the ratio of EVOCs to 251 

ENOx higher than the slope of RSL) for which 21,3 OC  is higher than 43.61 ppb. The RSL for 252 

all cases is marked in Figure 2. Figure 2(f) indicates that the RSL for Cases BASE, HE-H and 253 

HE-L exhibits the same slope with the EVOCs:ENOx ratio (by volume) of 2.6, and the slopes of 254 

the RSL are 1.9 for Cases EX-L and 3.4 for Cases EX-H (listed in Table 2). Therefore, we 255 

may conclude that the slope of the RSL depends on wt but not on , and that the higher wt, the 256 

higher the slope of the RSL. In Region I, the titration effect of O3 by NO is dominant and 257 

therefore leads to the net destruction of O3 (i.e. lower than the background levels). However, 258 

in Region II, OH oxidation processes are dominant and sufficient VOCs are present to 259 

promote the conversion of NO to NO2 by peroxy radicals, thereby causing net ozone 260 

formation. It is therefore not surprising that 21,3 OC  is higher than its background level in 261 

Region II. The TRES (i.e. ENOx=0.28 ppb s
-1

, EVOCs=0.22 ppb s
-1

) defined in Section 2.3.2 is 262 

marked in the plots (triangle symbol); this emissions scenario, with the EVOCs:ENOx ratio (by 263 

volume) of 0.786, falls into Region I for all cases. This represents the typical situation in an 264 

urban area, namely that the ozone concentration inside a street canyon is lower than that in 265 

the overlying background atmosphere. It is noted in Figure 2(f) that the TRES is relatively 266 

closer to the RSL for Case EX-L, in which the exchange velocity between the canyon and the 267 
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boundary layer aloft, wt, is 40% lower than the base case. A low wt might be caused by a 268 

calm, stable meteorological condition or by a high canyon aspect ratio (i.e. large H/W). The 269 

trajectory from 2005 to 2020 in Figure 2 represents the emission scenarios of these years, 270 

which are derived from the UK fleet composition projections (NAEI, 2003) and the UK Road 271 

Vehicle Emission Factors (Boulter et al., 2009) assuming constant traffic volume and speed 272 

same as the „TRES‟ for 2010. Figure 2 shows that the trajectory from 2005 to 2020 falls into 273 

Region I and is approaching to the RSL with the reduction of VOCs and NOx emissions due 274 

to current and future control technologies, assuming constant activity (i.e. traffic) levels.  275 

 276 

Figure 3 illustrates the transects of 21,3 OC  (ppb) through the emission scenarios in Figure 277 

2(f). The rationale behind the choices is explained as follows. The dashed line, the dotted line 278 

and the dot-dash line all pass through the point for the TRES, as marked in Figure 2(f). The 279 

emission profile along this dashed line at the fixed ENOx of 0.28 ppb s
-1

 (Figure 3(a)) 280 

represents a technology of targeting only EVOCs from vehicles, or the roads with a varying 281 

coverage of vegetation which may emit further VOCs into the urban canopy (Loughner et al., 282 

2012). The emission profile along this dotted line at the fixed EVOCs of 0.22 ppb s
-1

 (Figure 283 

3(b)) represents a technology of targeting only ENOx. The emission profile along the dot-dash 284 

line (Figure 3(c)) represents a technology of both EVOCs and ENOx  (“TRES-2010” ) with the 285 

proportional traffic-emitting rate of both VOCs and NOx for the TRES. This dot-dashed line 286 

may also represent control of  the number of vehicles in streets or scenarios for different areas 287 

(busier or less busy roads) with the same fleet composition as the TRES. The trajectory 288 

(Figure 3(d)) indicates emission scenarios for the years 2005 to 2020 with the same traffic 289 

volume and speed as the TRES. Figures 3(a) & 3(b) demonstrate that 21,3 OC  increases with 290 

EVOCs for the “Fixed ENOx”scenario, but decreases with ENOx for the “Fixed EVOCs” scenario. 291 

Figure 3(c) suggests that for less busier roads than the TRES, 21,3 OC  is higher, and vice 292 

versa. Figure 3(d) shows that as control technologies are applied, 21,3 OC  increases. By 2020 it 293 

will be very close to the background level, particularly for Case EX-L for which the canopy 294 

layer is less ventilated. A higher ozone concentration also occurs to Case EX-L when EVOCs is 295 

very high for the “Fixed ENOx” scenario (Figure 3(a)) or when ENOx is very low for the “Fixed 296 

EVOCs” scenario (Figure 3(b)). The results show a nonlinear relationship between the O3 297 

concentration and EVOCs and/or ENOx, which is in line with many previous studies (e.g. Liu 298 
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and Leung, 2008). The TRES is indicated by a solid line in Figure 3(a)-(d) and 21,3 OC  for all 299 

cases with the TRES are about 20 ppb with a small variation across those scenarios tested. 300 

However, the analysis below demonstrates that these concentrations by the „two-box‟ model 301 

will be significantly underestimated by the „one-box‟ model. 302 

 303 

Figure 4 shows the values for 
3O (the percentage of overestimation for O3 by the „one-box‟ 304 

model) for all cases listed in Table 1 at t=4 hr. It is interesting to notice that the RSL (defined 305 

above) of each case splits the plot area into two regions, i.e. Region I where 
3O is negative 306 

and Region II where 
3O is positive. In Region I, 

3O is negative, which means the modelled 307 

O3 concentration by the „one-box‟ model is lower than the „true‟ value by the „two-box‟ 308 

model (i.e. the „one-box‟ model will underestimate O3  levels).  It is further shown that if only 309 

  is changed from 0.5 (Figure 4(a)) to 0.7 (Figure 4(c)) and to 0.3 (Figure 4(b)), respectively, 310 

a rapid change in 
3O is found. The maximum underestimation could be up to -35.24 % for 311 

Case HE-H (Figure 4(c)), and the minimum underestimation could be -6.12 % for Case HE-L 312 

(Figure 4(b)). The larger  is, the higher the maximum level of 
3O  will be. It is also noted 313 

that if only the exchange velocity (wt) is changed from 0.020 m s
-1

 (Figure 4(a)) to 0.012 m s
-

314 

1
 (Figure 4(d)) and to 0.028 m s

-1
 (Figure 4(e)), respectively, there is a less significant change 315 

in the maximum level of 
3O (listed in Table 2). However, there are noticeable shifts of the 316 

RSL (discussed above) and the isopleths patterns associated with the variation of wt. The 317 

trajectory from 2005 to 2020 falls into the underestimation area (i.e. Region I), and is marked 318 

in the plot for each case. In Region II for all the cases, the O3 levels will be slightly over-319 

estimated up to 3.07 % obtained for Case HE-H (Table 2). 320 

 321 

Figure 5 shows the transects of 
3O  through the lines in Figure 4(f). For the TRES emission 322 

scenario for the year of 2010 indicated by the solid line in Figure 5, underestimates of O3 323 

concentration by the „one-box‟ model are -12.37% for Case BASE, -4.31% for Case HE-L, -324 

25.07% for Case HE-H, -8.90% for Case EX-L and -12.30% for Case EX-H, respectively, 325 

suggesting that the effect of emission heterogeneity is more significant than the effect of 326 

exchange velocity.  327 
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 328 

Figure 5(a) shows that as EVOCs increases at the fixed ENOx of 0.28 ppb s
-1

, the modelled O3 329 

concentrations by the „one-box‟ model are underestimated compared with the „true‟ values, 330 

indicated by the negative 
3O . The lower EVOCs is, the larger the extent of underestimation 331 

will be. Figure 5(a) also indicates that by keeping traffic-emission rate ENOx unchanged, extra 332 

EVOCs (e.g. from vegetation or anthropogenic activities) will reduce 
3O , resulting in the 333 

improved performance of the „one-box‟ model.  However, future reduction in vehicle-related 334 

EVOCs, anticipated to arise from renewal of the vehicle fleet and implementation of more 335 

stringent emissions reduction technologies, will lead to an increase in the magnitude of 
3O . 336 

This also suggests that the performance of the „one-box‟ model for O3 concentration might be 337 

expected to be better for a more „green‟ area, with biogenic VOC emissions, assuming such 338 

emissions were not incorporated in the model scenario / conditions. 339 

 340 

Figure 5(b) illustrates the results of 
3O along the dotted line of Figure 4(f), i.e. varying ENOx 341 

for a fixed EVOCs corresponding to the TRES level of 0.22 ppb s
-1

. The modelled O3 342 

concentrations by the „one-box‟ model largely underestimate the „true‟ values, indicated by 343 

the negative 
3O (within Region I), with small positive values for 

3O only obtained at the 344 

lowest ENOx (within Region II). The magnitude of 
3O  increases while ENOx increases and the 345 

maximum level of 
3O  can be more than -30%. A large slope at the TRES for Case HE-H 346 

suggests that reductions in vehicle NOx emissions anticipated to arise from renewal of the 347 

vehicle fleet and implementation of more stringent emissions reduction technologies, will 348 

lead to a reduction in the magnitude of 
3O , i.e. an improvement in model performance 349 

overall.  350 

 351 

Figure 5(c) shows the results of 
3O along the dot-dash line of Figure 4(f) , i.e. varying EVOCs 352 

and ENOx with the same emission ratio (i.e. 0.786) for the TRES (e.g. less or more trafficked 353 

areas). It is noted that the performance of the „one-box‟ model for a less trafficked 354 

area/scenario (e.g. Birmingham) is better than that for a more trafficked area/scenario (e.g. 355 

London). Figure 5(c) also shows that the effect of wt on 
3O is relatively small for all cases. 356 
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However it is worth mentioning some secondary features that are counter intuititive, and thus 357 

not easily interpreted. Firstly, there exists a threshold of (ENOx, EVOCs) below which, and 358 

another threshold of (ENOx, EVOCs) above which, 
3O for Case EX-L and 

3O for Case EX-H are 359 

on the opposing sides of 
3O  for the base case; the first threshold of (ENOx, EVOCs) is about 6×360 

(0.028, 0.022) ppb s
-1

 and the second threshold of (ENOx, EVOCs) is about 10×(0.028, 0.022) 361 

ppb s
-1

. Between the two thresholds, the values of 
3O for both Case EX-L and Case EX-H are 362 

larger than that for the case BASE. Secondly, according to intuition and linear reasoning, a 363 

higher wt (Case EX-H) implies a better ventilation of the two street canyons with the 364 

background and in consequence a smaller difference between the two canyons; this effect 365 

would be similar to a smaller  (Case HE-L) that implies a smaller difference between the 366 

two canyons. Therefore the points for Case EX-H () and Case HE-L () should appear on 367 

the same side of Case BASE (); likewise the points for Case EX-L () and Case HE-H 368 

() should appear on the same side of Case BASE (). However, the results for O3 369 

concentration in Figure 3 do not always support the reasoning, neither do the results for 
3O  370 

in Figure 5. These all indicate the complexity of the nonlinear chemical system and suggest 371 

the necessity of in-depth analysis for specific scenarios. 372 

 373 

Figure 5(d) shows the results of 
3O along the trajectory from the year of 2005 to 2020 as 374 

indicated by Figure 4(f). It is noted that the level of extent of underestimation deceases with 375 

year, which indicates that in the future the performance of the „one-box‟ model will be better. 376 

The underestimates of O3 concentration by the „one-box‟ model for the year 2020 are -3.91% 377 

for Case BASE, -1.41% for Case HE-L, -7.60% for Case HE-H, -2.27% for Case EX-L and -378 

3.47% for Case EX-H, respectively.  379 

3.2  Intensity of segregation between O3 and NO 380 

Figure 6 illustrates the results of )( 3 NOOSI  , the intensity of segregation between O3 and NO, 381 

for all cases listed in Table 1 at the quasi-steady state (t=4 hr) as a function of ENOx and EVOCs. 382 

It is interesting to notice that the RSL (defined above) of each case divides the plot area into 383 

two regions, i.e. Region I where )( 3 NOOSI   is negative and Region II where )( 3 NOOSI   is 384 

positive as indicated in Figure 6(a)-(e). The trajectory from the year of 2005 to 2020 falls into 385 
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the negative region (i.e. Region I), and is marked in the plot for each case. It can be shown 386 

that the range of )( 3 NOOSI   (listed in Table 2) increases rapidly while  increases from 0.3 to 387 

0.7, i.e. (-7.78 %, 1.79 %) for Case HE-L, (-21.29 %, 5.21 %) for Case BASE and (-40.98 %, 388 

11.02%) for Case HE-H. The range of )( 3 NOOSI   does not change significantly with the change 389 

of the exchange velocity from 0.012 m s
-1

 to 0.028 m s
-1

, i.e. (-21.12 %, 6.78 %) for Case 390 

EX-L, (-21.29 %, 5.21 %) for Case BASE and (-21.18 %, 3.57) for Case EX-H. It is noted 391 

that the plots of )( 3 NOOSI   (Figure 6) are strongly correlated with those of 
3O (Figure 4). In 392 

Region I for each case, the heterogeneity of emissions will lead to negative values of 393 

)( 3 NOOSI  , which means that the effective rate constant of the titration reaction (NO + O3  394 

NO2 + O2) to consume O3, )1( )()()( 333 NOOSNOONOOeff Ikk   , in the „two-box‟ model is lower 395 

than the original rate constant, )( 3 NOOk  , in the „one-box‟ model. In other words, adopting the 396 

classical rate constant )( 3 NOOk   in the „one-box‟ model results in too much titration. As a 397 

result, the ozone level in the „two-box‟ model (i.e. the „true‟ value) is higher than the 398 

modelled ozone level from the „one-box‟ model, which agrees well with a negative value of 399 

3O , i.e. the modelled ozone level from the „one-box‟ model is underestimated. In Region II 400 

for each case, a positive value of )( 3 NOOSI   is observed, which indicates that 
)( 3 NOOeffk 

 is 401 

larger than )( 3 NOOk   and the „true‟ value of O3 is less than the modelled value of O3 by the the 402 

„one-box‟ model. Therefore, a positive value of 
3O is also observed in Region II, although 403 

the maximum overestimation only reaches 3.07 % (Table 2) for those scenarios considered 404 

here. Our findings also indicate that the slope of the RSL is determined by wt (discussed 405 

above), while the pattern and range of 
3O  and )( 3 NOOSI   in Region I and Region II depend 406 

more closely on .  It is also interesting to note that increasing  will enhance the effect of 407 

segregation and therefore promote sub-grid scale variability and potentially systematic error 408 

in modelled O3 abundance. It appears that the impact of change in  and wt on 
3O  and 409 

)( 3 NOOSI   is nonlinear to ENOx and EVOCs due to the fact that O3 is a secondary, rather than the 410 

primary, pollutant. 411 

 412 
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Figure 7 shows the cross-sectional analyses, as indicated in Figure 6(f), of )( 3 NOOSI   (%). For 413 

the TRES emission scenario for the year of 2010 indicated by the solid line in Figure 7, the 414 

values of )( 3 NOOSI   are -15.47% for Case BASE, -5.38% for Case HE-L, -31.34% for Case 415 

HE-H, -9.93% for Case EX-L and -17.37% for Case EX-H, respectively. It is noted that at the 416 

fixed NOx emission (Figure 7(a)), the magnitude of )( 3 NOOSI  for all cases decreases (becomes 417 

more negative) with reduced EVOCs. However, at the fixed EVOCs (Figure 7(b)), the value of 418 

)( 3 NOOSI  for each case decreases from positive to exclusively negative values with increased 419 

ENOx in Region II and then beomes increasingly negative as ENOx continues to increase in 420 

Region I. It is interesting that the smaller the values of  or wt (Figure 7(a) and Figure 7(b)) 421 

are, the smaller the magnitude of )( 3 NOOSI   (compared with Case BASE) will be. It can be 422 

seen from Figure 7(c) that )( 3 NOOSI   becomes less negative for less trafficked area/scenario 423 

and seems to be stable for the more polluted area/scenario. Figure 5(d) shows that the 424 

magnitudes of )( 3 NOOSI   decrease with year, suggesting that in the future the segregation 425 

effect on ozone levels would be less signigicant. The comparison between the plots in Figure 426 

7 with their equivalents in Figure 5 also indicates a strong relationship bewteen )( 3 NOOSI   and 427 

3O . 428 

4 Conclusions 429 

Segregation effects of heterogeneous emissions have been examined by considering the 430 

surface sub-grid emission heterogeneity in two idealised urban street canyons within the 431 

urban canopy layer and investigated how differing chemical effects (arising from the 432 

heterogeneity of emissions) and dynamic effects (i.e. exchange velocity) influence the  error 433 

in O3 if implementing the grid-averaging paramerization for heterogeneous emissions. This 434 

study offers a better understanding of the paramerization of raw emissions for urban air 435 

quality models by highlighting the importance of segregation effects of heterogeneous 436 

emissions within the typical city-blocks (i.e. urban street canyons) and by providing a 2D 437 

pattern of overestimation for O3. The common situations in urban areas are found to fall into 438 

Region I where the modelled O3 concentration in street canyons (lower than that in the 439 

overlying background atmosphere) by the „one-box‟ model will be underestimated compared 440 

with the „true‟ value by the „two-box‟ model. Our findings also indicate that the performance 441 

of the „one-box‟ model for O3 concentration is better for a more „green‟ area with extra VOCs 442 
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sources and for the less trafficked area/scenario. Future emission trends are expected to lead 443 

to the error in the „one-box‟ model approach falling. The error in ozone levels is strongly 444 

linked to segregation effects of heterogeneous emissions and is balanced by both dynamics 445 

and chemistry. This study is restricted to two boxes by considering only two typical street 446 

canyons with emission hetergeneity, which are totally segregated, neither transported nor 447 

mixed with each other. Future studies should take more photochemical boxes into 448 

consideration and model more scenarios well represented by  more street canyons. Our final 449 

remark is that finding an appropriate real-world dataset to evaluate the box-averaged 450 

concentrations of this study is challeging due to the fact that concentrations of chemical 451 

species such as ozone are non-uniform inside a street canyon (Bright et al., 2013). Therefore 452 

high spatial density observations of pollutant concentrations inside street canyons are needed 453 

in support of a rigorous evaluation of the modelling approach.  Recent development of low-454 

cost sensors (e.g. Mead et al. 2013) provides a potential for the task to be completed in the 455 

future. 456 

 457 
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 467 

 Table 1. Overview of the model scenarios 468 

Case Heterogeneity of emissions (ε) Exchange velocity wt (m.s-1) 

BASE  0.5 0.02 

HE-L 0.3 0.02 

HE-H 0.7 0.02 

EX-L 0.5 0.012 

EX-H 0.5 0.028 

Note: „BASE‟ is the base case. „HE‟ denotes the heterogeneity of emissions, while „EX‟ means the 

exchange velocity. „L‟ or „H‟ represents a lower or higher value than the corresponding component in 

the base Case BASE.        

  469 
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 470 

Table 2. Overview of the range of values among emission scenarios for all cases 471 

Case 
21,3 OC  (ppb) 

(min, max) 

3O  (%) 

(min, max) 

)( 3 NOOSI 
(%) 

(min, max) 

Slope of RSL (EVOCs: ENOx ) 

BASE (=0.5, wt=0.02 m s-1) (7.56, 88.51) (-17.35, 1.48) (-21.29, 5.21) 2.6 

HE-L (=0.3, wt=0.02 m s-1) (6.70, 89.16) (-6.12, 0.52) (-7.78, 1.79) 2.6 

HE-H (=0.7, wt=0.02 m s-1) (9.69, 87.34) (-35.24, 3.07) (-40.98,11.02) 2.6 

EX-L (=0.5, wt=0.012 m s-1) (5.62, 160.82) (-17.31, 2.26) (-21.12, 6.78) 1.9 

EX-H (=0.5, wt=0.028 m s-1) (9.58, 68.13) (-17.25, 0.82) (-21.18, 3.57) 3.4 

Note: „BASE‟ is the base case. „HE‟ denotes the heterogeneity of emissions, while „EX‟ means the exchange velocity. „L‟ or 

„H‟ represents a lower or higher value than the corresponding component in the base Case BASE. 
21,3 OC  denotes the true 

concentration of  O3 (ppb); 
3O  means the percentage of overestimation for O3 by the „one-box‟ model (%);

)( 3 NOOSI 
 is the 

intensity of segregation between O3 and NO (%); RSL represents the Region Split Line; EVOCs and ENOx are the emission 

rates of VOCs and NOx, respectively (ppb s-1).         

 472 

473 
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 474 

Figure 1. Overview of the model setup. Ei,m means the emission rate of i
th

 species in Box m (m=0,1,2) (ppb s
-1

); 475 

 is the heterogeneity of emissions.   476 
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(a) (b) 477 

      478 

(c) (d) 479 

       480 

(e) (f) 481 

      482 

Figure 2.  21,3 OC  (ppb), the „true‟ concentration of O3 derived from the „two-box‟ model, in the (a) Case 483 

BASE, (b) Case HE-L, (c) Case HE-H, (d) Case EX-L, (e) Case EX-H and (f) Selected lines for analysis. EVOCs 484 

and ENOx are the emission rates of VOCs and NOx, respectively (ppb s-1); RSL means Region Split Line;  represents 485 

the „Typical Real-world Emission Scenario‟, TRES, for the year of 2010; The trajectory from 2005 to 2020 486 

represents the emission scenarios for 2005 to 2020, assuming constant traffic volume and speed. 487 
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                                                         488 

 489 

(a) (b) 490 

 491 

 (c)                                                         (d)                                                   492 

 493 

Figure 3. 21,3 OC  (ppb), the „true‟ concentration of O3 derived from the „two-box‟ model, for (a) “Fixed ENOx” 494 

at a fixed NOx emissions (0.28 ppb s
-1

), (b) “Fixed EVOCs” at a fixed VOCs emissions (0.22 ppb s
-1

), (c) “TRES-495 

2010” varying the total traffic volume only and (d) “Trajectory from the year of 2005 to 2020” assuming 496 

constant traffic volume and speed. EVOCs and ENOx are the emission rates of VOCs and NOx, respectively (ppb s-1); The 497 

dashed line indicates the background O3 level of 43.61 ppb; The solid line indicates the „Typical Real-world 498 

Emission Scenario‟, TRES, for the year of 2010.  499 

  500 
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(a) (b) 501 

    502 

(c) (d) 503 

    504 

(e) (f) 505 

   506 

Figure 4. 
3O  (%), the percentage of overestimation for O3 by the „one-box‟ model, in the (a) Case BASE, (b) 507 

Case HE-L, (c) Case HE-H, (d) Case EX-L, (e) Case EX-H and (f) Selected lines for analysis. EVOCs and ENOx are 508 

the emission rates of VOCs and NOx, respectively (ppb s-1); RSL means Region Split Line;  represents the „Typical 509 

Real-world Emission Scenario‟, TRES, for the year of 2010; The trajectory from 2005 to 2020 means the 510 

emission scenarios for 2005 to 2020, assuming constant traffic volume and speed. 511 
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         512 

(a) (b) 513 

 514 

(c) (d) 515 

 516 

Figure 5. 
3O  (%), the percentage of overestimation for O3 by the „one-box‟ model, for (a) “Fixed ENOx” at a 517 

fixed NOx emissions (0.28 ppb s
-1

), (b) “Fixed EVOCs” at a fixed VOCs emissions (0.22 ppb s
-1

), (c) “TRES-518 

2010” varying the total traffic volume only and (d) “Trajectory from the year of 2005 to 2020” assuming 519 

constant traffic volume and speed. EVOCs and ENOx are the emission rates of VOCs and NOx, respectively (ppb s-1); The 520 

solid line indicates the „Typical Real-world Emission Scenario‟, TRES, for the year of 2010.   521 

522 
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(a) (b) 523 

 524 

(c) (d) 525 

 526 

(e) (f) 527 

 528 

Figure 6.  )( 3 NOOSI   (%), the intensity of segregation between O3 and NO, in the (a) Case BASE, (b) Case HE-529 

L, (c) Case HE-H, (d) Case EX-L, (e) Case EX-H and (f) Selected lines for analysis. EVOCs and ENOx are the 530 

emission rates of VOCs and NOx, respectively (ppb s-1); RSL means Region Split Line;  represents the „Typical 531 
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Real-world Emission Scenario‟, TRES, for the year of 2010; The trajectory from 2005 to 2020 indicates the 532 

emission scenarios for 2005 to 2020, assuming constant traffic volume and speed. 533 

(a) (b) 534 

 535 

(c) (d) 536 

 537 

Figure 7. )( 3 NOOSI   (%), the intensity of segregation between O3 and NO, for (a) “Fixed ENOx” at a fixed NOx 538 

emissions (0.28 ppb s
-1

), (b) “Fixed EVOCs” at a fixed VOCs emissions (0.22 ppb s
-1

), (c) “TRES-2010” varying 539 

the total traffic volume only and (d) “Trajectory from the year of 2005 to 2020” assuming constant traffic 540 

volume and speed. EVOCs and ENOx are the emission rates of VOCs and NOx, respectively (ppb s-1); The solid line 541 

indicates the „Typical Real-world Emission Scenario‟, TRES, for the year of 2010.     542 

  543 
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